TD 4: LWE and PRFs (corrected version)

Exercise 1.

Around the DDH assumption
We recall the definition of the DDH assumption.
Definition 1 (Decisional Diffie-Hellman distribution). Let \mathbb{G} be a cyclic group of (prime) order p, and let g be a public generator of \mathbb{G}. The decisional Diffie-Hellman distribution $(D D H)$ is, $D_{\mathrm{DDH}}=\left(g^{a}, g^{b}, g^{a b}\right) \in \mathbb{G}^{3}$ with a, b sampled independently and uniformly in $\mathbb{Z} / p \mathbb{Z}=: \mathbb{Z} p$.
Definition 2 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that there exists no probabilistic polynomial-time distinguisher between D_{DDH} and $\left(g^{a}, g^{b}, g^{c}\right)$ with a, b, c sampled independently and uniformly at random in \mathbb{Z}_{p}.

1. Does the DDH assumption hold in $\mathbb{G}=\left(\mathbb{Z}_{p},+\right)$ for $p=\mathcal{O}\left(2^{\lambda}\right)$ prime? No. In this case, the D_{DDH} distribution is $(a \cdot g, b \cdot g,(a b) \cdot g)$. This can be distinguished from ($a g, b g, c g$) by computing the inverse of g (find a Bézout identity $g u+p v=1$ in logarithmic time), retrieving a, b and c and checking whether $a b=c$ or not. This is always the case in the DDH, and the case with probability $1 / p$ in the uniform case. The advantage of a distinguisher returning the boolean value of $a b=c$ is then $\frac{p-1}{p}$.
2. Same question for $\mathbb{G}=\left(\mathbb{Z}_{p}^{\star}, \times\right)$ of order $p-1$, with p an odd prime.

0 No, because $p-1$ (the order the group) is divisible by 2 .
We know that $x^{\frac{p-1}{2}}=1$ if $x \in \mathbb{Z}_{p}$ is a square and -1 otherwise (it is actually the Legendre symbol: $\left(\frac{x}{p}\right)$ and can be efficiently computed). So $\left(\frac{g^{a}}{p}\right)$ gives us the parity of a, that is $\left(\frac{g^{a}}{p}\right)=1$ if a is even and $\left(\frac{g^{a}}{p}\right)=-1$ if a is odd. Hence, if a is uniformly sampled in $\{0, \cdots, p-1\}$ (meaning that g^{a} is uniformly sampled in \mathbb{G}), then $\left(\frac{g^{a}}{p}\right)$ is uniformly distributed in $\{-1,1\}$. But in the case of the DDH distribution, if a or b is even, then $a b$ must be even too (or equivalently, it g^{a} or g^{b} is a square, then $g^{a b}$ should be a square too). In the same way, if both a and b are odd, then $a b$ must be odd.
This enables us to build the following distinguisher \mathcal{A} :

- Return DDH if $\left(\frac{g^{a b}}{p}\right)$ is consistent with $\left(\frac{g^{a}}{p}\right)$ and $\left(\frac{g^{b}}{p}\right)$ (i.e. $a b$ is odd and both a and b are odd, or $a b$ is even and a or b is even);
- Return Unif otherwise.

Let us now compute the advantage of such a distinguisher.

$$
\begin{aligned}
\operatorname{Adv}^{D D H}(\mathcal{A}) & =\mid \operatorname{Pr}[\mathcal{A} \rightarrow D D H \mid D D H]-\operatorname{Pr}[\mathcal{A} \rightarrow D D H \mid \text { Unif }] \mid \\
& =\mid 1-\operatorname{Pr}[\mathcal{A} \rightarrow D D H \mid \text { Unif }] \mid
\end{aligned}
$$

