TD3: Security Assumptions (corrected version)

Exercise 1.

Let (Enc, Dec) be an encryption scheme over $K \times P \times\{0,1\}^{n}$.

1. In this question, we assume that (Enc, Dec) is smCPA-secure. Prove that there exists a smCPAsecure encryption scheme (Enc', $\left.\mathrm{Dec}^{\prime}\right)$ such that $G: k \mapsto \operatorname{Enc}^{\prime}(k, 0)$ is not a secure PRG. Hint: try to concatenate constant bits to every ciphertext.
Defor Def ${ }^{\prime}:(k, m) \mapsto 1^{\ell} \| \operatorname{Enc}(k, m)$. The decryption algorithm Dec ignores the first ℓ bits and calls Dec on the remaining ones. We have two things to prove:

- The pair (Enc $\left.{ }^{\prime}, \mathrm{Dec}^{\prime}\right)$ is a smCPA-secure encryption scheme.
- $G: k \mapsto 1^{\ell} \| \operatorname{Enc}(k, 0)$ is not a secure PRG.

We start with the first claim. If we assume by contradiction that there exists an efficient adversary \mathcal{A} that breaks the smCPA-security of (Enc', Dec), we build \mathcal{A}^{\prime} against the smCPA-security of (Enc, Dec) the following way. It starts by calling \mathcal{A}. When \mathcal{A} outputs two messages $m_{0}, m_{1}, \mathcal{A}^{\prime}$ outputs the same messages to the challenger. When the challenger outputs a ciphertext c, \mathcal{A}^{\prime} sends to \mathcal{A} the ciphertext $1^{\ell} \| c$. When \mathcal{A} outputs a bit $b^{\prime}, \mathcal{A}^{\prime}$ outputs the same. This is summed up in the following sketch:

\mathcal{C}	\mathcal{A}^{\prime}	\mathcal{A}	
$k \hookleftarrow U(K)$	Call \mathcal{A}		
Send $c:=\operatorname{Enc}\left(k, m_{b}\right)$	Send the same messages $\left(m_{0}, m_{1}\right)$	Choose and send $\left(m_{0}, m_{1}\right) \in P^{\prime}$	
	Compute and send to $\mathcal{A}: c^{\prime}:=1^{\ell} \\| c$	Output b^{\prime}	

In these games, the view of \mathcal{A} is the same as in the previous question. This means that it behaves the same way as in the Exp_{b} games for the encryption scheme (Enc', Dec). By definition of the advantage, $\operatorname{Adv}\left(\mathcal{A}^{\prime}\right)=\operatorname{Adv}(\mathcal{A})$. Thus, this breaks the security of (Enc, Dec).

We move on to prove the second claim by exhibiting an efficient distinguisher \mathcal{B}. It does the following: upon receiving a sample from either $G(U(K))$ or the uniform distribution, it outputs 1 if the first ℓ bits are 1 and 0 otherwise. Its advantage is $1-\frac{1}{2^{\ell}}$. It is non-negligible as soon as $\ell \geq 1$.

Exercise 2.
Attacking the DLG problem
Let \mathbb{G} be a cyclic group generated by g, of (known) prime order p, and let h be an element of \mathbb{G}. Let $F: \mathbb{G} \rightarrow \mathbb{Z}_{p}$ be a nonzero function, and let us define the function $H: \mathbb{G} \rightarrow \mathbb{G}$ by $H(\alpha)=\alpha \cdot h \cdot g^{F(\alpha)}$. We consider the following algorithm (called Pollard ρ Algorithm).

Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$
Output: $x \in\{0, \ldots, p-1\}$ such that $h=g^{x}$ or fail.
. $i \leftarrow 1$
. $x \leftarrow 0, \alpha \leftarrow h$
3. $y \leftarrow F(\alpha) ; \beta \leftarrow H(\alpha)$
while $\alpha \neq \beta$ do
$x \leftarrow x+F(\alpha) \bmod p ; \alpha \leftarrow H(\alpha)$
6. $y \leftarrow y+F(\beta) \bmod p ; \beta \leftarrow H(\beta)$
7. $y \leftarrow y+F(\beta) \bmod p ; \beta \leftarrow H(\beta)$
8. $\quad i \leftarrow i+1$
. end while
10. if $i<p$ then
11. return $(x-y) / i \bmod p$
else
return FAIL
14. end if

To study this algorithm, we define the sequence $\left(\gamma_{i}\right)$ by $\gamma_{1}=h$ and $\gamma_{i+1}=H\left(\gamma_{i}\right)$ for $i \geqslant 1$.

1. Show that in the while loop from Steps 4 to 9 of the algorithm, we have $\alpha=\gamma_{i}=g^{x} h^{i}$ and $\beta=\gamma_{2 i}=g^{y} h^{2 i}$.

