TD 5: PRFs and Symmetric Encryption (corrected version)

Exercise 1.

LWE with small secret
We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption holds. Moreover, we assume that q is prime.

1. (a) What is the probability that $\mathbf{A}_{1} \in \mathbf{Z}_{q}^{n \times n}$ is invertible where $\mathbf{A}=:\left[\mathbf{A}_{1}^{\top} \mid \mathbf{A}_{2}^{\top}\right]^{\top}$ is uniformly sampled?
UP8 We have to compute $\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|$, i.e. the number of invertibles matrices with coefficients in \mathbb{F}_{q}. We have $q^{n}-1$ choice for the first vector (it can be any vector except the 0 vector), then $q^{n}-q^{1}$ for the second vector (anything except a vector collinear to the first one), then $q^{n}-q^{2}$ (anything that is not a linear combination of the first two vectors), etc. So we get

$$
\begin{aligned}
\operatorname{Pr}_{\mathrm{A}_{1} \hookleftarrow U\left(\mathbb{F}_{2}^{m \times n}\right)}\left[A_{1} \in G L_{n}\left(\mathbb{F}_{q}\right)\right] & =\frac{1}{q^{n^{2}}} \prod_{i=0}^{n-1}\left(q^{n}-q^{i}\right) \\
& =\prod_{i=0}^{n-1}\left(1-q^{i-n}\right),
\end{aligned}
$$

which is always $\geq \prod_{=0}^{n-1}\left(1-2^{i-n}\right) \geq 0.288$.
(b) Assume that $m \geq 2 n$. Prove that there exists a subset of n lineraly independent rows of $\mathbf{A} \hookleftarrow$ $U\left(\mathbb{Z}_{q}^{m \times n}\right)$ with probability $\geq 1-1 / 2^{\Omega(n)}$ and that we can find them in polynomial time.
LT \mathcal{G} If this is not the case, then there exists an hyperplane of \mathbb{Z}_{q}^{n} in which each row is sampled. A hyperplane is given by a nonzero vector: there are at most $q^{n}-1$ hyperplanes of the space and for a given hyperplane, the probability that each vector falls into it is $q^{(n-1) m} / q^{n m}=1 / q^{m}$. Then the union bound gives us that the probability is $\geq 1-\frac{1}{q^{m-n}} \geq 1-\frac{1}{q^{n}}$.
To find such rows, the naive greedy algorithm works: select the first row. Then, repeat the following for $i=2$ to m. If the i-th row is linearly independent from the selected rows, select it.
2. Let us define the distribution $D_{B}=U((-B, B] \cap \mathbb{Z})$, and $m^{\prime}=m-n$.

Show that under the $\operatorname{LWE}_{q, m, n, B}$ assumption, the distributions $\left(\mathbf{A}^{\prime}, \mathbf{A}^{\prime} \mathbf{s}^{\prime}+\mathbf{e}^{\prime}\right) \in \mathbb{Z}_{q}^{m^{\prime} \times n} \times \mathbb{Z}_{q}^{m^{\prime}}$, with $\mathbf{s}^{\prime} \hookleftarrow D_{B}^{n}$ and $\mathbf{e}^{\prime} \hookleftarrow D_{B}^{m^{\prime}}$, and $\left(\mathbf{A}^{\prime}, \mathbf{b}^{\prime}\right)$ with $\mathbf{b}^{\prime} \leftarrow U\left(\mathbb{Z}_{q}^{m^{\prime}}\right)$ are indistinguishable.
4 We show how to reduce an instance of the decision problem $\mathrm{LWE}_{q, m, n, B}$ to an instance of this new decision problem. Let $(\mathbf{A}, \mathbf{b}) \in$ $\mathbf{Z}_{q}^{m \times n} \times \mathbf{Z}_{q}^{m}$. With non negligible probability and up to permuting the rows of \mathbf{A} (and \mathbf{b}), one can write $\mathbf{A}=\left[\begin{array}{l}\mathbf{A}_{1} \\ \mathbf{A}_{2}\end{array}\right]$, where $\mathbf{A}_{1} \in \mathbf{Z}_{q}^{n \times n}$ is invertible.
Notice that in this case, $\mathbf{A}_{2} \mathbf{A}_{1}^{-1} \in \mathbb{Z}_{q}^{m^{\prime} \times n}$ is still uniform because \mathbf{A}_{1} is invertible, and \mathbf{A}_{2} is uniformly sampled.
Assume that we are given a sample ($\mathbf{A}, \mathbf{A s}+\mathbf{e}$) of the $\operatorname{LWE}_{q, m, n, B}$ distribution. Set $\mathbf{e}=:\left(\mathbf{e}_{1}^{\top},-\mathbf{e}_{2}^{\top}\right)^{\top}$ Consider the following:

