TD2: Pseudorandom Generators (corrected version)

Exercise 1.

Bit-flip of a PRG

Let *G* a pseudo-random generator (PRG) of input range $\{0,1\}^s$ and output range $\{0,1\}^n$. We define \overline{G} as follows:

$$\forall x \in \{0,1\}^s, \bar{G}(x) := 1^n \oplus G(x),$$

where \oplus denotes the XOR operation. This corresponds to flipping every bit of the output of *G*.

1. Prove that \overline{G} is secure if and only if *G* is secure.

Assume that G is secure. We will prove that \overline{G} is secure. Assume by contradiction that there exists an adversary \mathcal{A} that distinguishes between $\overline{G}(U(\{0,1\}^s))$ and $U(\{0,1\}^n)$ with non-negligible advantage. We build \mathcal{A}' a distinguisher between $G(U(\{0,1\}^s))$ and $U(\{0,1\}^n)$ the following way: on input a sample y, \mathcal{A}' calls \mathcal{A} on the sample $1^n \oplus y$. It outputs the same value.

Notice the following: if y is uniformly distributed, then so is $1^n \oplus y$. If y follows the distribution $G(U(\{0,1\}^s))$, then $1^n \oplus y$ follows the distribution $\overline{G}(U(\{0,1\}^s))$. Then \mathcal{A} 's view is exactly as intended. It guesses from which distribution is sampled $1^n \oplus y$ with non-negligible advantage, and the advantage of \mathcal{A}' is equal to the advantage of \mathcal{A} , which contradicts the assumption that G is secure.

Finally, we notice that the flipped version of \overline{G} is G, and the previous proof also shows that \overline{G} secure implies G secure.

Exercise 2.

Variable-length OTP is not secure

A *variable length one-time pad* is a cipher (E, D), where the keys are bit strings of some fixed length *L*, while messages and ciphertexts are variable length bit strings, of length at most *L*. Thus, the cipher (E, D) is defined over $(\mathcal{K}, \mathcal{M}, \mathcal{C})$, where

$$\mathcal{K} := \{0,1\}^L$$
 and $\mathcal{M} := \mathcal{C} = \{0,1\}^{\leq L}$

for some parameter *L*. Here, $\{0,1\}^{\leq L}$ denotes the set of all bit strings of length at most *L* (including the empty string). For a key $k \in \{0,1\}^L$ and a message $m \in \{0,1\}^{\leq L}$ of length ℓ , the encryption function is defined as follows:

$$E(k,m) := k[0 \dots \ell - 1] \oplus m$$

1. Provide a counter-example showing that the variable length OTP is not secure for perfect secrecy.

Suppose that the message distribution contains two messages m_0, m_1 of distinct length, i.e. $|m_0| \neq |m_1|$ in its support. Then given a ciphertext c with $|c| = |m_0|$, we have $\Pr[c = E(k, m_1)] = 0$ while $\Pr_{m \leftarrow \mathcal{M}}[m = m_1] \neq 0$. Hence, the scheme is not perfectly secure.

Exercise 3.

Let $G : \{0,1\}^n \to \{0,1\}^m$ be a function, with m > n.

1. Recall the definition of a PRG from the lecture.

 $\begin{array}{l} \textcircled{\sc line {\rm G}} & {\rm G}: \{0,1\}^n \to \{0,1\}^m \text{ is a PRG if there exists no ppt } \mathcal{A}: \{0,1\}^m \to \{0,1\} \text{ that distinguish with non-negligible probability between } \\ \mathcal{U}(\{0,1\}^m) \text{ and } \mathcal{G}(\mathcal{U}(\{0,1\}^n)). \end{array}$

Let Enc: $\{0,1\}^n \times \{0,1\}^m \rightarrow \{0,1\}^m$ defined by Enc $(k,m) = G(k) \oplus m$.

2. Give the associated decryption algorithm.

🔊 Enc = Dec

- **3.** Recall the smCPA security notion from the lecture.
 - Two experiments, Exp_b for $b \in \{0, 1\}$ are defined as follows:
 - 1. The challenger C chooses k uniformly.
 - 2. The adversary A chooses m_0, m_1 distinct of identical bitlength.
 - 3. The challenger C returns $Enc(k, m_b)$.
 - 4. The adversary $\mathcal A$ outputs a guess b'.