Our distinguisher returns Unif only is c is odd and either a or b is even of if c is even and both a and b are odd. But we have seen that these cases could not appear in the DDH distribution. So we have that $\operatorname{Pr}[\mathcal{A} \rightarrow D D H \mid D D H]=1$.
It then remains to compute $\operatorname{Pr}[A \rightarrow D D H \mid$ Unif $]$. Given a Unif instance $\left(g^{a}, g^{b}, g^{c}\right)$, we have seen that $\left(\frac{g^{a}}{p}\right)$, ($\left.\frac{g^{b}}{p}\right)$ and $\left(\frac{g^{c}}{p}\right)$ are uniform in $\{-1,1\}$ because a, b, c are uniform in $\{0, \cdots, q-1\}$. They are also independent because a, b and c are. So all eight possibilities for $\left(\left(\frac{g^{a}}{p}\right),\left(\frac{g^{b}}{p}\right),\left(\frac{g^{c}}{p}\right)\right)$ have the same probability and we have

$$
\begin{aligned}
\operatorname{Pr}[\mathcal{A} \rightarrow \text { DDH } \mid \text { Unif }] & =\operatorname{Pr}\left[\left(\left(\frac{g^{a}}{p}\right),\left(\frac{g^{b}}{p}\right),\left(\frac{g^{c}}{p}\right)\right)=(1,1,1) \text { or }(1,-1,1) \text { or }(-1,1,1) \text { or }(-1,-1,-1)\right] \\
& =\frac{4}{8}=\frac{1}{2}
\end{aligned}
$$

To conclude, we have $\operatorname{Adv}(\mathcal{A})=\frac{1}{2}$, which is non-negligible.
It remains to show that our distinguisher is PPT. This is the case because it just needs to compute $\left(\frac{h}{p}\right)=h^{\frac{p-1}{2}}$ for three different elements h of \mathbb{G}. Computing $h^{\frac{p-1}{2}}$ can be done by fast exponentiation, resulting in at most $\log (p)$ multiplications in \mathbb{Z}_{p}. Each such multiplication takes a time polynomial in $\log (p)$, and so our distinguisher \mathcal{A} is indeed polynomial time (in $\log (p))$.
Remark. The same reasoning can be adapted if the cardinality of the cyclic group \mathbb{G} is $n=k m$ for some small k (and any m). In that case, we would have that $\left(g^{a}\right)^{m}$ is uniformly distributed among $\left\{1, g^{m}, g^{2 m}, \ldots, g^{(k-1) m}\right\}$ if a is uniform, and computing $\left(g^{a}\right)^{m}$ gives us
the value of $a \bmod k$. We then can check whether $a \bmod k$ and $b \bmod k$ are coherent with $a b \bmod k$. In the DDH case, this will always be coherent whereas in the uniform case, this will be coherent only with probability $\frac{k-1}{k}$. We hence obtain a distinguisher with advantage $\frac{k-1}{k}$ (which is non negligible for any $k \geq 2$) and whose computation time is $\Theta(k \cdot \operatorname{poly}(\log (n)))$. So if k is polynomial in $\log (n)$, this gives us a polynomial time distinguisher with non negligible advantage. This is why, in the next question, we consider of group of prime cardinality.

But this implies knowing a factorisation of n.

Exercise 2.

We recall the Learning with Errors assumption
Definition 3 (Learning with Errors). Let $q \in \mathbb{N}, B \in \mathbb{N}, \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$. The Learning with Errors (LWE) distribution is defined as follows: $D_{\text {LWE }}=(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q)$ for $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), \mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{e} \hookleftarrow U\left((-B, B]^{m}\right)$.

In this setting, the vector \mathbf{s} is called the secret, and \mathbf{e} the noise.
Remark. If q and B are powers of 2 , we are manipulating bits, contrary to the DDH-based PRG from the lecture.

The LWE assumption states that, given suitable parameters q, B, m, n, it is computationally hard to distinguish $D_{\text {LWE }}$ from the distribution $U\left(\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}\right)$.
Let us propose the following pseudo-random generator: $G(\mathbf{A}, \mathbf{s}, \mathbf{e})=(\mathbf{A}, \mathbf{A} \cdot \mathbf{s}+\mathbf{e} \bmod q)$.

