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Exercise 1. Around the DDH assumption
We recall the definition of the DDH assumption.

Definition 1 (Decisional Diffie-Hellman distribution). Let G be a cyclic group of (prime) order p, and let g
be a public generator of G. The decisional Diffie-Hellman distribution (DDH) is, DDDH = (ga, gb, gab) ∈ G3

with a, b sampled independently and uniformly in Z/pZ =: Zp.

Definition 2 (Decisional Diffie-Hellman assumption). The decisional Diffie-Hellman assumption states that
there exists no probabilistic polynomial-time distinguisher between DDDH and (ga, gb, gc) with a, b, c sampled
independently and uniformly at random in Zp.

1. Does the DDH assumption hold in G = (Zp,+) for p = O(2λ) prime? ☞ No. In this case, the

DDDH distribution is (a · g, b · g, (ab) · g). This can be distinguished from (ag, bg, cg) by computing the inverse of g (find a Bézout

identity gu + pv = 1 in logarithmic time), retrieving a, b and c and checking whether ab = c or not. This is always the case in the

DDH, and the case with probability 1/p in the uniform case. The advantage of a distinguisher returning the boolean value of ab = c

is then p−1
p .

2. Same question for G = (Z⋆
p ,×) of order p− 1, with p an odd prime.

☞ No, because p− 1 (the order the group) is divisible by 2.

We know that x
p−1

2 = 1 if x ∈ Zp is a square and −1 otherwise (it is actually the Legendre symbol:
(

x
p

)
and can be efficiently

computed). So
(

ga
p

)
gives us the parity of a, that is

(
ga
p

)
= 1 if a is even and

(
ga
p

)
= −1 if a is odd. Hence, if a is uniformly sampled

in {0, · · · , p− 1} (meaning that ga is uniformly sampled in G), then
(

ga
p

)
is uniformly distributed in {−1, 1}. But in the case of the

DDH distribution, if a or b is even, then ab must be even too (or equivalently, it ga or gb is a square, then gab should be a square too).
In the same way, if both a and b are odd, then ab must be odd.

This enables us to build the following distinguisher A:

• Return DDH if
(

gab
p

)
is consistent with

(
ga
p

)
and

(
gb
p

)
(i.e. ab is odd and both a and b are odd, or ab is even and a or b is

even);

• Return Unif otherwise.

Let us now compute the advantage of such a distinguisher.

AdvDDH(A) = |Pr[A → DDH | DDH]− Pr[A → DDH | Uni f ]|
= |1− Pr[A → DDH | Uni f ]|

Our distinguisher returns Unif only is c is odd and either a or b is even of if c is even and both a and b are odd. But we have seen that
these cases could not appear in the DDH distribution. So we have that Pr[A → DDH | DDH] = 1.

It then remains to compute Pr[A → DDH | Uni f ]. Given a Unif instance (ga , gb , gc), we have seen that
(

ga
p

)
,
(

gb
p

)
and

(
gc
p

)
are uniform in {−1, 1} because a, b, c are uniform in {0, · · · , q− 1}. They are also independent because a, b and c are. So all eight

possibilities for (
(

ga
p

)
,
(

gb
p

)
,
(

gc
p

)
) have the same probability and we have

Pr[A → DDH | Uni f ] = Pr[(
(

ga
p

)
,
(

gb
p

)
,
(

gc
p

)
) = (1, 1, 1) or (1,−1, 1) or (−1, 1, 1) or (−1,−1,−1)]

= 4
8 = 1

2

To conclude, we have Adv(A) = 1
2 , which is non-negligible.

It remains to show that our distinguisher is PPT. This is the case because it just needs to compute
(

h
p

)
= h

p−1
2 for three different

elements h of G. Computing h
p−1

2 can be done by fast exponentiation, resulting in at most log(p) multiplications in Zp. Each such
multiplication takes a time polynomial in log(p), and so our distinguisher A is indeed polynomial time (in log(p)).

Remark. The same reasoning can be adapted if the cardinality of the cyclic group G is n = km for some small k (and any m). In that
case, we would have that (ga)m is uniformly distributed among {1, gm , g2m , · · · , g(k−1)m} if a is uniform, and computing (ga)m gives us

1



the value of a mod k. We then can check whether a mod k and b mod k are coherent with ab mod k. In the DDH case, this will
always be coherent whereas in the uniform case, this will be coherent only with probability k−1

k . We hence obtain a distinguisher with
advantage k−1

k (which is non negligible for any k ≥ 2) and whose computation time is Θ(k · poly(log(n))). So if k is polynomial in
log(n), this gives us a polynomial time distinguisher with non negligible advantage. This is why, in the next question, we consider of
group of prime cardinality.

But this implies knowing a factorisation of n.

Exercise 2. PRG from LWE
We recall the Learning with Errors assumption.

Definition 3 (Learning with Errors). Let q ∈ N, B ∈ N, A ←↩ U(Zm×n
q ). The Learning with Errors

(LWE) distribution is defined as follows: DLWE = (A, A · s + e mod q) for s←↩ U(Zn
q ), A←↩ U(Zm×n

q ) and
e←↩ U ((−B, B]m).

