
Fully Homomorphic Encryption

Etienne Vareille

January 6, 2020

So far, we have seen:

• several PKE schemes (El Gamal, Dual Regev)

• LWE

Now, we are interested in the following question: can we delegate the compu-
tation of encrypted data to another machine? For instance, in the context of a
high cost algorithms that we want to apply to some data, if the machine storing
the data does not have sufficient computational power, we want to encrypt the
data and make a distant server do the computation.

We want to preserve privacy. Ideally, we want to obtain the a scheme as
presented in Figure 1 and Figure 2.

Definition 1 (HE). An Homomorphic Encryption scheme for a class C of func-
tions is a tuple (Gen, Enc, Dec, Eval) such that:

• (Gen, Enc, Dec) is a public-key encryption scheme.

• For all sequence of l messages (m1, ...,ml) ∈ {0, 1}n, for all function f :
{0, 1}n → {0, 1} in C, we want

Dec(sk,Eval(f,Enc(pk,m1), ...,Enc(pk,ml))) = f(m1, ...,ml)

with overwhelming probability over pk, sk uniformly drawn by Gen, and
over randomness of Enc.

• Security: standard IND-CPA security.

Figure 1: Situation of the data in the scheme

1

Figure 2: Communications in a FHE scheme

Remark. IND-CCA2 is not achievable. IND-CCA1 might be.

Definition 2. FHE An FHE scheme is a HE scheme for C = P/Poly the class
of poly-size circuits.

1 Some HE schemes you already know

El-Gamal ct1 = (gr1 , gr2sm) and ct2 = (gr2 , gr2sm) with gs the public key.
We can verify that it is multiplicatively homomorphic:
(gr1gr2 , gr1sm1g

r2sm2) = (gr1+r2 , g(r1+r2)sm1m2) could be a valid cypher-
text for m1m2.

Dual Regev is additively homomorphic:
for pk = A, Enc(pk,m0) = As0 + e0 + (0, bq/2cm0)T with s0 ←−$ Zn

q

for pk = A, Enc(pk,m1) = As1 + e1 + (0, bq/2cm1)T with s1 ←−$ Zn
q

and Enc(pk,m0 + m1) = A(s0 + s1) + (e0 + e1) + (0, bq/2c(m0 + m1))T . A
problem remains: the noise has increased but must be kept lesser than q/4.

2 FHE

2.1 Insecure FHE

An insecure (and non trivial) example:

• pk = P ∈ Zm×n
q such that leftKer(P) 6= 0

• sk = s such that sTP = 0n

• Enc(pk,m) = PR + mIn where R←−$ Zn×n
q

• Dec(sk, ct) = sk · ct = sT (PR + mIn) = msT

This is fully homomorphic:

2

• Addition: PR1 + m1In + PR2 + m2In = P (R1 + R2) + (m1 + m2)In

• Multiplication: (PR1 + m1In)(PR2 + m2In) = P (R1PR2 + m2R1 +
m1R2) + m1m2In. Multiplying this by sT on the left gives 0 for the
P term and sTm1m2.

Still, any s in LeftKer(P) allows us to decrypt, and such s is easy to find.

2.2 LWE based FHE

LWE or ”hard to find in almost the kernel”
Reminder: LWE is the problem consisting in finding s where only (A, sTA+

eT) is given.

Consider matrix A =

(
A′

s′TA′ + eT

)
. It is hard to find s =

(
s′

−1

)
such that

sTA = eT .
Thus, we use the following idea: replace in the previous insecure scheme P

by A and s by

(
s′

−1

)
.

• pk=

(
A

sTA + eT

)
with A←−$ Zn−1×n

q and s←−$ Zn−1

• sk=

(
s
−1

)
such that skT pk = −eT

• Enc(pk,m) = AR + mIn with R←−$ {0, 1}n×n

• Dec(sk, ct) = skT · ct = sT · (AR+mIn) = −eTR+msT with −eTR small
since e and R are small.