1. By definition, a PRG must have a bigger output size than input size. Give a bound on B that depends on the other parameters if we want G to satisfy this.
[q8 We want the parameters to satisfy $q^{m n} \cdot q^{n} B^{m} \leq q^{n m} \cdot q^{m}$ i.e. $B^{m} \leq q^{m-n}$. Then the bound is $B \leq q^{1-n / m}$
2. Given suitable B, q, n, m such that the LWE assumption and previous bound hold, show that G is a secure pseudo-random generator.

> Let \mathcal{A} be a PPT adversary that distinguishes with non negligible advantage the output of G from the uniform distribution. Let us use this adversary to solve the LWE problem.
> At the beginning of the game, the reduction \mathcal{B} receives a LWE instance $(\mathbf{A}, \mathbf{b}) \in \mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}$ of the LWE problem, the goal is to output LWE if it is a LWE instance, and Unif if it is uniform.
> The reduction sends (\mathbf{A}, \mathbf{b}) to the adversary \mathcal{A} against the PRG. The adversary then returns a bit b^{\prime} that the reduction returns to its challenger.
> Analysis. $\operatorname{Adv}^{\operatorname{LWE}}(\mathcal{B})=\mid \operatorname{Pr}[B \rightarrow 1 \mid b \operatorname{LWE}]-\operatorname{Pr}[B \rightarrow 1 \mid b$ Unif $]|=| \operatorname{Pr}[A \rightarrow 1 \mid b \operatorname{LWE}]-\operatorname{Pr}[A \rightarrow 1 \mid b$ Unif $] \mid=\operatorname{Adv}{ }^{\operatorname{PRG}(\mathcal{A})=\text { non negl. }}$

Exercise 3.

LWE with small secret
We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption holds. Moreover, we assume that q is prime.

1. (a) What is the probability that $\mathbf{A}_{1} \in \mathbf{Z}_{q}^{n \times n}$ is invertible where $\mathbf{A}=:\left[\mathbf{A}_{1}^{\top} \mid \mathbf{A}_{2}^{\top}\right]^{\top}$ is uniformly sampled?
[罗 We have to compute $\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|$, i.e. the number of invertibles matrices with coefficients in \mathbb{F}_{q}. We have $q^{n}-1$ choice for the first vector (it can be any vector except the 0 vector), then $q^{n}-q^{1}$ for the second vector (anything except a vector collinear to the first one), then $q^{n}-q^{2}$ (anything that is not a linear combination of the first two vectors), etc. So we get

$$
\begin{aligned}
\operatorname{Pr}_{\mathbf{A}_{1} \hookleftarrow U\left(\mathbb{F}_{2}^{m \times n}\right)}\left[A_{1} \in G L_{n}\left(\mathbb{F}_{q}\right)\right] & =\frac{1}{q^{n^{2}}} \prod_{i=0}^{n-1}\left(q^{n}-q^{i}\right) \\
& =\prod_{i=0}^{n-1}\left(1-q^{i-n}\right),
\end{aligned}
$$

```
which is always }\geq\mp@subsup{\prod}{=0}{n-1}(1-\mp@subsup{2}{}{i-n})\geq0.288
```

(b) Assume that $m \geq 2 n$. Prove that there exists a subset of n lineraly independent rows of $\mathbf{A} \hookleftarrow$ $U\left(\mathbb{Z}_{q}^{m \times n}\right)$ with probability $\geq 1-1 / 2^{\Omega(n)}$ and that we can find them in polynomial time.

If If this is not the case, then there exists an hyperplane of \mathbb{Z}_{q}^{n} in which each row is sampled. A hyperplane is given by a nonzero vector: there are at most $q^{n}-1$ hyperplanes of the space and for a given hyperplane, the probability that each vector falls into it is $q^{(n-1) m} / q^{n m}=1 / q^{m}$. Then the union bound gives us that the probability is $\geq 1-\frac{1}{q^{m-n}} \geq 1-\frac{1}{q^{n}}$.
To find such rows, the naive greedy algorithm works: select the first row. Then, repeat the following for $i=2$ to m. If the i-th row is linearly independent from the selected rows, select it.
2. Let us define the distribution $D_{B}=U((-B, B] \cap \mathbb{Z})$, and $m^{\prime}=m-n$.