In this setting, the vector s is called the secret, and e the noise.
Remark. If q and B are powers of 2, we are manipulating bits, contrary to the DDH-based PRG from
the lecture.
The LWE assumption states that, given suitable parameters q, B, m, n, it is computationally hard to
distinguish DLWE from the distribution U(Zm×n

q ×Zm
q ).

Let us propose the following pseudo-random generator: G(A, s, e) = (A, A · s + e mod q).

1. By definition, a PRG must have a bigger output size than input size. Give a bound on B that
depends on the other parameters if we want G to satisfy this.

☞ We want the parameters to satisfy qmn · qn Bm ≤ qnm · qm i.e. Bm ≤ qm−n . Then the bound is B ≤ q1−n/m.

2. Given suitable B, q, n, m such that the LWE assumption and previous bound hold, show that G is
a secure pseudo-random generator.
☞ Let A be a PPT adversary that distinguishes with non negligible advantage the output of G from the uniform distribution. Let
us use this adversary to solve the LWE problem.

At the beginning of the game, the reduction B receives a LWE instance (A, b) ∈ Zm×n
q ×Zm

q of the LWE problem, the goal is to output
LWE if it is a LWE instance, and Unif if it is uniform.

The reduction sends (A, b) to the adversary A against the PRG. The adversary then returns a bit b′ that the reduction returns to its
challenger.

Analysis. AdvLWE(B) = |Pr[B→ 1|b LWE]− Pr[B→ 1|b Unif]| = |Pr[A→ 1|b LWE]− Pr[A→ 1 | b Unif]| = AdvPRG(A) = non negl.

Exercise 3. LWE with small secret
We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption
holds. Moreover, we assume that q is prime.

1. (a) What is the probability that A1 ∈ Zn×n
q is invertible where A =: [A⊤1 |A⊤2 ]⊤ is uniformly

sampled?
☞ We have to compute |GLn(Fq)|, i.e. the number of invertibles matrices with coefficients in Fq. We have qn − 1 choice for
the first vector (it can be any vector except the 0 vector), then qn − q1 for the second vector (anything except a vector collinear
to the first one), then qn − q2 (anything that is not a linear combination of the first two vectors), etc. So we get

Pr
A1←↩U(Fm×n

2 )
[A1 ∈ GLn(Fq)] =

1

qn2

n−1

∏
i=0

(qn − qi)

=
n−1

∏
i=0

(1− qi−n),

which is always ≥ ∏n−1
=0 (1− 2i−n) ≥ 0.288.

(b) Assume that m ≥ 2n. Prove that there exists a subset of n lineraly independent rows of A ←↩
U(Zm×n

q ) with probability ≥ 1− 1/2Ω(n) and that we can find them in polynomial time.
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☞ If this is not the case, then there exists an hyperplane of Zn
q in which each row is sampled. A hyperplane is given by a nonzero

vector: there are at most qn − 1 hyperplanes of the space and for a given hyperplane, the probability that each vector falls into it
is q(n−1)m/qnm = 1/qm. Then the union bound gives us that the probability is ≥ 1− 1

qm−n ≥ 1− 1
qn .

To find such rows, the naive greedy algorithm works: select the first row. Then, repeat the following for i = 2 to m. If the i-th

row is linearly independent from the selected rows, select it.

2. Let us define the distribution DB = U ((−B, B] ∩Z), and m′ = m− n.

Show that under the LWEq,m,n,B assumption, the distributions (A′, A′s′ + e′) ∈ Zm′×n
q ×Zm′

q , with

s′ ←↩ Dn
B and e′ ←↩ Dm′

B , and (A′, b′) with b′ ← U(Zm′
q ) are indistinguishable.

☞ We show how to reduce an instance of the decision problem LWEq,m,n,B to an instance of this new decision problem. Let (A, b) ∈

Zm×n
q × Zm

q . With non negligible probability and up to permuting the rows of A (and b), one can write A =

[
A1
A2

]
, where A1 ∈ Zn×n

q is

invertible.

Notice that in this case, A2A−1
1 ∈ Zm′×n

q is still uniform because A1 is invertible, and A2 is uniformly sampled.

Assume that we are given a sample (A, As + e) of the LWEq,m,n,B distribution. Set e =: (e⊤1 ,−e⊤2 )
⊤ Consider the following:

(A2A−1
1 , A2A−1

1 (A1s + e1)−A2s + e2) = (A2A1, A2A−1
1 e1 + e2).

This is exactly a sample from the new distribution, with secret e1 and noise e2.

Assume now that we are given a sample (A, b) where b is uniformly sampled. We write b =: (b⊤1 , b⊤2 )
⊤. With the previous

transformation we get: A2A−1
1 , A2A−1

1 b1 − b2. Whatever A2A−1
1 b1 is, since it is independent from b2, we get a uniform sample

over Zm′×n
q ×Zm′

q .

This means that any distinguisher for the new decision problem is a distinguisher for decision LWE. Under the LWE assumption, any
efficient distinguisher has negligible advantage and this concludes the proof.
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