
M1 – Cryptography and Security (2023/2024) A. Passelègue and A. Herlédan Le Merdy

TD 10: Digital Signatures (corrected version)

Exercise 1.
In this exercise we show a scheme that can be proven secure in the random oracle model, but is
insecure when the random oracle model is instantiated with SHA-3 (or any fixed (unkeyed) hash
function H : {0, 1}∗ → {0, 1}n). Let Π be a signature scheme that is euCMA-secure in the standard
model.
Let y ∈ {0, 1}n and define the following signature scheme Πy. The signing and verifying keys are
obtained by running Π.Gen(1λ). Signature of a message m is computed out as follows: if H(0) = y
then output the secret key, if H(0) ̸= y then return a signature computed using Π.Sign. To verify a
message, if y = H(0) then accept any signature for any message and otherwise, verify it using Π.Verify.

1. Prove that for any value y, the scheme Πy is euCMA-secure in the random oracle model.
☞ In the ROM, we can reduce the security of Πy from the security of Π, as the event y = H(0) happens with negligible probability
(< 2−λ).

Let us assume that there exists an adversary A that breaks the euCMA security of Πy in the ROM. We build the following reduction By
that on input a verification key vk does the following. It queries H(0). If H(0) = y, it aborts. Otherwise, it forwards vk to A and uses
its own signing oracle to sign the messages queried by A. When A outputs a forgery, it forwards it. We then have:

Adv(B) = Pr(A wins∧ H(0) ̸= y).

Moreover, it holds that

Adv(A) ≤ Pr(A wins∧ H(0) ̸= y) +
1
2n .

Then Adv(B) ≥ Adv(A)− 1/2n, which is non-negligible.

2. Show that there exists a particular y for which Πy is insecure when the hash function is not
modeled as a random oracle anymore.

☞ Let H be fixed. We look at ΠH(0). This signature scheme always output its secret key as signature and moreover it accepts any

signature for any message. It is then not euCMA-secure.

Exercise 2.
Define a lattice-based Schnorr-like signature scheme as follows:

Gen(1λ): Sample A ←↩ U(Zn×n
q), S, E ←↩ U((−B, B]n×n). Return vk = (A, T = AS + E, H) with H a

hash function modeled as a random oracle with values in {0, 1}n×n and sk = (S, E).

Sign(sk, µ): To sign a message µ ∈ {0, 1}⋆, do the following:

1. (Commit) Sample S′, E′ ←↩ U((−B, B]n×n) and compute T′ = AS′ + E′;

2. (Challenge) Compute C = H(µ||T′);
3. (Response) Compute Z1 = S′ + SC, Z2 = E′ + EC.

4. Output (C, Z1, Z2).

V(vk, (C, Z1, Z2), µ): To verify the signature:

1. Compute T′ = AZ1 + Z2 − TC;

2. Accept if C = H(µ||T′).

1. Would the scheme be euCMA secure if S and E were sampled as vectors in (−B, B]n instead
of (−B, B]n×n?

☞ With the latter condition, c is now sampled as a scalar, we can sample random messages and randomness s′ , e′ until the hash

is 0: then we do not need to know the secret key to sign the message. This could be circumvented using c from a exponentially large

space, but this causes other problems as we will see below.

1

2. Is it hard to find a forgery for this scheme?
☞ A valid signature is a triplet (C, Z1, Z2) such that T′ = AZ1 + Z2 − TC and C = H(µ||T′).
Let µ be a message to sign. One can simply sample T′ at random, compute C = H(µ||T′), sample Z2 at random, and compute
Z1 ← A−1(T′ − TC− Z2). Then (C, Z1, Z2) is a valid signature for µ.

Alternative solution: Given a signature (C, Z1, Z2) for a message M, one could choose some matrix S′′ and compute Z′1 = Z1 + S′′

and Z′2 = Z1 −AS′′. Then it holds that T′ = AZ′1 + Z′2 − TC and then the signature (C, Z′1, Z′2) is accepted for the message M.

3. Explain how to tweak to above scheme to prevent the above attack by imposing an additional
validity check regarding the norm of Z1, Z2. Show that the secret key owner can still sign.

☞ If we require Z1, Z2 to be small, it is hard to find solutions as above as the inverse we compute in the first solution will be large

w.o.p., and it is hard to find S′′ such that AS′′ is small for the second attack.

4. Show that if the resulting scheme is still not euCMA secure.
☞ We focus on Z1 to recover S but the same holds for Z2.

Let (Ci , Zi =
(
s′i S′i,R

)
+ (s1 SR) · (ci C′i)) be the answer to the i-th signing query, where we explicit the first columns s′i , s1, ci of

each matrix S′i , S, Ci.

Then, assuming that Ci [1, 1] = 1, it holds that the first column of Zi is s′i + s1 + S′c′i with ci =

(
1
c′i

)
.

We query signatures for random messages M until we get k signatures with non-zero topleft value of Ci. Then, if we compute the
mean of all leftmost column, it holds that

Pr(|z̄1[j]− s1[j]| ≥ 1) ≤ 2 exp
(
− 2k

q2

)
,

for each index j of the column. If this event is not satisfied, since we work with integers, we can round the mean to the nearest integer

and get s1[j], which means that we have a non-negligible probability of finding S if we repeat this for each column, for big enough k

(but still polynomial).