$$
\left(\mathbf{A}_{2} \mathbf{A}_{1}^{-1}, \mathbf{A}_{2} \mathbf{A}_{1}^{-1}\left(\mathbf{A}_{1} \mathbf{s}+\mathbf{e}_{1}\right)-\mathbf{A}_{2} \mathbf{s}+\mathbf{e}_{2}\right)=\left(\mathbf{A}_{2} \mathbf{A}_{1}, \mathbf{A}_{2} \mathbf{A}_{1}^{-1} \mathbf{e}_{1}+\mathbf{e}_{2}\right) .
$$

This is exactly a sample from the new distribution, with secret \mathbf{e}_{1} and noise \mathbf{e}_{2}.
Assume now that we are given a sample (\mathbf{A}, \mathbf{b}) where \mathbf{b} is uniformly sampled. We write $\mathbf{b}=:\left(\mathbf{b}_{1}^{\top}, \mathbf{b}_{2}^{\top}\right)^{\top}$. With the previous transformation we get: $\mathbf{A}_{2} \mathbf{A}_{1}^{-1}, \mathbf{A}_{2} \mathbf{A}_{1}^{-1} \mathbf{b}_{1}-\mathbf{b}_{2}$. Whatever $\mathbf{A}_{2} \mathbf{A}_{1}^{-1} \mathbf{b}_{1}$ is, since it is independent from \mathbf{b}_{2}, we get a uniform sample over $\mathbb{Z}_{q}^{m^{\prime} \times n} \times \mathbb{Z}_{q}^{m^{\prime}}$.

This means that any distinguisher for the new decision problem is a distinguisher for decision LWE. Under the LWE assumption, any efficient distinguisher has negligible advantage and this concludes the proof.

Exercise 2.

CTR Security
Let $F:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a PRF. To encrypt a message $M \in\{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M=M_{0}\left\|M_{1}\right\| \ldots \| M_{d-1}$ with each $M_{i} \in\{0,1\}^{n}$.
- Sample $I V$ uniformly in $\{0,1\}^{n}$.
- Return $I V\left\|C_{0}\right\| C_{1}\|\ldots\| C_{d-1}$ with $C_{i}=M_{i} \oplus F\left(k, I V+i \bmod 2^{n}\right)$ for all i.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF F is secure.

1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.

Let (KeyGen, Enc, Dec) be an encryption scheme. We consider the following experiments Exp_{b} for $b \in\{0,1\}$:

- Challenger samples $k \leftarrow$ KeyGen,
- Adversary makes q encryption queries on messages $\left(M_{i, 0}, M_{i, 1}\right)$,
- Challenger sends back $\operatorname{Enc}\left(k, M_{i, b}\right)$ for each i,
- Adversary returns $b^{\prime} \in\{0,1\}$.

