TD3: Security Assumptions

Exercise 1.

Let (Enc, Dec) be an encryption scheme over $K \times P \times \{0, 1\}^n$.

1. In this question, we assume that (Enc, Dec) is smCPA-secure. Prove that there exists a smCPAsecure encryption scheme (Enc', Dec') such that $G: k \mapsto \text{Enc}'(k, 0)$ is not a secure PRG. *Hint: try* to concatenate constant bits to every ciphertext.

Exercise 2.

Attacking the DLG problem

Let \mathbb{G} be a cyclic group generated by g, of (known) prime order p, and let h be an element of \mathbb{G} . Let $F : \mathbb{G} \to \mathbb{Z}_p$ be a nonzero function, and let us define the function $H : \mathbb{G} \to \mathbb{G}$ by $H(\alpha) = \alpha \cdot h \cdot g^{F(\alpha)}$. We consider the following algorithm (called *Pollard* ρ *Algorithm*).

Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$

Output: $x \in \{0, \dots, p-1\}$ such that $h = g^x$ or FAIL.

2. $x \leftarrow 0, \alpha \leftarrow h$

3.
$$y \leftarrow F(\alpha); \beta \leftarrow H(\alpha)$$

- 4. while $\alpha \neq \beta$ do
- $x \leftarrow x + F(\alpha) \mod p; \alpha \leftarrow H(\alpha)$ 5.
- $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$ 6.
- $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$ 7.
- $i \leftarrow i + 1$ 8.

```
9. end while
```

```
10. if i < p then
```

```
return (x - y)/i \mod p
11.
```

```
12. else
```

```
return FAIL
13.
```

```
14. end if
```

To study this algorithm, we define the sequence (γ_i) by $\gamma_1 = h$ and $\gamma_{i+1} = H(\gamma_i)$ for $i \ge 1$.

- **1.** Show that in the **while** loop from Steps 4 to 9 of the algorithm, we have $\alpha = \gamma_i = g^x h^i$ and $\beta = \gamma_{2i} = g^y h^{2i}$.
- **2.** Show that if this loop terminates with i < p, then the algorithm returns the discrete logarithm of h in basis g.
- **3.** Let *j* be the smallest integer such that there exists k < j such that $\gamma_j = \gamma_k$. Show that $j \leq p + 1$ and that the loop ends with i < j.
- **4.** Show that if *F* is a random function, then the average execution time of the algorithm is in $O(p^{1/2})$ multiplications in \mathbb{G} .