Show that under the $\operatorname{LWE}_{q, m, n, B}$ assumption, the distributions $\left(\mathbf{A}^{\prime}, \mathbf{A}^{\prime} \mathbf{s}^{\prime}+\mathbf{e}^{\prime}\right) \in \mathbb{Z}_{q}^{m^{\prime} \times n} \times \mathbb{Z}_{q}^{m^{\prime}}$, with $\mathbf{s}^{\prime} \hookleftarrow D_{B}^{n}$ and $\mathbf{e}^{\prime} \hookleftarrow D_{B}^{m^{\prime}}$, and $\left(\mathbf{A}^{\prime}, \mathbf{b}^{\prime}\right)$ with $\mathbf{b}^{\prime} \leftarrow U\left(\mathbb{Z}_{q}^{m^{\prime}}\right)$ are indistinguishable.
4 We show how to reduce an instance of the decision problem $\operatorname{LWE}_{q, m, n, B}$ to an instance of this new decision problem. Let $(\mathbf{A}, \mathbf{b}) \in$ $\mathbf{Z}_{q}^{m \times n} \times \mathbf{Z}_{q}^{m}$. With non negligible probability and up to permuting the rows of \mathbf{A} (and \mathbf{b}), one can write $\mathbf{A}=\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{2}\end{array}\right]$, where $\mathbf{A}_{1} \in \mathbf{Z}_{q}^{n \times n}$ is invertible.
Notice that in this case, $\mathbf{A}_{2} \mathbf{A}_{1}^{-1} \in \mathbb{Z}_{q}^{m^{\prime} \times n}$ is still uniform because \mathbf{A}_{1} is invertible, and \mathbf{A}_{2} is uniformly sampled.
Assume that we are given a sample $(\mathbf{A}, \mathbf{A s}+\mathbf{e})$ of the $L W E_{q, m, n, B}$ distribution. Set $\mathbf{e}=:\left(\mathbf{e}_{1}^{\top},-\mathbf{e}_{2}^{\top}\right)^{\top}$ Consider the following:

$$
\left(\mathbf{A}_{2} \mathbf{A}_{1}^{-1}, \mathbf{A}_{2} \mathbf{A}_{1}^{-1}\left(\mathbf{A}_{1} \mathbf{s}+\mathbf{e}_{1}\right)-\mathbf{A}_{2} \mathbf{s}+\mathbf{e}_{2}\right)=\left(\mathbf{A}_{2} \mathbf{A}_{1}, \mathbf{A}_{2} \mathbf{A}_{1}^{-1} \mathbf{e}_{1}+\mathbf{e}_{2}\right)
$$

This is exactly a sample from the new distribution, with secret \mathbf{e}_{1} and noise \mathbf{e}_{2}
Assume now that we are given a sample (\mathbf{A}, \mathbf{b}) where \mathbf{b} is uniformly sampled. We write $\mathbf{b}=:\left(\mathbf{b}_{1}^{\top}, \mathbf{b}_{2}^{\top}\right)^{\top}$. With the previous transformation we get: $\mathbf{A}_{2} \mathbf{A}_{1}^{-1}, \mathbf{A}_{2} \mathbf{A}_{1}^{-1} \mathbf{b}_{1}-\mathbf{b}_{2}$. Whatever $\mathbf{A}_{2} \mathbf{A}_{1}^{-1} \mathbf{b}_{1}$ is, since it is independent from \mathbf{b}_{2}, we get a uniform sample over $\mathbb{Z}_{q}^{m^{\prime} \times n} \times \mathbb{Z}_{q}^{m^{\prime}}$.
This means that any distinguisher for the new decision problem is a distinguisher for decision LWE. Under the LWE assumption, any efficient distinguisher has negligible advantage and this concludes the proof.