The solution to make the scheme secure is to force the distribution of Z1, Z2 to be independent of the
secret key. This is done by a technique called rejection sampling, or by noise flooding.

Exercise 3.
In this exercise, we assume we have two cyclic groups G and GT of the same known prime cardinality p,
and a generator g of G. We also assume we have a pairing function e : G × G → GT , with the
following properties: It is non-degenerate, i.e., e(g, g) ̸= 1; It is bilinear, i.e., e(ga, gb) = e(g, g)ab for
all a, b ∈ Z/qZ; It is computable in polynomial-time. Note that the bilinearity property implies that
e(ga, g) = e(g, ga) = e(g, g)a holds for all a ∈ Z/pZ.

1. Show that the Decision Diffie-Hellman problem (DDH) on G can be solved in polynomial-time.

☞ Given ga , gb and gc, test whether e(ga , gb) = e(gc , g). If c = ab, then equality holds. If c is uniform, then e(gc , g) is uniform, and

as the pairing is non-degenerate, equality holds with probability 1/p.

We consider the BLS signature scheme (due to Boneh, Lynn and Shacham), which is as follows:

• KeyGen takes as inputs a security parameter and returns G, g, p, GT and a description of e :
G × G → GT satisfying the properties above. All these are made publicly available. Sample x
uniformly in Z/pZ. The verification key is vk = gx, whereas the signing key is sk = x.

• Sign takes as inputs sk and a message M ∈ {0, 1}∗. It computes h = H(M) ∈ G where H is a
hash function, and returns σ = hx.

• Verify takes as inputs the verification key vk = gx, a message M and a signature σ, and returns 1
if and only if e(σ, g) = e(H(M), vk).

2. Show that this signature scheme is EU-CMA secure under the Computational Diffie-Hellman
assumption (CDH) relative to G, when H(·) is modeled as a random oracle. ☞ Let A be an adversary
against the EU-CMA seucrity of the signature scheme. Let Q be an upper bound on the number of (unique) random oracle queries
made by A. We build the following reduction B:

2

C B A

Sample a, b←↩ U(Zp)
(ga ,gb)−−−−→ Set vk = ga vk−→

Sample i⋆ ←↩ U([1, Q]), i = 1
“RO′′ ,M←−−−−

If H(M) was not set:
Set H(M) = grM , rM ←↩ U(Zp) if i ̸= i⋆

Set H(M) = gb otherwise

Increase i by one
H(M)−−−→

“Sign′′ ,M←−−−−−

If not set, set H(M) = grM , rM ←↩ U(Zp)
(vk)rM
−−−−→

σ,M←−−
σ←− If Verify(vk, M, σ) and H(M) = gb

Else abort.

If both conditions at the end are verified, it holds that e(gb , ga) = e(σ, g), meaning that σ = gab, and we win. The answers of B to RO
queries are well distributed, as g is a generator of G of order p.

The answers of B to signing queries are also well simulated, except if A queries M such that we set H(M) = gb. In that case, since sign
is deterministic, even if we could answer the query correctly, we would fail at the end (ie never get a forgery for M). So in that case,
we can abort. Note that outputting a valid forgery for a message M without querying the Random Oracle first is highly improbable,
as H(M) is not yet set: the adversary only has probability 1/p to guess the correct value of H(M), which is negligible.

Then, assuming that A has non-negligible probability of winning, it has non-negligible probability of winning by forging a sig-

nature for a message it queried the RO for. Since we try to guess which message will be attacked, it holds that Adv(B) ≥
Pr(A wins with a forgery queried to the RO)/Q, which is still non-negligible.

In cryptographic applications in which signing is performed very frequently (such as for cryptocur-
rencies), it is interesting to aggregate many signatures for multiple messages into significantly smaller
space than required to store all these signatures.

3. Show that that the BLS signature scheme supports aggregation. ☞
If we have two signature σ1, σ2 for messages M1, M2 respectively, we can compute their product σ′ = σ1σ2. To verify that this aggregation
is valid, one can check that (H(M1)H(M2))x = σ′.

We store m signatures in only 1 element of G. Of course, this comes at the price of security.

4. Propose formal definitions for the functionality and security of an aggregate signature scheme.
☞ An aggregate signature scheme is a tuple Gen, Sign, Aggregate, Verify such that

Gen(1λ): Outputs (vk, sk), a verification and secret keys.

Sign(sk, M): Outputs σ, a signature for message M.

Aggregate({σi , Mi}i , vk): Outputs σ′, an aggregated signature for {Mi}i. In particular, σ′ must have smaller size than {σi}i.

Verify(σ′ , {Mi}i , vk): Outputs 1 if σ′ is an aggregated (or, if there is only one message, simply a) signature for {Mi}i. Outputs 0
otherwise.

An aggregated signature scheme is secure if no adversary with access to a signing oracle can forge a valid aggregated signature, such

that at least one message was not queried to the signing oracle.

3

	1.
	2.
	3.

