M2-ENSL (2024-25): Homework

Notations: Given a power-of-two integer N > 1 and an integer q > 1, we define $\mathcal{R}_N = \mathbb{Z}[X]/(X^N + 1)$ and $\mathcal{R}_{q,N} = \mathbb{Z}_q[X]/(X^N + 1)$.

1. (**RLWE Security**)

- (a) Let $\iota : \mathcal{R}_{q,N} \to \mathcal{R}_{q,2N}$ be defined as $\iota(p(X)) = p(X^2)$. Show that ι is a ring homomorphism.
- (b) Let $\mathsf{ct} = (b, a) \in \mathcal{R}^2_{q,N}$ be an RLWE ciphertext. Check that $\iota(\mathsf{ct}) = (\iota(b), \iota(a)) \in \mathcal{R}^2_{q,2N}$ can be regarded as an RLWE ciphertext over $\mathcal{R}_{q,2N}$. What is the difference between regular RLWE over $\mathcal{R}_{q,2N}$ and the one constructed with ι ?

2. (Rescale)

- (a) Let p, q > 1 be integers. Let $\mathsf{InvRescale} : \mathcal{R}^2_{q,N} \to \mathcal{R}^2_{pq,N}$ be defined as $(b, a) \mapsto (pb, pa)$ and let $\mathsf{Rescale} : \mathcal{R}^2_{pq,N} \to \mathcal{R}^2_{q,N}$ be a rescaling by p. Check that $\mathsf{Rescale} \circ \mathsf{InvRescale} = \mathsf{id}$ and $\mathsf{InvRescale} \circ \mathsf{Rescale} \neq \mathsf{id}$.
- (b) Let p, r > 1 be integers and q > 1 be an odd integer. Let $\mathsf{Rescale}_{pq} : \mathcal{R}^2_{pqr,N} \to \mathcal{R}^2_{r,N}$ be a rescaling by pq, $\mathsf{Rescale}_p : \mathcal{R}^2_{pqr,N} \to \mathcal{R}^2_{qr,N}$ be a rescaling by p, and $\mathsf{Rescale}_q : \mathcal{R}^2_{qr,N} \to \mathcal{R}^2_{r,N}$ be a rescaling by q. Show that $\mathsf{Rescale}_{pq} = \mathsf{Rescale}_q \circ \mathsf{Rescale}_p$.

3. (Key Switching)

- (a) Let KeySwitch_{$s_1 \rightarrow s_2$} be a key switching from secret key s_1 to s_2 . Check that the key switching error is independent from the underlying plaintext.
- (b) Let $\mathsf{swk} \in \mathcal{R}^2_{qp,N}$ be an RLWE switching key from secret key s_1 to s_2 . Let $\varphi : \mathcal{R}_N \to \mathcal{R}_N$ be an automorphism (e.g., an evaluation in X^5 or X^{-1}). Check that swk can be interpreted as a switching key from $\varphi(s_1)$ to $\varphi(s_2)$.
- (c) Let $\mathsf{ct} = (c_0, c_1, c_2, c_3, c_4)$ be a ciphertext that decrypts with a secret key $\mathsf{sk} = (1, s_1, \varphi(s_1), s_2, \varphi(s_2))$, i.e., such that $c_0 \cdot 1 + c_1 \cdot s_1 + c_2 \cdot \varphi(s_1) + c_3 \cdot s_2 + c_4 \cdot \varphi(s_2) \approx \Delta \cdot m$. Check that one can convert it to a ciphertext encrypting the same plaintext and decrypts with $(1, s_2)$, using two switching keys and three key switchings.
- 4. (CKKS Operations) Let $Q_L = q_0 q_1 \cdots q_L$ be a chain of moduli such that $q_1, q_2, \ldots, q_L \simeq \Delta$. Suppose that we start with a scaling factor Δ at level L.
 - (a) Let Δ_{ℓ} be a scaling factor at level ℓ . Show that $\Delta_{\ell-1} = \Delta_{\ell}^2/q_{\ell}$.
 - (b) Let $0 \le \ell < \ell' \le L$. Discuss how to add two ciphertexts ct_1 at level ℓ and ct_2 at level ℓ' .
 - (c) In order to multiply two ciphertexts, one may consider two options Rescale \circ Relin \circ Tensor and Relin \circ Rescale \circ Tensor. Compare two options in terms of efficiency and precision.

5. (Bootstrapping Components)

- (a) Given an integer k > 1, let $N = 2^{2k+1}$. Let A be a $2^{2k} \times 2^{2k}$ complex matrix and $\mathsf{ct} \in \mathcal{R}^2_{q,N}$ be a CKKS ciphertext encrypting a complex vector \vec{z} of dimension 2^{2k} . Check that one can evaluate $A \cdot \vec{z}$ homomorphically with $2^{k+1} 2$ rotations. (Hint: baby-step giant-step)
- (b) Check that one can evaluate $A \cdot \vec{z}$ homomorphically with the same number of rotations in (a) and with only 2 rotation keys.

- (c) Let $p(x) = \sum_{i=0}^{2^k-1} a_0 x^i$ be a complex polynomial and $\mathsf{ct} \in \mathcal{R}^2_{q,N}$ be a CKKS ciphertext at level $\ell \geq k$. Show that one can perform element-wise polynomial evaluation of p homomorphically with at most k levels. That is, there is an instantiation of homomorphic evaluation of p such that the output ciphertext is at level $\ell - k$.
- (d) Let p(x) be a complex polynomial of degree 15. Find an algorithm for homomorphic evaluation of p(x) while minimizing the number of relinearizations.