TD2: Pseudorandom Generators (corrected version)

Exercise 1.

Bit-flip of a PRG
Let G a pseudo-random generator (PRG) of input range $\{0,1\}^{s}$ and output range $\{0,1\}^{n}$. We define \bar{G} as follows:

$$
\forall x \in\{0,1\}^{s}, \bar{G}(x):=1^{n} \oplus G(x)
$$

where \oplus denotes the XOR operation. This corresponds to flipping every bit of the output of G.

1. Prove that \bar{G} is secure if and only if G is secure.

Abstract

\square Assume that G is secure. We will prove that \bar{G} is secure. Assume by contradiction that there exists an adversary \mathcal{A} that distinguishes between $\bar{G}\left(U\left(\{0,1\}^{s}\right)\right)$ and $U\left(\{0,1\}^{n}\right.$ with non-negligible advantage. We build \mathcal{A}^{\prime} a distinguisher between $G\left(U\left(\{0,1\}^{s}\right)\right)$ and $U\left(\{0,1\}^{n}\right)$ the following way: on input a sample y, \mathcal{A}^{\prime} calls \mathcal{A} on the sample $1^{n} \oplus y$. It outputs the same value. Notice the following: if y is uniformly distributed, then so is $1^{n} \oplus y$. If y follows the distribution $G\left(U\left(\{0,1\}^{s}\right)\right)$, then $1^{n} \oplus y$ follows the distribution $\bar{G}\left(U\left(\{0,1\}^{s}\right)\right)$. Then \mathcal{A} 's view is exactly as intended. It guesses from which distribution is sampled $1^{n} \oplus y$ with non-negligible advantage, and the advantage of \mathcal{A}^{\prime} is equal to the advantage of \mathcal{A}, which contradicts the assumption that G is secure.

Finally, we notice that the flipped version of \bar{G} is G, and the previous proof also shows that \bar{G} secure implies G secure.

Exercise 2

Variable-length OTP is not secure
A variable length one-time pad is a cipher (E, D), where the keys are bit strings of some fixed length L, while messages and ciphertexts are variable length bit strings, of length at most L. Thus, the cipher (E, D) is defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$, where

$$
\mathcal{K}:=\{0,1\}^{L} \text { and } \mathcal{M}:=\mathcal{C}=\{0,1\}^{\leq L}
$$

for some parameter L. Here, $\{0,1\} \leq L$ denotes the set of all bit strings of length at most L (including the empty string). For a key $k \in\{0,1\}^{L}$ and a message $m \in\{0,1\} \leq L$ of length ℓ, the encryption function is defined as follows:

$$
E(k, m):=k[0 \ldots \ell-1] \oplus m
$$

1. Provide a counter-example showing that the variable length OTP is not secure for perfect secrecy.

4 Suppose that the message distribution contains two messages m_{0}, m_{1} of distinct length, i.e. $\left|m_{0}\right| \neq\left|m_{1}\right|$ in its support. Then given a ciphertext c with $|c|=\left|m_{0}\right|$, we have $\operatorname{Pr}\left[c=E\left(k, m_{1}\right)\right]=0$ while $\operatorname{Pr}_{m \leftarrow \mathcal{M}}\left[m=m_{1}\right] \neq 0$. Hence, the scheme is not perfectly secure.

Exercise 3.

Let $G:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ be a function, with $m>n$.

1. Recall the definition of a PRG from the lecture.
(f) $\mathrm{G}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a PRG if there exists no ppt $\mathcal{A}:\{0,1\}^{m} \rightarrow\{0,1\}$ that distinguish with non-negligible probability between
$\mathcal{U}\left(\{0,1\}^{m}\right)$ and $G\left(\mathcal{U}\left(\{0,1\}^{n}\right)\right)$.
Let Enc: $\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}^{m}$ defined by $\operatorname{Enc}(k, m)=\mathrm{G}(k) \oplus m$.
2. Give the associated decryption algorithm.

路 $\mathrm{Enc}=\mathrm{Dec}$
3. Recall the smCPA security notion from the lecture.

Teq) Two experiments, Exp_{b} for $b \in\{0,1\}$ are defined as follows:

1. The challenger \mathcal{C} chooses k uniformly.
2. The adversary \mathcal{A} chooses m_{0}, m_{1} distinct of identical bitlength.
3. The challenger \mathcal{C} returns $\operatorname{Enc}\left(k, m_{b}\right)$.
4. The adversary \mathcal{A} outputs a guess b^{\prime}.

This is summed up in the following sketch:

The advantage of \mathcal{A} is defined as $\operatorname{Adv}(\mathcal{A}):=\left|\operatorname{Pr}\left(\mathcal{A} \xrightarrow{\text { Exp }_{0}} 1\right)-\operatorname{Pr}\left(\mathcal{A} \xrightarrow{\operatorname{Exp}_{1}} 1\right)\right|$. Then (Enc, Dec) is said smCPA-secure if no efficient adversary has non-negligible advantage.