Let us verify that it is very close to a FHE:

Addition sT (Enc1 +Enc2) = −eT (R1 +R2) + sT (m1 +m2) valid as R1 +R2

is still small.

Multiplication

ct1 × ct2 = (AR1 + m1In)(AR2 + m2In)

= AR1AR2 + m2AR1 + m1AR2 + m1m2In

sT × ct1 × ct2 = −eTR1AR2 − eTR2m1 − eTR1m2 + m1m2s
T

Here we have a problem: the term −eTR1AR2 is not small since A is not small.
The A blocks us when we want to decrypt.

There is a solution: the gadget matrix.

3

2.3 The Gadget matrix

We define the gadget matrix

G =


1 2 4 . . . 2blog qc 0 . . .
0 0 0 . . . 1 2 . . . 2blog qc 0 . . .
...

...
...

...
0 0 0 0 0 . . . 0 0 . . . 1 2 . . . 2blog qc


in Zn×nblog qc

q (n lines, nblog qc columns).
For every v ∈ Zn

q , there is a unique x ∈ {0, 1}nblog qc such that Gx = v.
In particular, we can define G−1 the inverse function of G. But be careful:

this function is not a matrix as it is not linear. It is just the binary decomposition
of numbers in Zq.

Property. We have:

• G−1 ·G = Id

• G−1 maps into {0, 1}nblog qc which contains ”small elements”.

Thus, we transform the previous LWE based scheme to use G.

• pk=

(
A

sTA + eT

)
with A←−$ Zn−1×n

q and s←−$ Zn−1

• sk=

(
s
−1

)
such that skT pk = −eT

• Enc(pk,m) = AR + mG with R←−$ {0, 1}n×n

• Dec(sk, ct) = skT · ct = sT · (AR + mG) = −eTR + msTG with −eTR
small since e and R are small.

Once again, we must verify that it is indeed a FHE:

Addition sT (Enc1+Enc2) = −eT (R1+R2)+sT (m1+m2)G valid as R1+R2

is still small.

Multiplication Note that since the outputs of Enc are in Zn×nblog qc
q . Thus,

multiplying the two outputs does not make sense. Thus, we find an operation
that amounts to multiplying the messages: applying G−1 to ct2. Then, the
dimensions match.

ct1 ×G−1ct2 = (AR1 + m1In)G−1(AR2 + m2In)

= AR1G
−1(AR2 + m2G) + m1GG−1(AR2 + m2G)

= A(R1G
−1(AR2 + m2G) + m1R2) + m1m2G

sT × ct1 ×G−1ct2 = sTA(...) + m1m2s
TG = −eT (...)m1m2s

TG

The term that multiplies −eT is small due to the application of G−1 to (AR2 +
m2G). Thus, this is a valid encoding.

4

Figure 3: Bootstrapping

2.4 Noise Growth

Noise get doubled when adding, and is multiplied by approximately nblog qc
when multiplying. Denote m = nblog qc and consider a circuit C of depth d,
with gates denoting addition or multiplication. The homomorphic evaluation of
C leads to an error bounded by B0m

d with B0 being the initial bound on the
noise.

Conclusion so far: Choosing parameters appropriately can allow us to do any
computation of given bounded depth. This is called ”leveled fully homomorphic
encryption” or ”somewhat fully homomorphic encryption”. Any depth can be
achieved, but the parameters must be chosen accordingly.

3 Bootstrapping, or how to reduce the noise
[Gentry 2008]

A trivial solution is to decode to reduce or remove the noise during the compu-
tation. But we do not have access to sk during the computation, and commu-
nication with a party that has sk is not allowed.

Idea: Reveal an encryption of sk. We can now run Dec homomorphically on
any ciphertext.

Start with Enc(sk) and Enc(Enc(m)) for some ciphertext ct. We end up
with Enc(m).

We process as in Figure 3.

5

If we can do one more operation, i.e. Decrypt with noise ||e|| ≤ B0m
dDec+1,

we have a FHE.
Formally, we do not have security based on LWE, since some information

about sk might have been revealed. We speak of security of FHE under circular
LWE.

6

