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1 Course introduction

Professors: Geoffroy Couteau (couteau@irif.fr) & Alain Passelégue (alain.passelegue@ens-lyon.fr)

First part = complexity theory. End goal = interactive proofs. Second part = cryptography
applications of complexity theory.

Notation 1. o 2 & A means we assign x a random value from set A
e {0,1}" denotes the set of bit strings of length n
e {0,1}* denotes the set of all bit strings
e |z| denotes the length of a bit string x
e O(g) and Q(g) are the standard Landau notations
Definition 1. P runs in time poly(n) < 3 polynomial Q, runtime of P bounded by Q(n)

Definition 2 (Search problem). R : {0,1}* x {0,1}*,R(z) = {y : 3y, (z,y) € R} { solves the
problem R if Va,f(x) € R(z) with f: {0,1}* — {0,1}* x L

Definition 3 (Decision problem). Let S C {0,1}*. f : {0,1}* — {0,1} solves the problem S if
S={z:f(x)=1}

Definition 4 (Language). A language is a subset of {0,1}* £, = LN {0,1}"
Definition 5 (Turing machine). e FEnvironment = infinite band
o We can write things on the tape with an alphabet ¥ (usually {0, 1, blank})
o We have a pointer indicating where we are on the tape
o A set of states QQ, including an initial state qo and a subset of final states Qpai
o transition function: T : ¥ x Q — X x Q x {—1,0,+1}

state g;
transition function T
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Figure 1: A Turing machine is an infinite tape, alongside some rules to work on this tape



Definition 6. M computes f if Vo € {0,1}*, when M is started with x on its tape, it halts after a
finite number of steps with f(x) written on its tape.

Definition 7 (Probabilistic Turing machine). Turing Machine with two tapes:
e random tape = filled randomly with 0s and 1s

e work tape

random tape

work tape

Figure 2: A probabilistic Turing machine

Notation 2. M(z,r) means M is executed on input x with random tape .
Definition 8 (Interactive Turing machine). Five total tapes:

e input tape

e random tape

e work tape

e commumnication tape 1: read only

e communication tape 2: write only

Definition 9 (Communication between two Turing machines). Two machines M1 and Mz are said
to be communicating if they share their communication tapes: one comm. tape 1 for one is comm.
tape 2 for the other.



M1 M2

input tape input tape
random tape random tape
work tape work tape
comm tape (read-only) comm tape (read-only)
comm tape (write-only) comm tape (write-only)

Figure 3: Two communicating machines: the arrows mean the tapes are the same

Definition 10 (Oracle Turing machine). M has oracle access to f if in addition to its usual behavior,
M can query a value x to f in which case f(x) is written on the tape.

Notation 3. e PPT: probabilistic polynomial time
o PT = polynomial time

A PPT Turing machine M is a probabilistic machine that always halts after some polynomial
number of steps. 3 PPT TM M < 3 probabilistic TM M and a polynomial P such that on any
input « € {0,1}*, M halts after at most P(|x|) steps.

Definition 11 (Complexity). P = languages L which can be decided by a PT M NP = languages
L if there exists a PT relation R : {0,1}* x {0,1}* — {0,1} such that £ = {z : Jy, |y| = poly(z) A
R(z,y) =1}

Definition 12 (Proof system). £ € NP has a proof system as it has the following properties:

1. completeness: Vx € L, there exists a short and efficiently verifiable proof of x € L

2. soundness: no x & L has a short accepting proof

Definition 13 (N P-hardness and N P-completeness). £ is NP-hard if VL' € NP, L' <p L (L'
can be reduced to L in polynomial time). This means that there exists a PT machine M such that
Vo € {0,1}*,2 € L' < M(x) € L. Such a reduction is also called a Karp-reduction.

We say L is NP-complete if it is NP-hard and L € NP.

Definition 14 (Another definition of reduction). If f decides £ then M! decides L'. This is called
a Cook-reduction or a Turing-reduction. This definition is more general, but both definitions are
equivalent for decision problems.

Example 1 (Some N P-complete problems). o SAT: is this CNF satisfiable? CNF = \(\/ literals)
proof by Cook in 1971 and Levin in 1973



o 3-SAT: SAT with only 3 literals per clause (\/) exercise: polynomial reduction from SAT
to 3-SAT

e Graph Hamiltonicity: is there a hamiltonian cycle in the graph? (cycle that goes through each
node exactly once)

e 3-coloring: coloring a graph with 3 colors
Theorem 1 (Ladner’s theorem). P # NP = 3 "N P-intermediate” problems = NP\N P-hard

Simplified proof. Let L € NP\P such that the best algorithm deciding £ runs in time nlos(m)
Define £/ = {(z,y)|z € L A |z| + |y| = |z|'°eosleD)} £/ € P? If £’ € P, then £ can be decided in
time poly(|z['°8(e(2D)) which is a contradiction. £’ N P-complete? If so, we can reduce £ to £’ in
polynomial time. Let N = |z|, N'e(0g(N)) — p - £/ is decidable in time N'°&(N) which implies £ is
solvable in time poly(N™©8(V)) and N1s(N) — neoe(m* ™) which is a contradiction.
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Definition 15 (coNP). L € coNP if L € NP

Example 2. UNSAT is complete for coN P
TAUTOLOGY is complete for coN P

Remark 1. NP: z|3y,R(z,y) =1 coNP: z|Vy,R(z,y) =1

Definition 16. Vk € N, X us the class of L such that there exists a polynomial P and PT TM M

such that x € L iff Jy1 € {0, 1}P(|x‘),Vy2 €.,z €.y, Mz, y1, .0y yx) =1
PH =%
keN

Remark 2. >g=P,>1 = NP
Theorem 2. P= NP < P=PH

Proof. L € Xpy1: L={x: 3y, (z,y") € L} where L' € Il
L € Y9 < 3 polynomial P, L' € coNP : L ={z: 3y, (z,y) € L'} If P = NP then P = coNP
then ¥ = NP = P with the above equivalence.
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Definition 17 (PSPACE). L € PSPACE(S(n)) if there exists a TM M that decides L and the

number of cells that will be non-blank at any time during the computation is bounded by S(|x|)

PSPACE = Ues0SPACE(n®)

Example 3. TQBF : ¢y = Qi11Q212...Qnxnd (21, ..., ) where Q; € {V3}, x1,...,xy, are bits,
|p| = m TQBF is PSPACE-complete exercise: TQ)BF is in PSPACE
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