Let $m_{1}, m_{2} \in\{0,1\}^{m}$ be arbitrary messages.
4. What is the statistical distance between the distributions $\mathcal{U}_{1}=m_{1} \oplus \mathcal{U}\left(\{0,1\}^{m}\right)$ and $\mathcal{U}_{2}=m_{2} \oplus$ $\mathcal{U}\left(\{0,1\}^{m}\right)$?
[皆 They are the same distributions, so 0 .
We proved in class that G PRG \Rightarrow (Enc, Dec) smCPA-secure. We are going to prove (Enc, Dec) not smCPA-secure $\Rightarrow G$ not PRG.
5. Let \mathcal{A} be an distinguisher between two games G_{0} and G_{1}. We say that \mathcal{A} wins if it output 0 (resp $1)$ during the game $G_{0}\left(\operatorname{resp} G_{1}\right)$. Show that

$$
\left.\operatorname{Adv}_{\mathcal{A}}\left(G_{0}, G_{1}\right)=2 \cdot \left\lvert\, \operatorname{Pr}_{b \sim \mathcal{U}(\{0,1\})}\left(\mathcal{A} \text { wins in } G_{b}\right)-\frac{1}{2}\right. \right\rvert\,
$$

1 星

$$
\operatorname{Pr}_{b \sim u(\{0,1\})}\left(\mathcal{A} \text { wins in } G_{b}\right)=\frac{1}{2} \cdot \operatorname{Pr}(\mathcal{A} \rightarrow 0)+\frac{1}{2} \cdot \underset{G_{1}}{\operatorname{Pr}}(\mathcal{A} \rightarrow 1)=\frac{1}{2}\left(\underset{G_{0}}{\operatorname{Pr}}(\mathcal{A} \rightarrow 0)+1-\underset{G_{1}}{\operatorname{Pr}}(\mathcal{A} \rightarrow 0)\right)
$$

Hence the result.
6. Assume that \mathcal{A} is an adversary with non-negligible advantage ε against the smCPA-security of (Enc, Dec). Construct an explicit distinguisher between $\mathcal{U}\left(\{0,1\}^{m}\right)$ and $G\left(\mathcal{U}\left(\{0,1\}^{n}\right)\right)$ and compute its advantage.

We define the \mathcal{A}^{\prime} to be the following:

1. Get k from the distribution $G=G\left(\mathcal{U}\left(\{0,1\}^{n}\right)\right)$ or $\mathcal{U}\left(\{0,1\}^{m}\right)$.
2. Get m_{1}, m_{2} from \mathcal{A}.
3. Sample b from $\mathcal{U}(\{0,1\})$.
4. Send $k \oplus m_{b}$ to \mathcal{A} and get the output b^{\prime}.
5. If $b=b^{\prime}$, output " G " else output " U ".

The advantage of \mathcal{A}^{\prime} is $\left|\operatorname{Pr}_{k \sim G}\left(\mathcal{A}^{\prime} \rightarrow G\right)-\operatorname{Pr}_{k \sim \mathcal{u}}\left(\mathcal{A}^{\prime} \rightarrow G\right)\right|$.
Assume $k \sim \mathcal{U}$ and define Y_{0} the game played when $b=0$ and Y_{1} the game played when $b=1$. Since $k \sim \mathcal{U}$, we have that $m_{b} \oplus k$ is independent from m_{b}, hence $\operatorname{Pr}_{m_{0}, k}\left(\mathcal{A}\left(m_{0} \oplus k\right) \rightarrow 1\right)=\operatorname{Pr}_{m_{1}, k}\left(\mathcal{A}\left(m_{1} \oplus k\right) \rightarrow 1\right)$ and hence the advantage of \mathcal{A} between Y_{0} and Y_{1} is 0 . By the previous question we have $\operatorname{Pr}_{b \sim \mathcal{U}}(\{0,1\}), k\left(\mathcal{A}\right.$ wins when given $\left.m_{b} \oplus k\right)=1 / 2$.
Assume $k \sim G$ and define Y_{0}^{\prime} the game played when $b=0$ and Y_{1}^{\prime} the game played when $b=1$. We have $\operatorname{Pr}_{k \sim G}\left(\mathcal{A}^{\prime} \rightarrow G\right)=$ $\operatorname{Pr}_{b}\left(\mathcal{A}\right.$ wins $\left.Y_{b}^{\prime}\right)$.

Finaly, $\operatorname{Adv}_{\mathcal{A}^{\prime}}=\left|\operatorname{Pr}_{k \sim G}\left(\mathcal{A}^{\prime} \rightarrow G\right)-\operatorname{Pr}_{k \sim \mathcal{U}}\left(\mathcal{A}^{\prime} \rightarrow G\right)\right|=\mid \operatorname{Pr}_{b}\left(\mathcal{A}\right.$ wins $\left.Y_{b}^{\prime}\right)-1 / 2 \mid=\varepsilon / 2$.

