TD3: Security Assumptions (corrected version)

Exercise 1.

Let (Enc, Dec) be an encryption scheme over $K \times P \times \{0, 1\}^n$.

In this question, we assume that (Enc, Dec) is smCPA-secure. Prove that there exists a smCPA-secure encryption scheme (Enc', Dec') such that G : k → Enc'(k,0) is not a secure PRG. *Hint: try to concatenate constant bits to every ciphertext.*

So Define $Enc': (k,m) \mapsto 1^{\ell} || Enc(k,m)$. The decryption algorithm Dec' ignores the first ℓ bits and calls Dec on the remaining ones. We have two things to prove:

- The pair (Enc', Dec') is a smCPA-secure encryption scheme.
- $G: k \mapsto 1^{\ell} || Enc(k, 0)$ is not a secure PRG.

We start with the first claim. If we assume by contradiction that there exists an efficient adversary \mathcal{A} that breaks the smCPA-security of (Enc', Dec'), we build \mathcal{A}' against the smCPA-security of (Enc, Dec) the following way. It starts by calling \mathcal{A} . When \mathcal{A} outputs two messages m_0, m_1, \mathcal{A}' outputs the same messages to the challenger. When the challenger outputs a ciphertext c, \mathcal{A}' sends to \mathcal{A} the ciphertext $1^{\ell}||c$. When \mathcal{A} outputs a bit b', \mathcal{A}' outputs the same. This is summed up in the following sketch:

С	\mathcal{A}'	$ $ \mathcal{A}
$k \leftarrow U(K)$	Call ${\cal A}$	Choose and send $(m_0, m_1) \in \mathbb{P}'$
Send $c := \operatorname{Enc}(k, m_b)$	Send the same messages (m_0, m_1)	Choose and send $(m_0, m_1) \in I$
	Compute and send to $\mathcal{A}: \ c':=1^\ell c $	Output b'
	Output b'	

In these games, the view of \mathcal{A} is the same as in the previous question. This means that it behaves the same way as in the Exp_b games for the encryption scheme (Enc', Dec). By definition of the advantage, $Adv(\mathcal{A}') = Adv(\mathcal{A})$. Thus, this breaks the security of (Enc, Dec).

We move on to prove the second claim by exhibiting an efficient distinguisher \mathcal{B} . It does the following: upon receiving a sample from either G(U(K)) or the uniform distribution, it outputs 1 if the first ℓ bits are 1 and 0 otherwise. Its advantage is $1 - \frac{1}{2^{\ell}}$. It is non-negligible as soon as $\ell \geq 1$.

Exercise 2.

Attacking the DLG problem

Let \mathbb{G} be a cyclic group generated by g, of (known) prime order p, and let h be an element of \mathbb{G} . Let $F : \mathbb{G} \to \mathbb{Z}_p$ be a nonzero function, and let us define the function $H : \mathbb{G} \to \mathbb{G}$ by $H(\alpha) = \alpha \cdot h \cdot g^{F(\alpha)}$. We consider the following algorithm (called *Pollard* ρ *Algorithm*).

Pollard ρ Algorithm

Input: $h, g \in \mathbb{G}$

Output: $x \in \{0, \dots, p-1\}$ such that $h = g^x$ or FAIL.

1.
$$i \leftarrow 1$$

2.
$$x \leftarrow 0, \alpha \leftarrow h$$

- 3. $y \leftarrow F(\alpha); \beta \leftarrow H(\alpha)$
- 4. while $\alpha \neq \beta$ do
- 5. $x \leftarrow x + F(\alpha) \mod p; \alpha \leftarrow H(\alpha)$
- 6. $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$
- 7. $y \leftarrow y + F(\beta) \mod p; \beta \leftarrow H(\beta)$
- 8. $i \leftarrow i + 1$

- 9. end while
- 10. **if** *i* < *p* **then**
- 11. return $(x y)/i \mod p$
- 12. else
- 13. return FAIL

```
14. end if
```

To study this algorithm, we define the sequence (γ_i) by $\gamma_1 = h$ and $\gamma_{i+1} = H(\gamma_i)$ for $i \ge 1$.

