Advanced Crypto - Class 5

Julien du Crest

October 2019

Post-Quantum crypto motivations: Beginning with the seminal paper of Shor (94 ') factoring integers in probabilistic poly-time on a quantum computer, the result was expanded to solving DLOG on any group structure in $O\left(n^{2}\right)$ probabilistic time with a quantum computer, thus making most of todays crypto standard algorithms useless in the quantum world.
This motivates the study of post-quantum assumptions, i.e. problems that are thought to be difficult even in the quantum setting.

Possible candidates:

- Codes (e.g., McEliece) : good for assymetric-encryption.
- Multivariate polynomials : good for signatures.
- Isogenies : promising but still at its premices.
- Lattices : the Swiss-army knife of Post-Quantum crypto.

In particular, we would like our crypto system to allow for fine grained decryption policies, i.e. allowing for more advanced crypto schemes (e.g Attribute-Based Encryption, Predicate Encryption, Fully Homomorphic Encryption, Functional Encryption).

1 Linear systems and SIS problem

Definition 1. $S I S(n, m, B, q)$
Given $A \in \mathbb{Z}_{q}^{n \times m}$ and $b \in \mathbb{Z}_{q}^{n}$, finding non-null $e \in \llbracket-B, B \rrbracket^{m}$ s.t
$A \times \square=b$ is hard.
Remark: Finding any e satisfying the above is an easy task using gauss elimination. Restricting it to short vectors makes it hard so the choice of B is crucial.

3 cases are seen in practice :

- Homogeneous regime $\left(b=0^{n}\right)$ is the most common.
- Random regime $\left(b \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{n}\right)$ a.k.a. SIS regime.
- Planted regime ($b=A e$ for previously chosen e) a.k.a. LWE regime.

The is a lot to say about lattices assumptions and many reductions from one to another... to be done another time (or follow cryptanalysis with Damien Stehlé).

1.1 Some reductions

In the following, $A \xrightarrow{\text { red. }} B$ means that " A reduces to B " or equivalently that "solving B leads to an algorithm solving A".

Lemma 1. $S I S(n, m, B, q)$ random $\xrightarrow{\text { red. }} S I S(n, m+1, B, q)$ homogeneous
Proof. Given $A \in \mathbb{Z}_{q}^{n \times m}, b \in \mathbb{Z}_{q}^{n}$ and \mathscr{B} an algorithm that solves $S I S(n, m+1, B, q)$ homogenous with a non-negligible probability.
Let's define $B=[A \mid b] \in \mathbb{Z}_{q}^{n \times(m+1)}$ and let e denote the result of $\mathscr{B}(B)$.
If $e_{m}=1$, the vector $e^{\prime}=\left[\begin{array}{c}e_{1} \\ e_{2} \\ \ldots \\ e_{m-1}\end{array}\right]$ is a solution of the $\operatorname{SIS}(n, m, B, q)$ random
instance (A, b).
From this derives an algorithm \mathscr{A} solving $\operatorname{SIS}(n, m, B, q)$ random with nonnegligible probability by making a polynomial number of calls to oracle \mathscr{B} until the property $e_{m}=1$ is satisfied.

PS: There remain discussions to be had to ensure that the distribution of e looks uniformly random elementwise to ensure that $\mathbb{P}\left(e_{m}=1\right)=\frac{1}{B}>$ neg. and thus that a polynomial number of calls to \mathscr{B} will give a non-negligible probability of success.

Lemma 2. $S I S(n, m, B, q)$ homogeneous $\xrightarrow{\text { red. }} \operatorname{SIS}(n, m, B / 2, q)$ random
Proof. Given $A \in \mathbb{Z}_{q}^{n \times m}, b \in \mathbb{Z}_{q}^{n}$ and \mathscr{B} an algorithm that solves $\operatorname{SIS}(n, m, B / 2, q)$ random with a non-negligible probability.
The algorithm \mathscr{A} that picks $b \in \mathbb{Z}_{q}^{n}$ at random, then solve the problem twice and outputs $e_{1}-e_{2}$ solves $S I S(n, m, B, q)$ homogeneous with non-negligible probability.

Let $A \in \mathbb{Z}_{q}^{n \times m}, s \in \mathbb{Z}_{q}^{m}, e \stackrel{\mathcal{X}}{\leftarrow} \mathbb{Z}_{q}^{n}$.