We define the advantage of the adversary \mathcal{A} against the encryption scheme as

$$
\operatorname{Adv}^{\mathrm{CPA}_{A}}(\mathcal{A})=\left|\operatorname{Pr}\left(\mathcal{A} \xrightarrow{\operatorname{Exp}_{1}} 1\right)-\operatorname{Pr}\left(\mathcal{A} \xrightarrow{\operatorname{Exp}_{0}} 1\right)\right| .
$$

Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a non-negligible advantage with respect to n.
(Note in particular that since \mathcal{A} runs in polynomial time, q must be polynomial in n.)
Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit b uniformly at random, and the advantage is defined as $\operatorname{Adv}^{\mathrm{CPA}}(\mathcal{A})=|\operatorname{Pr}(\mathcal{A} \rightarrow 1 \mid b=0)-\operatorname{Pr}(\mathcal{A} \rightarrow 1 \mid b=1)|$.
2. Assume an attacker makes Q encryption queries. Let $I V_{1}, \ldots, I V_{Q}$ be the corresponding $I V^{\prime}$ s. Let Twice denote the event "there exist $i, j \leq Q$ and $k_{i}, k_{j}<d$ such that $I V_{i}+k_{i}=I V_{j}+k_{j} \bmod 2^{n}$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^{2} d / 2^{n-1}$.
48 Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case $i=j$ is not interesting for our purpose.
For $i, j \leq Q$, let Twice ${ }_{i, j}$ be the event " $\exists k_{i}, k_{j}<d: \mathrm{IV}_{i}+k_{i}=\mathrm{IV}_{j}+k_{j}\left(\bmod 2^{n}\right)$ ", which is equivalent to " $\exists k,|k|<d$ and $\mathrm{IV}_{i}-\mathrm{IV}_{j}=k$ $\left(\bmod 2^{n}\right)$. As the IVs are chosen uniformly and independently, $\mathrm{IV}_{i}-\mathrm{IV}_{j}$ is uniform modulo 2^{n} and $\operatorname{Pr}\left(\operatorname{Twice}_{i, j}\right) \leq 2^{-n}(2 d-1)$. (The inequality is strict when $2 d-1>2^{n}$, in which case $\operatorname{Pr}\left(\operatorname{Twice}_{i, j}\right)=1$.) Then,

$$
\operatorname{Pr}(\text { Twice }) \leq \sum_{1 \leq i \neq j \leq Q} \operatorname{Pr}\left(\text { Twice }_{i, j}\right)=Q(Q-1) 2^{-n}(2 d-1) \leq 2^{1-n} Q^{2} d
$$

3. Assume the $\operatorname{PRF} F$ is replaced by a uniformly chosen function $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of d, n and the number of encryption queries Q.
We write $M^{i, \beta}=M_{0}^{i, \beta}\|\ldots\| M_{d-1}^{i, \beta}$ with $1 \leq i \leq Q$ and $\beta \in\{0,1\}$ the encryption queries of the adversary \mathcal{A} and $C^{i}=\mathrm{IV}_{i}\left\|C_{0}^{i}\right\| \ldots \| C_{d-1}^{i}$ with $1 \leq i \leq Q$ the replies. Given the value of $b \in\{0,1\}$ chosen by the challenger, we know that $C_{j}^{i}=M_{j}^{i, b} \oplus f\left(\mathrm{IV}_{i}+j\left(\bmod 2^{n}\right)\right)$ for all $1 \leq i \leq Q$ and $0 \leq j<d$.
If Twice does not occur, then all the $\mathrm{IV}_{i}+j\left(\bmod 2^{n}\right)$ for $1 \leq i \leq Q$ and $0 \leq j<d$ are pairwise distinct. Then the values of f at these points are independent and uniformly distributed, since $f:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ is chosen uniformly at random. Therefore, all the C_{j}^{i} are also independent and uniformly distributed regardless of the value of b, so that $\operatorname{Pr}(\neg \operatorname{Twice} \wedge \mathcal{A} \rightarrow 1 \mid b=0)=\operatorname{Pr}(\neg \operatorname{Twice} \wedge \mathcal{A} \rightarrow 1 \mid b=1)$. It follows that

