Contents

1 Course introduction

1 Course introduction

Professors: Geoffroy Couteau (couteau@irif.fr) & Alain Passelègue (alain.passelegue@ens-lyon.fr)

First part = complexity theory. End goal = interactive proofs. Second part = cryptography applications of complexity theory.

Notation 1. • $x \stackrel{\$}{\leftarrow} A$ means we assign x a random value from set A

- $\{0,1\}^n$ denotes the set of bit strings of length n
- $\{0,1\}^*$ denotes the set of all bit strings
- |x| denotes the length of a bit string x
- O(g) and $\Omega(g)$ are the standard Landau notations

Definition 1. P runs in time $poly(n) \Leftrightarrow \exists polynomial Q, runtime of P bounded by <math>Q(n)$

Definition 2 (Search problem). R : $\{0,1\}^* \times \{0,1\}^*$, $R(x) = \{y : \exists y, (x,y) \in R\}$ f solves the problem R if $\forall x, f(x) \in R(x)$ with $f : \{0,1\}^* \to \{0,1\}^* \times \bot$

Definition 3 (Decision problem). Let $S \subset \{0,1\}^*$. $f : \{0,1\}^* \to \{0,1\}$ solves the problem S if $S = \{x : f(x) = 1\}$

Definition 4 (Language). A language is a subset of $\{0,1\}^* \mathcal{L}_n = \mathcal{L} \cap \{0,1\}^n$

Definition 5 (Turing machine). • *Environment = infinite band*

- We can write things on the tape with an alphabet Σ (usually $\{0, 1, blank\}$)
- We have a pointer indicating where we are on the tape
- A set of states Q, including an initial state q_0 and a subset of final states Q_{halt}
- transition function: $T: \Sigma \times Q \to \Sigma \times Q \times \{-1, 0, +1\}$

Figure 1: A Turing machine is an infinite tape, alongside some rules to work on this tape

Definition 6. *M* computes f if $\forall x \in \{0, 1\}^*$, when *M* is started with *x* on its tape, it halts after a finite number of steps with f(x) written on its tape.

Definition 7 (Probabilistic Turing machine). Turing Machine with two tapes:

- random tape = filled randomly with 0s and 1s
- work tape

random tape

work tape

Figure 2: A probabilistic Turing machine

Notation 2. M(x,r) means M is executed on input x with random tape r.

Definition 8 (Interactive Turing machine). *Five total tapes:*

- input tape
- random tape
- work tape
- communication tape 1: read only
- communication tape 2: write only

Definition 9 (Communication between two Turing machines). Two machines M_1 and M_2 are said to be communicating if they share their communication tapes: one comm. tape 1 for one is comm. tape 2 for the other.

Figure 3: Two communicating machines: the arrows mean the tapes are the same

Definition 10 (Oracle Turing machine). M has oracle access to f if in addition to its usual behavior, M can query a value x to f in which case f(x) is written on the tape.

Notation 3. • PPT: probabilistic polynomial time

• PT = polynomial time

A PPT Turing machine M is a probabilistic machine that always halts after some polynomial number of steps. \exists PPT TM M $\Leftrightarrow \exists$ probabilistic TM M and a polynomial P such that on any input $x \in \{0,1\}^*$, M halts after at most P(|x|) steps.

Definition 11 (Complexity). $P = languages \mathcal{L}$ which can be decided by a $PT \leq NP = languages \mathcal{L}$ if there exists a PT relation $\mathbb{R} : \{0,1\}^* \times \{0,1\}^* \to \{0,1\}$ such that $\mathcal{L} = \{x : \exists y, |y| = \text{poly}(x) \land \mathbb{R}(x,y) = 1\}$

Definition 12 (Proof system). $\mathcal{L} \in NP$ has a proof system as it has the following properties:

- 1. completeness: $\forall x \in \mathcal{L}$, there exists a short and efficiently verifiable proof of $x \in \mathcal{L}$
- 2. soundness: no $x \notin \mathcal{L}$ has a short accepting proof

Definition 13 (NP-hardness and NP-completeness). \mathcal{L} is NP-hard if $\forall \mathcal{L}' \in NP$, $\mathcal{L}' \leq_P \mathcal{L}$ (\mathcal{L}' can be reduced to \mathcal{L} in polynomial time). This means that there exists a PT machine M such that $\forall x \in \{0,1\}^*, x \in \mathcal{L}' \Leftrightarrow M(x) \in \mathcal{L}$. Such a reduction is also called a Karp-reduction. We say \mathcal{L} is NP-complete if it is NP-hard and $\mathcal{L} \in NP$.

