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TD1: Playing with definitions (corrected version)

Exercise 1. Statistical distance

Definition 1 (Statistical distance). Let X and Y be two discrete random variables over a countable set A. The
statistical distance between X and Y is the quantity

∆(X, Y) =
1
2 ∑

a∈A
|Pr[X = a]− Pr[Y = a]|.

The statistical distance verifies usual properties of distance function, i.e., it is a positive definite binary
symmetric function that satisfies the triangle inequality:

• ∆(X, Y) ≥ 0, with equality if and only if X and Y are identically distributed,

• ∆(X, Y) = ∆(Y, X),

• ∆(X, Z) ≤ ∆(X, Y) + ∆(Y, Z).

1. Show that if ∆(X, Y) = 0, then for any deterministic adversary A, we have AdvA(X, Y) = 0.

☞ By definition, AdvA(X, Y) = |Pra←X [A(a) = 1]−Pra←Y [A(a) = 1]|. Since ∆(X, Y) = 0, we directly obtain that Pr[X = a] = Pr[Y = a]

for all a ∈ S, or in other words, X and Y are identically distributed. As a result, Pra←X [A(a) = 1] = Pra←Y [A(a) = 1] and thus

AdvA(X, Y) = 0.

In the next question, we will prove the data processing inequality for the statistical distance.

2. Let X, Y be two random variables over a common set A.

(a) Let f : A→ S be a deterministic function with domain S. Show that

∆( f (X), f (Y)) ≤ ∆(X, Y).

☞ We write the definition of ∆.
∆( f (X), f (Y)) =

1
2 ∑

s∈S
|Pr( f (X) = s)− Pr( f (Y) = s)|

Then decompose the event f (X) = s into something more explicit.

∆( f (X), f (Y)) =
1
2 ∑

s∈S

∣∣∣∣∣∣ ∑
a∈ f−1(s)

Pr(X = a)− ∑
a∈ f−1(s)

Pr(Y = a)

∣∣∣∣∣∣
Now use the triangle inequality.

∆( f (X), f (Y)) ≤ 1
2 ∑

s∈S
∑

a∈ f−1(s)

|Pr(X = a)− Pr(Y = a)|

Finally, recall that ⊔s∈S f−1(s) = A, and this ends the proof.

(b) Let Z be another random variable with domain Z , statistically independent from X and Y.
Show that

∆((X, Z), (Y, Z)) = ∆(X, Y).

☞ Once again, we write the definition of the statistical distance.

∆((X, Z), (Y, Z)) = ∑
(a,z)∈A×Z

|Pr(X = a ∧ Z = z)− Pr(Y = a ∧ Z = z)|

= ∑
(a,z)∈A×Z

|Pr(Z = z) · (Pr(X = a)− Pr(Y = a))|

= ∑
z∈Z

Pr(Z = z) · ∑
a∈A
|Pr(X = a)− Pr(Y = a)|.

And this is exactly ∆(X, Y).
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(c) Let f be a (possibly probabilistic) function with domain S. Define f ′ a deterministic func-
tion and R a random variable independent from X and Y such that for any input x, we
have f ′(x, R) = f (x). The random variable R is the internal randomness of f . Using f ′ and R,
show that ∆( f (X), f (Y)) = ∆( f ′(X, R), f ′(Y, R)) ≤ ∆(X, Y).
☞ We apply the two previous results: ∆( f (X), f (Y)) ≤ ∆((X, R), (Y, R)) = ∆(X, Y).

3. Show that for any (possibly probabilistic) adversary A, we have AdvA(X, Y) ≤ ∆(X, Y).
☞ This follows from the definition of the advantage, and from the above property (A is a function):

AdvA(X, Y) = |Pr[A(X) = 1]− Pr[A(Y) = 1]| = 1
2 ∑

b∈{0,1}
|Pr[A(X) = b]− Pr[A(Y) = b]| = ∆(A(X),A(Y)) ≤ ∆(X, Y).

4. Assuming the existence of a secure PRG G : {0, 1}s → {0, 1}n, show that ∆(G(U({0, 1}s)),
U({0, 1}n)) can be much larger than maxAAdvA(G(U({0, 1}s)), U({0, 1}n)).
☞ By definition,

∆(G(U({0, 1}s)), U({0, 1}n)) =
1
2 ∑

a∈{0,1}n
|Pr[G(U({0, 1}s)) = a]− Pr[U({0, 1}n) = a]|

=
1
2

 ∑
a∈{0,1}n

a ̸∈G({0,1}s )

∣∣∣∣0− 1
2n

∣∣∣∣+ ∑
a∈{0,1}n

a∈G({0,1}s )

∣∣∣∣Pr[G(U({0, 1}s)) = a]− 1
2n

∣∣∣∣


=
1
2
− #G({0, 1}s)

2 · 2n +
1
2 ∑

a∈{0,1}n
a∈G({0,1}s )

(
Pr[G(U({0, 1}s)) = a]− 1

2n

)

= 1− #G({0, 1}s)

2n+1 − #G({0, 1}s)

2n+1

≥ 1− 2s−n .

At line 3, we use the fact that for a ∈ G({0, 1}s), we have Pr[G(U({0, 1}s))] = a ≥ 1/2s ≥ 1/2n (because at least one element b
is such that G(b) = a and as b is chosen uniformly in {0, 1}s, this happens with probability at least 2s). We also use the fact that
∑ a∈{0,1}n

a∈G({0,1}s )
Pr[G(U({0, 1}s)) = a] = 1.

