
Contents

1 Course introduction 1

1 Course introduction

Professors: Geoffroy Couteau (couteau@irif.fr) & Alain Passelègue (alain.passelegue@ens-lyon.fr)

First part = complexity theory. End goal = interactive proofs. Second part = cryptography
applications of complexity theory.

Notation 1. • x
$←− A means we assign x a random value from set A

• {0, 1}n denotes the set of bit strings of length n

• {0, 1}∗ denotes the set of all bit strings

• |x| denotes the length of a bit string x

• O(g) and Ω(g) are the standard Landau notations

Definition 1. P runs in time poly(n)⇔ ∃ polynomial Q, runtime of P bounded by Q(n)

Definition 2 (Search problem). R : {0, 1}∗ × {0, 1}∗,R(x) = {y : ∃y, (x, y) ∈ R} f solves the
problem R if ∀x, f(x) ∈ R(x) with f : {0, 1}∗ → {0, 1}∗ ×⊥

Definition 3 (Decision problem). Let S ⊂ {0, 1}∗. f : {0, 1}∗ → {0, 1} solves the problem S if
S = {x : f(x) = 1}

Definition 4 (Language). A language is a subset of {0, 1}∗ Ln = L ∩ {0, 1}n

Definition 5 (Turing machine). • Environment = infinite band

• We can write things on the tape with an alphabet Σ (usually {0, 1, blank})

• We have a pointer indicating where we are on the tape

• A set of states Q, including an initial state q0 and a subset of final states Qhalt

• transition function: T : Σ×Q→ Σ×Q× {−1, 0,+1}

0 1 1 0 0 0 1

p

state qi
transition function T

Figure 1: A Turing machine is an infinite tape, alongside some rules to work on this tape

1

Definition 6. M computes f if ∀x ∈ {0, 1}∗, when M is started with x on its tape, it halts after a
finite number of steps with f(x) written on its tape.

Definition 7 (Probabilistic Turing machine). Turing Machine with two tapes:

• random tape = filled randomly with 0s and 1s

• work tape

random tape

work tape

Figure 2: A probabilistic Turing machine

Notation 2. M(x, r) means M is executed on input x with random tape r.

Definition 8 (Interactive Turing machine). Five total tapes:

• input tape

• random tape

• work tape

• communication tape 1: read only

• communication tape 2: write only

Definition 9 (Communication between two Turing machines). Two machines M1 and M2 are said
to be communicating if they share their communication tapes: one comm. tape 1 for one is comm.
tape 2 for the other.

2

input tape

random tape

work tape

comm tape (read-only)

comm tape (write-only)

input tape

random tape

work tape

comm tape (read-only)

comm tape (write-only)

M1 M2

Figure 3: Two communicating machines: the arrows mean the tapes are the same

Definition 10 (Oracle Turing machine). M has oracle access to f if in addition to its usual behavior,
M can query a value x to f in which case f(x) is written on the tape.

Notation 3. • PPT: probabilistic polynomial time

• PT = polynomial time

A PPT Turing machine M is a probabilistic machine that always halts after some polynomial
number of steps. ∃ PPT TM M ⇔ ∃ probabilistic TM M and a polynomial P such that on any
input x ∈ {0, 1}∗, M halts after at most P(|x|) steps.

Definition 11 (Complexity). P = languages L which can be decided by a PT M NP = languages
L if there exists a PT relation R : {0, 1}∗ × {0, 1}∗ → {0, 1} such that L = {x : ∃y, |y| = poly(x) ∧
R(x, y) = 1}

Definition 12 (Proof system). L ∈ NP has a proof system as it has the following properties:

1. completeness: ∀x ∈ L, there exists a short and efficiently verifiable proof of x ∈ L

2. soundness: no x /∈ L has a short accepting proof

Definition 13 (NP -hardness and NP -completeness). L is NP -hard if ∀L′ ∈ NP, L′ ≤P L (L′
can be reduced to L in polynomial time). This means that there exists a PT machine M such that
∀x ∈ {0, 1}∗, x ∈ L′ ⇔ M(x) ∈ L. Such a reduction is also called a Karp-reduction.

We say L is NP -complete if it is NP -hard and L ∈ NP .

Definition 14 (Another definition of reduction). If f decides L then Mf decides L′. This is called
a Cook-reduction or a Turing-reduction. This definition is more general, but both definitions are
equivalent for decision problems.

Example 1 (Some NP -complete problems). • SAT: is this CNF satisfiable? CNF =
∧

(
∨
literals)

proof by Cook in 1971 and Levin in 1973

3

• 3-SAT: SAT with only 3 literals per clause (
∨
) exercise: polynomial reduction from SAT

to 3-SAT

• Graph Hamiltonicity: is there a hamiltonian cycle in the graph? (cycle that goes through each
node exactly once)

• 3-coloring: coloring a graph with 3 colors

Theorem 1 (Ladner’s theorem). P 6= NP ⇒ ∃ "NP -intermediate" problems = NP\NP -hard

Simplified proof. Let L ∈ NP\P such that the best algorithm deciding L runs in time nlog(n).
Define L′ = {(x, y)|x ∈ L ∧ |x| + |y| = |x|log(log(|x|))} L′ ∈ P? If L′ ∈ P , then L can be decided in
time poly(|x|log(log(|x|))) which is a contradiction. L′ NP -complete? If so, we can reduce L to L′ in
polynomial time. Let N = |x|, N log(log(N)) = n. L′ is decidable in time N log(N) which implies L is
solvable in time poly(N log(N)) and N log(N) = no(log(n

o(1))) which is a contradiction.

Definition 15 (coNP). L ∈ coNP if Lc ∈ NP

Example 2. UNSAT is complete for coNP
TAUTOLOGY is complete for coNP

Remark 1. NP : x|∃y,R(x, y) = 1 coNP : x|∀y,R(x, y) = 1

Definition 16. ∀k ∈ N,Σk is the class of L such that there exists a polynomial P and PT TM M
such that x ∈ L iff ∃y1 ∈ {0, 1}P(|x|),∀y2 ∈ ...,∃y3 ∈ ..., ...,M(x, y1, ..., yk) = 1

PH =
⋃
k∈N

Σk

Remark 2. Σ0 = P,Σ1 = NP

Theorem 2. P = NP ⇔ P = PH

Proof. L ∈ Σk+1: L = {x : ∃y′, (x, y′) ∈ L′} where L′ ∈ Πk

L ∈ Σ2 ⇔ ∃ polynomial P, L′ ∈ coNP : L = {x : ∃y, (x, y) ∈ L′} If P = NP then P = coNP
then Σ2 = NP = P with the above equivalence.

Definition 17 (PSPACE). L ∈ PSPACE(S(n)) if there exists a TM M that decides L and the
number of cells that will be non-blank at any time during the computation is bounded by S(|x|)

PSPACE = ∪c>0SPACE(nc)

Example 3. TQBF : ψ = Q1x1Q2x2...Qnxnφ(x1, ..., xn) where Qi ∈ {∀∃}, x1, ..., xn are bits,
|φ| = m TQBF is PSPACE-complete exercise: TQBF is in PSPACE

4

	Course introduction