Some intuition on LWE :

- If the error is too big (e.g $\left.\mathcal{X}=\mathcal{U}\left(\mathbb{Z}_{q}^{n}\right)\right)$, it is impossible to recover s.
- If the error is too small (e.g. $\mathcal{X}=\left\{0^{n}\right\}$), s can be recovered easily with gaussian elimination.

All the interesting cases lie somewhere in between.

Lemma 3. SearchLWE $\stackrel{\text { red. }}{\longleftrightarrow}$ SIS planted (hence the name LWE regime)
Proof. I will only show that SearchLWE $\xrightarrow{\text { red. }}$ SIS planted
Let $(A, A s+e)$ be an LWE sample. Since $m>n, \operatorname{ker}_{\text {left }}(A)$ has a large dimension, and thus I can construct a matrice $A^{\perp} \in \mathbb{Z}_{q}^{(m-n) \times m}$ out of random vectors such that $A^{\perp} A=0^{(m-n) \times n}$.
Let $y=A s+e$. Then $A^{\perp} y=A^{\perp} A s+A^{\perp} e=A^{\perp} e$.
Using the SIS planted solver on ($\left.A^{\perp}, A^{\perp} y\right)$ gives e^{\prime} small such that $A^{\perp} e^{\prime}=A^{\perp} e$. Now let's do gaussian elimination on $\left(A, y-e^{\prime}\right)$. If $e=e^{\prime}$ then this will yield a solution of SeachLWE.

There remain to prove that $e^{\prime}=e \ldots$
Definition 3. DecisionalLWE(n,m,q, $\chi)$:
Given the same setting as SearchLWE,
Distinguish between $(A, A s+e)$ and $\left(A, \mathcal{U}\left(\mathbb{Z}_{q}^{m}\right)\right)$
Lemma 4. SearchLWE $\stackrel{\text { red. }}{\longleftrightarrow}$ DecisionalLWE
Proof. DecisionalLWE $\xrightarrow{\text { red. }}$ SearchLWE trivially.
Let's now prove that SearchLWE $\xrightarrow{\text { red. }}$ DecisionalLWE.
This is a method to recover s_{1}, the first value of s. It then generalizes for every value.

- Guess $s_{1}=b \in \mathbb{Z}_{q}$ at random.
- Writing the instance problem as a collection of inner products
$I=\left(a_{i},<a_{i}, s>+e_{i}\right)_{i \in\{1, \ldots, m\}}$,
Generate the instance
$I^{\prime}=\left(a_{i}+\left(u_{i}, 0,0,0, \ldots\right), y_{i}+u_{i} b\right)_{i \in\{1, \ldots, m\}}$,
for $\left(u_{1}, \ldots, u_{m}\right) \stackrel{\$}{\leftarrow} \mathbb{Z}_{q}^{m}$.
- Run the DecisionalLWE distinguisher on the new instance.

If $s_{1}=b$, then this is a valid instance and the distinguisher for DecisionalLWE will answers YES. Else, the $y_{i}+u_{i} b$ look uniform, and thus the distinguisher will answer NO.

Now this method can be repeated until the distinguisher answers YES, and a suitable candidate for s_{1} is found (remember that this is probabilistic so there is still a chance that this is not the right s_{1}).
The whole process can then be repeated for the subsequent s_{2}, \ldots, s_{n} giving a suitable candidate for s.

> If we go back to the "Pre-Quantum" crypto, the counterpart for SearchLWE (SLWE) and DecisionalLWE (DLWE) would respectively be DLog and DDH.
> One powerful advantage of the LWE assumption is that there is no reduction from DDH to DLog (whereas there is one from DLWE to SLWE as seen just above).

2 First Constructions

2.1 CRH from SIS homogeneous

Let's define the hash function as :

$$
\begin{aligned}
H_{A}:\{0, \ldots, B\}^{m} & \longrightarrow \mathbb{Z}_{q}^{n} \\
e & \longmapsto A e
\end{aligned}
$$

Then if a collision $\left(e_{1}, e_{2}\right)$ is found, this means that $A e_{1}=A e_{2}$, hence that $A\left(e_{1}-e_{2}\right)=0$ with $\left\|e_{1}-e_{2}\right\|_{\infty} \leq 2 B$ and this contradicts the SIS assumption.

2.2 Symmetric encryption from DLWE

to be done next week...