For the last inequality, we use the fact that #G({0, 1}s) ≤ 2s. As in the lecture we assumed n ≫ s, then in particular as soon as
n > s + 1, the statistical distance will be greater than 1/2.

On the contrary, as G is a secure PRG, then by definition maxA AdvA(G(U({0, 1}s)), U({0, 1}n)) is negligible, i.e. much smaller than

1/2.

Exercise 2. About the advantage definition
We consider two distributions D0 and D1 over {0, 1}n.

1. Recall the definitions that were given in class for the notions of distinguisher, advantage and indis-
tinguishability of D0 and D1.
☞ To sum up the behavior of a distinguisher A, two experiments Expb , b ∈ {0, 1} can be defined as follows.

C A
sample x ←↩ Db

send x to A
compute a bit b′

output b′

Then, we consider the advantage Adv(A) = |Pr[A
Exp0−−→ 1]−Pr[A

Exp1−−→ 1]|; the distributions D0 and D1 are said to be indistinguishable

if Adv(A) is negligible for any PPT A.

2. Consider a distinguishing game involving two experiments Exp0, Exp1 in which the adversary is
interacting either Expb for b← U({0, 1}). We define two notions of advantages:

Adv1(A) = |Pr[A Exp0−−→ 1]− Pr[A Exp1−−→ 1]| ,
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and
Adv2(A) = |2 Pr[A Expb−−→ b]− 1| .

Show that Adv1(A) = Adv2(A).
☞ It follows from the following computation:

Adv2(A) = |2 Pr[A
Expb−−→ b]− 1|

= |2(Pr[A
Expb−−→ 1|b = 1] · Pr[b = 1] + Pr[A

Expb−−→ 0|b = 0] · Pr[b = 0])− 1|

= |2(Pr[A
Exp1−−→ 1] · 1

2
+ Pr[A

Exp0−−→ 0] · 1
2
)− 1|

= |Pr[A
Exp1−−→ 1] + (1− Pr[A

Exp0−−→ 1])− 1|
= Adv1(A) .

Exercise 3. A weird distinguisher...
We consider two distributions D0 and D1 over {0, 1}n. You found a distinguisher A on internet.
However, you cannot find anywhere in the documentation its performances!

1. Assuming that you have access to as many samples as you like from D0 and D1 (you can for
instance assume that you can sample yourself from these distributions), how would you estimate
the advantage of A? Hint: use the Chernoff Bound: Pr(|X − np| ≥ nt) ≤ 2 exp(−2nt2), where X
follows a binomial distribution with parameters (n, p). ☞ Run N times Exp 0 and Exp 1 for a number N to be

determined later. This gives us b(1)1 , . . . b(N)
1 and b(1)2 , . . . , b(N)

2 , 2N results. Define

b̄1 :=
∑N

i=1 b(i)1
N

and b̄2 :=
∑N

i=1 b(i)2
N

.

Then let pb be the probability that A outputs 1 at the end of Exp b. The Chernoff bound gives

Pr(|b̄i − pi | ≥ ε) ≤ 2 exp(−2Nε2),

for any accuracy ε > 0. Then notice the following sequence of inequalities:

Adv(A) = |p1 − p0| ≤ |p1 − b̄1|+ |b̄1 − b̄0|+ |b̄0 − p0| ≤ 2ε + |b̄1 − b̄0|,

where the last inequality holds with probability at least 1− 4 exp(−2Nε2). The same sequence can be written by reversing the roles
of pb and b̄p. This gives us |Adv(A)− |b̄1 − b̄0|| ≤ 2ϵ with probability at least 1− 4 exp(−2Nε2).

Assuming that you want to compute the advantage with accuracy 1
λc and probability 0.95, set ε := 1

2λc and N such that 1 −
4 exp(N/(2λ2c)) ≥ 0.95 i.e. N/λ2c ≥ 2 ln(80) ≈ 8.76.

By convention, you want to design a distinguisher such that it outputs 1 when it thinks the sample
comes from D1 and 0 otherwise. However, because of the definition of advantage, it is also possible to
design distinguishers that do the reverse, and still have the same advantage. For instance, the above
distinguisher A may often be “wrong”. This could be troublesome if your aim is to use its output to
do further computations. Luckily, there exists a way to transform A into a distinguisher that is more
often right than wrong, whatever it previously did.

2. The definition of advantage given in class may be called Absolute Advantage, for the purpose of
this exercise. In this question, we define the Positive Advantage of A as

AdvP(A) := Pr(A Exp1−−→ 1)− Pr(A Exp0−−→ 1).

Given a distinguisher A with Absolute Advantage ε, we build a distinguisher A′ that does the
following:

1. Upon receiving a sample y←↩ Db, it runs b′ ← A(y).
2. It samples x0 ←↩ D0 and x1 ←↩ D1 and runs b0 ← A(x0) and b1 ← A(x1).

3. It returns b′ if b0 = 0 and b1 = 1. It returns 1− b′ if b0 = 1 and b1 = 0.
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4. In any other cases, it returns a uniform bit.

Prove that the Positive Advantage of A′ is ε2.
☞ The probability that A outputs 1 in experience Exp b is p1(1− p0)pb + p0(1− p1)(1− pb) +

1
2 (p0 p1 + (1− p0)(1− p1)). The positive

advantage of A′ is then:

AdvP(A′) = p1(1− p0)(p1 − p0) + p0(1− p1)(p0 − p1)

= (p1 − p0) · (p1(1− p0)− p0(1− p1))

= (p1 − p0) · (p1 − p0 p1 − p0 + p0 p1)

= ε2.
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