This is summed up in the following sketch:

$$\begin{array}{c|c} \mathcal{C} & \mathcal{A} \\ \hline k \leftrightarrow \mathcal{U}(K) \\ \hline \\ \text{Send Enc}(k, m_b) & \text{Choose and send } (m_0, m_1) \in P' := \{(m, m') \in P^2, m \neq m' \land |m| = |m'|\} \\ \hline \\ & \text{Output } b' \in \{0, 1\}. \end{array}$$

The advantage of \mathcal{A} is defined as $Adv(\mathcal{A}) := |Pr\left(\mathcal{A} \xrightarrow{Exp_0} 1\right) - Pr\left(\mathcal{A} \xrightarrow{Exp_1} 1\right)|$. Then (Enc, Dec) is said smCPA-secure if no efficient adversary has non-negligible advantage.

Let $m_1, m_2 \in \{0, 1\}^m$ be arbitrary messages.

4. What is the statistical distance between the distributions $U_1 = m_1 \oplus U(\{0,1\}^m)$ and $U_2 = m_2 \oplus U(\{0,1\}^m)$?

 ${}^{\rm I\!\!I\!\!I\!\!I\!\!I\!\!I\!\!I\!}$ They are the same distributions, so 0.

We proved in class that $G PRG \Rightarrow (Enc, Dec) \text{ smCPA-secure}$. We are going to prove (Enc, Dec) not smCPA-secure $\Rightarrow G$ not PRG.

5. Let A be an distinguisher between two games G_0 and G_1 . We say that A wins if it output 0 (resp 1) during the game G_0 (resp G_1). Show that

$$\mathsf{Adv}_{\mathcal{A}}(G_0, G_1) = 2 \cdot \left| \Pr_{b \sim \mathcal{U}(\{0,1\})} (\mathcal{A} \text{ wins in } G_b) - \frac{1}{2} \right|$$

B

$$\Pr_{b \sim \mathcal{U}(\{0,1\})}(\mathcal{A} \text{ wins in } G_b) = \frac{1}{2} \cdot \Pr_{G_0}(\mathcal{A} \to 0) + \frac{1}{2} \cdot \Pr_{G_1}(\mathcal{A} \to 1) = \frac{1}{2} \left(\Pr_{G_0}(\mathcal{A} \to 0) + 1 - \Pr_{G_1}(\mathcal{A} \to 0) \right)$$

Hence the result.

- 6. Assume that A is an adversary with non-negligible advantage ε against the smCPA-security of (Enc, Dec). Construct an explicit distinguisher between $U(\{0,1\}^m)$ and $G(U(\{0,1\}^n))$ and compute its advantage.
 - ${}^{\hbox{\scriptsize I\!\!\!\!I\!\!\!\!I\!\!\!\!I\!\!\!\!I\!\!\!\!I\!\!\!}}$ We define the \mathcal{A}' to be the following:
 - 1. Get k from the distribution $G = G(\mathcal{U}(\{0,1\}^n))$ or $\mathcal{U}(\{0,1\}^m)$.
 - 2. Get m_1, m_2 from A.
 - 3. Sample b from $\mathcal{U}(\{0,1\})$.
 - 4. Send $k \oplus m_b$ to \mathcal{A} and get the output b'.
 - 5. If b = b', output "G" else output "U".

The advantage of \mathcal{A}' is $|\operatorname{Pr}_{k\sim G}(\mathcal{A}' \to G) - \operatorname{Pr}_{k\sim \mathcal{U}}(\mathcal{A}' \to G)|$.

Assume $k \sim \mathcal{U}$ and define Y_0 the game played when b = 0 and Y_1 the game played when b = 1. Since $k \sim \mathcal{U}$, we have that $m_b \oplus k$ is independent from m_b , hence $\Pr_{m_0k}(\mathcal{A}(m_0 \oplus k) \to 1) = \Pr_{m_1k}(\mathcal{A}(m_1 \oplus k) \to 1)$ and hence the advantage of \mathcal{A} between Y_0 and Y_1 is 0. By the previous question we have $\Pr_{b\sim\mathcal{U}(\{0,1\}),k}(\mathcal{A}$ wins when given $m_b \oplus k) = 1/2$.

Assume $k \sim G$ and define Y'_0 the game played when b = 0 and Y'_1 the game played when b = 1. We have $\Pr_{k \sim G}(\mathcal{A}' \rightarrow G) = \Pr_b(\mathcal{A} \text{ wins } Y'_b)$.

 $\mathsf{Finaly, } \mathsf{Adv}_{\mathcal{A}'} = |\mathrm{Pr}_{k \sim G}(\mathcal{A}' \rightarrow G) - \mathrm{Pr}_{k \sim \mathcal{U}}(\mathcal{A}' \rightarrow G)| = |\mathrm{Pr}_b(\mathcal{A} \text{ wins } Y'_b) - 1/2| = \epsilon/2.$