TD 4: LWE and PRFs

Exercise 1.

Around the DDH assumption
We recall the definition of the DDH assumption.
Definition 1 (Decisional Diffie-Hellman distribution). Let \mathbb{G} be a cyclic group of (prime) order p, and let g be a public generator of \mathbb{G}. The decisional Diffie-Hellman distribution $(D D H)$ is, $D_{\mathrm{DDH}}=\left(g^{a}, g^{b}, g^{a b}\right) \in \mathbb{G}^{3}$ with a, b sampled independently and uniformly in $\mathbb{Z} / p \mathbb{Z}=: \mathbb{Z}_{p}$.

Definition 2 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between D_{DDH} and $\left(g^{a}, g^{b}, g^{c}\right)$ with a, b, c sampled independently and uniformly at random in \mathbb{Z}_{p}.

1. Does the DDH assumption hold in $\mathbb{G}=\left(\mathbb{Z}_{p},+\right)$ for $p=\mathcal{O}\left(2^{\lambda}\right)$ prime?
2. Same question for $\mathbb{G}=\left(\mathbb{Z}_{p}^{\star}, \times\right)$ of order $p-1$, with p an odd prime.

Exercise 2.

PRG from LWE
We recall the Learning with Errors assumption.
Definition 3 (Learning with Errors). Let $q \in \mathbb{N}, B \in \mathbb{N}, \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text {LWE }}=(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q)$ for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{e} \hookleftarrow U\left((-B, B]^{m}\right)$.
In this setting, the vector \mathbf{s} is called the secret, and \mathbf{e} the noise.
Remark. If q and B are powers of 2 , we are manipulating bits, contrary to the DDH-based PRG from the lecture.
The LWE assumption states that, given suitable parameters q, B, m, n, it is computationally hard to distinguish $D_{\text {LWE }}$ from the distribution $U\left(\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}\right)$.
Let us propose the following pseudo-random generator: $G(\mathbf{A}, \mathbf{s}, \mathbf{e})=(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q)$.

1. By definition, a PRG must have a bigger output size than input size. Give a bound on B that depends on the other parameters if we want G to satisfy this.
2. Given suitable B, q, n, m such that the LWE assumption and previous bound hold, show that G is a secure pseudo-random generator.

Exercise 3.
LWE with small secret
We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption holds. Moreover, we assume that q is prime.

1. (a) What is the probability that $\mathbf{A}_{1} \in \mathbf{Z}_{q}^{n \times n}$ is invertible where $\mathbf{A}=:\left[\mathbf{A}_{1}^{\top} \mid \mathbf{A}_{2}^{\top}\right]^{\top}$ is uniformly sampled?
(b) Assume that $m \geq 2 n$. Prove that there exists a subset of n lineraly independent rows of $\mathbf{A} \hookleftarrow$ $U\left(\mathbb{Z}_{q}^{m \times n}\right)$ with probability $\geq 1-1 / 2^{\Omega(n)}$ and that we can find them in polynomial time.
2. Let us define the distribution $D_{B}=U((-B, B] \cap \mathbb{Z})$, and $m^{\prime}=m-n$.

Show that under the $\operatorname{LWE}_{q, m, n, B}$ assumption, the distributions $\left(\mathbf{A}^{\prime}, \mathbf{A}^{\prime} \mathbf{s}^{\prime}+\mathbf{e}^{\prime}\right) \in \mathbb{Z}_{q}^{m^{\prime} \times n} \times \mathbb{Z}_{q}^{m^{\prime}}$, with $\mathbf{s}^{\prime} \hookleftarrow D_{B}^{n}$ and $\mathbf{e}^{\prime} \hookleftarrow D_{B}^{m^{\prime}}$, and $\left(\mathbf{A}^{\prime}, \mathbf{b}^{\prime}\right)$ with $\mathbf{b}^{\prime} \leftarrow U\left(\mathbb{Z}_{q}^{m^{\prime}}\right)$ are indistinguishable.

