TD 5: PRFs and Symmetric Encryption

Exercise 1.

LWE with small secret

We once more work in the setting of the LWE assumption. Let *q*, *B*, *n*, *m* such that the LWE assumption holds. Moreover, we assume that *q* is prime.

- **1. (a)** What is the probability that $\mathbf{A}_1 \in \mathbf{Z}_q^{n \times n}$ is invertible where $\mathbf{A} =: [\mathbf{A}_1^\top | \mathbf{A}_2^\top]^\top$ is uniformly sampled?
 - (b) Assume that $m \ge 2n$. Prove that there exists a subset of *n* linerally independent rows of $\mathbf{A} \leftarrow \mathbf{A}$ $U(\mathbb{Z}_a^{m \times n})$ with probability $\geq 1 - 1/2^{\Omega(n)}$ and that we can find them in polynomial time.
- **2.** Let us define the distribution $D_B = U((-B, B] \cap \mathbb{Z})$, and m' = m n.

Show that under the LWE_{*q*,*m*,*n*,*B*} assumption, the distributions $(\mathbf{A}', \mathbf{A}'\mathbf{s}' + \mathbf{e}') \in \mathbb{Z}_q^{m' \times n} \times \mathbb{Z}_q^{m'}$, with $\mathbf{s}' \leftrightarrow D_B^n$ and $\mathbf{e}' \leftrightarrow D_B^{m'}$, and $(\mathbf{A}', \mathbf{b}')$ with $\mathbf{b}' \leftarrow U(\mathbb{Z}_q^{m'})$ are indistinguishable.

Exercise 2.

CTR Security Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 || M_1 || \dots || M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample *IV* uniformly in $\{0, 1\}^n$.
- Return $IV ||C_0||C_1|| \dots ||C_{d-1}$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all *i*.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF *F* is secure.

- 1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
- **2.** Assume an attacker makes Q encryption queries. Let IV_1, \ldots, IV_Q be the corresponding IV's. Let Twice denote the event "there exist $i, j \leq Q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j \mod 2^n$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^2 d/2^{n-1}$.
- **3.** Assume the PRF *F* is replaced by a uniformly chosen function $f : \{0,1\}^n \to \{0,1\}^n$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of *d*, *n* and the number of encryption queries *Q*.
- Show that if there exists a probabilistic polynomial-time adversary \mathcal{A} against CTR based on 4. PRF *F*, then there exists a probabilistic polynomial-time adversary \mathcal{B} against the PRF *F*. Give a lower bound on the advantage degradation of the reduction.