We check these identities by induction on $i \geq 1$. For $i=1$, they are satisfied since from lines 1 to 3 of the algorithm, we have $x=0, \alpha=h, y=F(h)$, and $\beta=H(h)=g^{y} h^{2}$.
Now, let $i \geqslant 1$ and denote by $x_{i}, \alpha_{i}, y_{i}, \beta_{i}$ the values taken by x, α, y, β at the beginning of the i-th iteration of the while loop. We assume that the identities $\alpha_{i}=\gamma_{i}=g^{x_{i}} h^{i}$ and $\beta_{i}=\gamma_{2 i}=g^{y_{i}} h^{2 i}$ hold.

At the end of the i-th iteration (or the beginning of the $i+1$-th), we have $x_{i+1}=x_{i}+F\left(\alpha_{i}\right) \bmod p$, and $\alpha_{i+1}=H\left(\alpha_{i}\right)=\alpha_{i} \cdot h \cdot g^{F\left(\alpha_{i}\right)}=$ $\left(g^{x_{i}} \cdot h^{i}\right) \cdot h \cdot g^{F\left(\alpha_{i}\right)}=g^{x_{i}+F\left(\alpha_{i}\right)} \cdot h^{i+1}=g^{x_{i+1}} \cdot h^{i+1}$. We also have $\beta_{i+1}=H\left(H\left(\beta_{i}\right)\right)=H\left(\beta_{i} \cdot h \cdot g^{F\left(\beta_{i}\right)}\right)=\beta_{i} \cdot h^{2} \cdot g^{F\left(\beta_{i}\right)} \cdot g^{F\left(H\left(\beta_{i}\right)\right)}=$ $g^{y_{i}} \cdot g^{F\left(\beta_{i}\right)} \cdot g^{F\left(H\left(\beta_{i}\right)\right)} \cdot h^{2 i+2}$, and $y_{i+1}=y_{i}+F\left(\beta_{i}\right)+F\left(H\left(\beta_{i}\right)\right)$, hence the identity $\beta_{i+1}=g^{y_{i+1}} h^{2 i+2}$.
2. Show that if this loop terminates with $i<p$, then the algorithm returns the discrete logarithm of h in basis g.
afg When the loop finishes, we have $\alpha=\beta$ and according to Question 1, this gives $g^{x} h^{i}=g^{y} h^{2 i}$, thus $h^{i}=g^{x-y}$. If furthermore the loop finishes with $i<p$ (note that $i>0$), then since p is prime, i is invertible modulo p and $h=g^{u}$ where $u=(x-y) / i \bmod p$.
3. Let j be the smallest integer such that there exists $k<j$ such that $\gamma_{j}=\gamma_{k}$. Show that $j \leqslant p+1$ and that the loop ends with $i<j$.
[q8 The sequence $\left(\gamma_{i}\right)$ has its values in the finite group \mathbb{G} of cardinality p. By the pigeonhole principle, there exist two indices $k<j \leqslant p+1$ such that $\gamma_{k}=\gamma_{j}$; then, since $\left(\gamma_{i}\right)$ is defined by $\gamma_{i+1}=H\left(\gamma_{i}\right)$, this sequence repeats with period a divisor of $j-k$.
Remark: we have $\gamma_{k+t}=\gamma_{j+t}$ for any integer $t \geqslant 0$. This leads to representing the values of the sequence in a shape which looks like the letter ρ, hence the name of the algorithm.

From Question 1, we see that the algorithm simultaneously computes the values of γ_{i} and $\gamma_{2 i}$ and returns the first index i for which $\gamma_{i}=\gamma_{2 i}$. Since the sequence repeats with period $j-k$, considering the smallest multiple i of $j-k$ that is greater or equal to k, namely $i=(j-k)\left\lceil\frac{k}{j-k}\right\rceil$, we have that $\gamma_{i}=\gamma_{2 i}$, since $i \geqslant k$ and $2 i-i=i$ is a multiple of the period $j-k$. Besides, the sequence $k, k+1, \ldots, k+(j-k-1)$ contains a multiple of $j-k$, so that $i \leqslant j-1$ (we can also deduce it from the formula above for i).
4. Show that if F is a random function, then the average execution time of the algorithm is in $O\left(p^{1 / 2}\right)$ multiplications in \mathbb{G}.
[氕 If $H: \mathbb{G} \rightarrow \mathbb{G}$ is a random function, according to the birthday paradox, the expected number of elements of the sequence $\left(\gamma_{i}\right)$ needed to obtain two identical values is approximately $\sqrt{\pi p / 2}$. Since every iteration of the while loop uses a constant number of multiplications in \mathbb{G}, the result follows.