1. Show that in the **while** loop from Steps 4 to 9 of the algorithm, we have $\alpha = \gamma_i = g^x h^i$ and $\beta = \gamma_{2i} = g^y h^{2i}$.

We check these identities by induction on $i \ge 1$. For i = 1, they are satisfied since from lines 1 to 3 of the algorithm, we have $x = 0, \alpha = h, y = F(h)$, and $\beta = H(h) = g^y h^2$.

Now, let $i \ge 1$ and denote by $x_i, \alpha_i, y_i, \beta_i$ the values taken by x, α_i, y, β at the beginning of the *i*-th iteration of the while loop. We assume that the identities $\alpha_i = \gamma_i = g^{x_i} h^i$ and $\beta_i = \gamma_{2i} = g^{y_i} h^{2i}$ hold.

At the end of the *i*-th iteration (or the beginning of the *i*+1-th), we have $x_{i+1} = x_i + F(\alpha_i) \mod p$, and $\alpha_{i+1} = H(\alpha_i) = \alpha_i \cdot h \cdot g^{F(\alpha_i)} = (g^{x_i} \cdot h^i) \cdot h \cdot g^{F(\alpha_i)} = g^{x_i + F(\alpha_i)} \cdot h^{i+1} = g^{x_{i+1}} \cdot h^{i+1}$. We also have $\beta_{i+1} = H(H(\beta_i)) = H(\beta_i \cdot h \cdot g^{F(\beta_i)}) = \beta_i \cdot h^2 \cdot g^{F(\beta_i)} \cdot g^{F(H(\beta_i))} = g^{y_i} \cdot g^{F(\beta_i)} \cdot g^{F((\beta_i))} \cdot h^{2i+2}$, and $y_{i+1} = y_i + F(\beta_i) + F(H(\beta_i))$, hence the identity $\beta_{i+1} = g^{y_{i+1}} h^{2i+2}$.

Show that if this loop terminates with *i* < *p*, then the algorithm returns the discrete logarithm of *h* in basis *g*.

When the loop finishes, we have $\alpha = \beta$ and according to Question 1, this gives $g^x h^i = g^y h^{2i}$, thus $h^i = g^{x-y}$. If furthermore the loop finishes with i < p (note that i > 0), then since p is prime, i is invertible modulo p and $h = g^u$ where $u = (x - y)/i \mod p$.

3. Let *j* be the smallest integer such that there exists k < j such that $\gamma_j = \gamma_k$. Show that $j \leq p + 1$ and that the loop ends with i < j.

The sequence (γ_i) has its values in the finite group \mathbb{G} of cardinality p. By the pigeonhole principle, there exist two indices $k < j \le p+1$ such that $\gamma_k = \gamma_j$; then, since (γ_i) is defined by $\gamma_{i+1} = H(\gamma_i)$, this sequence repeats with period a divisor of j - k. *Remark:* we have $\gamma_{k+t} = \gamma_{j+t}$ for any integer $t \ge 0$. This leads to representing the values of the sequence in a shape which looks like the letter ρ , hence the name of the algorithm.

From Question 1, we see that the algorithm simultaneously computes the values of γ_i and γ_{2i} and returns the first index *i* for which $\gamma_i = \gamma_{2i}$. Since the sequence repeats with period j - k, considering the smallest multiple *i* of j - k that is greater or equal to *k*, namely $i = (j-k) \left[\frac{k}{j-k}\right]$, we have that $\gamma_i = \gamma_{2i}$, since $i \ge k$ and 2i - i = i is a multiple of the period j - k. Besides, the sequence $k, k + 1, \dots, k + (j-k-1)$ contains a multiple of j - k, so that $i \le j-1$ (we can also deduce it from the formula above for *i*).

4. Show that if *F* is a random function, then the average execution time of the algorithm is in $O(p^{1/2})$ multiplications in \mathbb{G} .

If $H : \mathbb{G} \to \mathbb{G}$ is a random function, according to the birthday paradox, the expected number of elements of the sequence (γ_i) needed to obtain two identical values is approximately $\sqrt{\pi p/2}$. Since every iteration of the while loop uses a constant number of multiplications in \mathbb{G} , the result follows.