
M1 – Cryptography and Security (2023/2024) Arthur Herlédan Le Merdy and A. Passelègue

TD3: Security Assumptions (corrected version)

Exercise 1.
Let (Enc,Dec) be an encryption scheme over K× P× {0, 1}n.

1. In this question, we assume that (Enc,Dec) is smCPA-secure. Prove that there exists a smCPA-
secure encryption scheme (Enc′,Dec′) such that G : k 7→ Enc′(k, 0) is not a secure PRG. Hint: try
to concatenate constant bits to every ciphertext.
☞ Define Enc′ : (k, m) 7→ 1ℓ ||Enc(k, m). The decryption algorithm Dec′ ignores the first ℓ bits and calls Dec on the remaining ones.
We have two things to prove:

• The pair (Enc′ ,Dec′) is a smCPA-secure encryption scheme.

• G : k 7→ 1ℓ ||Enc(k, 0) is not a secure PRG.

We start with the first claim. If we assume by contradiction that there exists an efficient adversary A that breaks the smCPA-security
of (Enc′ ,Dec′), we build A′ against the smCPA-security of (Enc,Dec) the following way. It starts by calling A. When A outputs two
messages m0, m1, A′ outputs the same messages to the challenger. When the challenger outputs a ciphertext c, A′ sends to A the
ciphertext 1ℓ ||c. When A outputs a bit b′, A′ outputs the same. This is summed up in the following sketch:

C A′ A
k←↩ U(K)

Call A
Choose and send (m0, m1) ∈ P′

Send the same messages (m0, m1)
Send c := Enc(k, mb)

Compute and send to A: c′ := 1ℓ ||c
Output b′

Output b′

In these games, the view of A is the same as in the previous question. This means that it behaves the same way as in the Expb games
for the encryption scheme (Enc′ ,Dec). By definition of the advantage, Adv(A′) = Adv(A). Thus, this breaks the security of (Enc,Dec).

We move on to prove the second claim by exhibiting an efficient distinguisher B. It does the following: upon receiving a sample

from either G(U(K)) or the uniform distribution, it outputs 1 if the first ℓ bits are 1 and 0 otherwise. Its advantage is 1− 1
2ℓ

. It is

non-negligible as soon as ℓ ≥ 1.

Exercise 2. Attacking the DLG problem
Let G be a cyclic group generated by g, of (known) prime order p, and let h be an element of G. Let
F : G → Zp be a nonzero function, and let us define the function H : G → G by H(α) = α · h · gF(α).
We consider the following algorithm (called Pollard ρ Algorithm).

Pollard ρ Algorithm

Input: h, g ∈ G

Output: x ∈ {0, . . . , p− 1} such that h = gx or fail.

1. i← 1

2. x ← 0, α← h

3. y← F(α); β← H(α)

4. while α ̸= β do

5. x ← x + F(α) mod p; α← H(α)

6. y← y + F(β) mod p; β← H(β)

7. y← y + F(β) mod p; β← H(β)

8. i← i + 1

1

9. end while

10. if i < p then

11. return (x− y)/i mod p

12. else
13. return fail

14. end if

To study this algorithm, we define the sequence (γi) by γ1 = h and γi+1 = H(γi) for i ⩾ 1.

1. Show that in the while loop from Steps 4 to 9 of the algorithm, we have α = γi = gxhi and
β = γ2i = gyh2i.
☞ We check these identities by induction on i ≥ 1. For i = 1, they are satisfied since from lines 1 to 3 of the algorithm, we have
x = 0, α = h, y = F(h), and β = H(h) = gyh2.

Now, let i ⩾ 1 and denote by xi , αi , yi , βi the values taken by x, α, y, β at the beginning of the i-th iteration of the while loop. We
assume that the identities αi = γi = gxi hi and βi = γ2i = gyi h2i hold.

At the end of the i-th iteration (or the beginning of the i + 1-th), we have xi+1 = xi + F(αi) mod p, and αi+1 = H(αi) = αi · h · gF(αi) =

(gxi · hi) · h · gF(αi) = gxi+F(αi) · hi+1 = gxi+1 · hi+1. We also have βi+1 = H(H(βi)) = H(βi · h · gF(βi)) = βi · h2 · gF(βi) · gF(H(βi)) =

gyi · gF(βi) · gF(H(βi)) · h2i+2, and yi+1 = yi + F(βi) + F(H(βi)), hence the identity βi+1 = gyi+1 h2i+2.

2. Show that if this loop terminates with i < p, then the algorithm returns the discrete logarithm of
h in basis g.

☞ When the loop finishes, we have α = β and according to Question 1, this gives gxhi = gyh2i, thus hi = gx−y. If furthermore the

loop finishes with i < p (note that i > 0), then since p is prime, i is invertible modulo p and h = gu where u = (x− y)/i mod p.

3. Let j be the smallest integer such that there exists k < j such that γj = γk. Show that j ⩽ p + 1
and that the loop ends with i < j.
☞ The sequence (γi) has its values in the finite group G of cardinality p. By the pigeonhole principle, there exist two indices
k < j ⩽ p + 1 such that γk = γj; then, since (γi) is defined by γi+1 = H(γi), this sequence repeats with period a divisor of j− k.

Remark: we have γk+t = γj+t for any integer t ⩾ 0. This leads to representing the values of the sequence in a shape which looks like
the letter ρ, hence the name of the algorithm.

From Question 1, we see that the algorithm simultaneously computes the values of γi and γ2i and returns the first index i for which

γi = γ2i. Since the sequence repeats with period j − k, considering the smallest multiple i of j − k that is greater or equal to k,

namely i = (j− k)⌈ k
j−k ⌉, we have that γi = γ2i, since i ⩾ k and 2i − i = i is a multiple of the period j− k. Besides, the sequence

k, k + 1, . . . , k + (j− k− 1) contains a multiple of j− k, so that i ⩽ j− 1 (we can also deduce it from the formula above for i).

4. Show that if F is a random function, then the average execution time of the algorithm is in O(p1/2)
multiplications in G.

☞ If H : G → G is a random function, according to the birthday paradox, the expected number of elements of the sequence (γi)

needed to obtain two identical values is approximately
√

πp/2. Since every iteration of the while loop uses a constant number of

multiplications in G, the result follows.

2

	1.
	2. Attacking the DLG problem