$$
\begin{aligned}
\operatorname{Adv}_{\mathcal{U}}^{\text {CPA }}(\mathcal{A}) & =\mid \operatorname{Pr}(\text { Twice } \wedge \mathcal{A} \rightarrow 1 \mid b=0)-\operatorname{Pr}(\text { Twice } \wedge \mathcal{A} \rightarrow 1 \mid b=1) \mid \\
& =\mid \operatorname{Pr}(\mathcal{A} \rightarrow 1 \mid b=0, \text { Twice })-\operatorname{Pr}(\mathcal{A} \rightarrow 1 \mid b=1, \text { Twice }) \mid \operatorname{Pr}(\text { Twice }) \\
& \leq \operatorname{Pr}(\text { Twice }) \leq 2^{1-n} Q^{2} d .
\end{aligned}
$$

4. Show that if there exists a probabilistic polynomial-time adversary \mathcal{A} against CTR based on PRF F, then there exists a probabilistic polynomial-time adversary \mathcal{B} against the PRF F. Give a lower bound on the advantage degradation of the reduction.
$4 \mathcal{8}$ Assume that \mathcal{A} is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We build an adversary \mathcal{B} against the underlying PRF F as follows:

Choose $b \in\{0,1\}$ uniformly at random.
2. For each encryption query $\left(M^{0}, M^{1}\right)$ from \mathcal{A}, encrypt M^{b} using the given scheme, that is,
(a) Choose IV $\in\{0,1\}^{n}$ uniformly at random.
(b) For $j=0$ to $d-1$, send a query for $\mathrm{IV}+j$ and with the reply f_{j} compute $C_{j}=M_{j}^{b} \oplus f_{j}$.
(c) Send IV $\left\|C_{0}\right\| \ldots \| C_{d-1}$ back to \mathcal{A}.
3. When \mathcal{A} finally outputs a bit $b^{\prime} \in\{0,1\}$, output 1 if $b^{\prime}=b$ and 0 otherwise.

The advantage of \mathcal{B} against the $\operatorname{PRF} F$ is

$$
\operatorname{Adv}_{F}^{\text {PRF }}(\mathcal{B})=\mid \operatorname{Pr}(\mathcal{B} \rightarrow 1 \mid \operatorname{PRF})-\operatorname{Pr}(\mathcal{B} \rightarrow 1 \mid \text { Unif }) \mid
$$

where PRF is the experiment in which replies to \mathcal{B} are computed by calling F and Unif is the one in which replies to \mathcal{B} are computed from a uniformly chosen random function f.
Considering the two terms separately gives

$$
\begin{aligned}
\operatorname{Pr}(\mathcal{B} \rightarrow 1 \mid E) & =\frac{1}{2}\left(\operatorname{Pr}\left(b^{\prime}=0 \mid E, b=0\right)+\operatorname{Pr}\left(b^{\prime}=1 \mid E, b=1\right)\right) \\
& =\frac{1}{2}(1+\operatorname{Pr}(\mathcal{A} \rightarrow 1 \mid E, b=1)-\operatorname{Pr}(\mathcal{A} \rightarrow 0 \mid E, b=0))
\end{aligned}
$$

where E is either PRF or Unif. Therefore

$$
\operatorname{Adv}_{F}^{\mathrm{PRF}}(\mathcal{B}) \geq \frac{1}{2}\left(\operatorname{Adv}^{\mathrm{CPA}}(\mathcal{A})-\operatorname{Adv}_{\mathcal{U}}^{\mathrm{CPA}}(\mathcal{A})\right) \geq \frac{1}{2} \operatorname{Adv}^{\mathrm{CPA}}(\mathcal{A})-2^{1-n} Q^{2} d
$$

using the previous question. Thus, if $\operatorname{Adv} v^{C P A}(\mathcal{A})$ is non-negligible then so is $\operatorname{Adv}_{F}^{\text {PRF }}(\mathcal{B})$, which is then about a half of $\operatorname{Adv}{ }^{\mathrm{CPA}}(\mathcal{A})$.