Definition 14 (Another definition of reduction). If f decides \mathcal{L} then M^f decides \mathcal{L}' . This is called a Cook-reduction or a Turing-reduction. This definition is more general, but both definitions are equivalent for decision problems.

Example 1 (Some NP-complete problems). • SAT: is this CNF satisfiable? $CNF = \bigwedge(\bigvee literals)$ proof by Cook in 1971 and Levin in 1973

- 3-SAT: SAT with only 3 literals per clause (∨) exercise: polynomial reduction from SAT to 3-SAT
- Graph Hamiltonicity: is there a hamiltonian cycle in the graph? (cycle that goes through each node exactly once)
- 3-coloring: coloring a graph with 3 colors

Theorem 1 (Ladner's theorem). $P \neq NP \Rightarrow \exists$ "NP-intermediate" problems = NP\NP-hard

Simplified proof. Let $\mathcal{L} \in NP \setminus P$ such that the best algorithm deciding \mathcal{L} runs in time $n^{\log(n)}$. Define $\mathcal{L}' = \{(x, y) | x \in \mathcal{L} \land |x| + |y| = |x|^{\log(\log(|x|))}\}$ $\mathcal{L}' \in P$? If $\mathcal{L}' \in P$, then \mathcal{L} can be decided in time poly $(|x|^{\log(\log(|x|))})$ which is a contradiction. $\mathcal{L}' NP$ -complete? If so, we can reduce \mathcal{L} to \mathcal{L}' in polynomial time. Let $N = |x|, N^{\log(\log(N))} = n$. \mathcal{L}' is decidable in time $N^{\log(N)}$ which implies \mathcal{L} is solvable in time poly $(N^{\log(N)})$ and $N^{\log(N)} = n^{\circ(\log(n^{\circ(1)}))}$ which is a contradiction.

Definition 15 (coNP). $\mathcal{L} \in coNP$ if $\mathcal{L}^c \in NP$

Example 2. UNSAT is complete for coNP TAUTOLOGY is complete for coNP

Remark 1. NP: $x|\exists y, \mathbf{R}(x,y) = 1$ coNP: $x|\forall y, \mathbf{R}(x,y) = 1$

Definition 16. $\forall k \in \mathbb{N}, \Sigma_k$ is the class of \mathcal{L} such that there exists a polynomial P and PT TM M such that $x \in \mathcal{L}$ iff $\exists y_1 \in \{0, 1\}^{P(|x|)}, \forall y_2 \in ..., \exists y_3 \in ..., ..., M(x, y_1, ..., y_k) = 1$

 $PH = \bigcup_{k \in \mathbb{N}} \Sigma_k$

Remark 2. $\Sigma_0 = P, \Sigma_1 = NP$

Theorem 2. $P = NP \Leftrightarrow P = PH$

Proof. $\mathcal{L} \in \Sigma_{k+1}$: $\mathcal{L} = \{x : \exists y', (x, y') \in \mathcal{L}'\}$ where $\mathcal{L}' \in \Pi_k$

 $\mathcal{L} \in \Sigma_2 \Leftrightarrow \exists$ polynomial P, $\mathcal{L}' \in coNP : \mathcal{L} = \{x : \exists y, (x, y) \in \mathcal{L}'\}$ If P = NP then P = coNP then $\Sigma_2 = NP = P$ with the above equivalence.

Definition 17 (*PSPACE*). $\mathcal{L} \in PSPACE(S(n))$ if there exists a TM M that decides \mathcal{L} and the number of cells that will be non-blank at any time during the computation is bounded by S(|x|)

 $PSPACE = \cup_{c>0} SPACE(n^c)$

Example 3. $TQBF : \psi = Q_1 x_1 Q_2 x_2 ... Q_n x_n \phi(x_1, ..., x_n)$ where $Q_i \in \{\forall \exists\}, x_1, ..., x_n$ are bits, $|\phi| = m \ TQBF$ is PSPACE-complete exercise: TQBF is in PSPACE