TD 5: PRFs and Symmetric Encryption (corrected version)

Exercise 1.

LWE with small secret

We once more work in the setting of the LWE assumption. Let q, B, n, m such that the LWE assumption holds. Moreover, we assume that q is prime.

1. (a) What is the probability that $\mathbf{A}_1 \in \mathbf{Z}_q^{n \times n}$ is invertible where $\mathbf{A} =: [\mathbf{A}_1^\top | \mathbf{A}_2^\top]^\top$ is uniformly sampled?

 \mathbb{I} We have to compute $|GL_n(\mathbb{F}_q)|$, i.e. the number of invertibles matrices with coefficients in \mathbb{F}_q . We have $q^n - 1$ choice for the first vector (it can be any vector except the 0 vector), then $q^n - q^1$ for the second vector (anything except a vector collinear to the first one), then $q^n - q^2$ (anything that is not a linear combination of the first two vectors), etc. So we get

$$\begin{split} \Pr_{\mathbf{A}_1 \leftarrow U(\mathbb{F}_2^{m \times n})} [A_1 \in GL_n(\mathbb{F}_q)] &= \frac{1}{q^{n^2}} \prod_{i=0}^{n-1} (q^n - q^i) \\ &= \prod_{i=0}^{n-1} (1 - q^{i-n}), \end{split}$$

which is always $\geq \prod_{i=0}^{n-1} (1 - 2^{i-n}) \geq 0.288$

(b) Assume that $m \ge 2n$. Prove that there exists a subset of *n* linerally independent rows of $\mathbf{A} \leftarrow \mathbf{A}$ $U(\mathbb{Z}_a^{m \times n})$ with probability $\geq 1 - 1/2^{\Omega(n)}$ and that we can find them in polynomial time.

 \mathbb{R} If this is not the case, then there exists an hyperplane of \mathbb{Z}_a^n in which each row is sampled. A hyperplane is given by a nonzero vector: there are at most $q^n - 1$ hyperplanes of the space and for a given hyperplane, the probability that each vector falls into it is $q^{(n-1)m}/q^{nm} = 1/q^m$. Then the union bound gives us that the probability is $\ge 1 - \frac{1}{q^{m-n}} \ge 1 - \frac{1}{q^n}$.

To find such rows, the naive greedy algorithm works: select the first row. Then, repeat the following for i = 2 to m. If the *i*-th row is linearly independent from the selected rows, select it.

2. Let us define the distribution $D_B = U((-B, B] \cap \mathbb{Z})$, and m' = m - n.

Show that under the LWE_{*q*,*m*,*n*,*B*} assumption, the distributions $(\mathbf{A}', \mathbf{A}'\mathbf{s}' + \mathbf{e}') \in \mathbb{Z}_q^{m' \times n} \times \mathbb{Z}_q^{m'}$, with $\mathbf{s}' \leftrightarrow D_B^n$ and $\mathbf{e}' \leftrightarrow D_B^{m'}$, and $(\mathbf{A}', \mathbf{b}')$ with $\mathbf{b}' \leftarrow U(\mathbb{Z}_q^{m'})$ are indistinguishable.

 \mathbb{I}^{∞} We show how to reduce an instance of the decision problem LWE $_{q,m,n,B}$ to an instance of this new decision problem. Let $(\mathbf{A},\mathbf{b})\in$ $\mathbf{Z}_{q}^{m \times n} \times \mathbf{Z}_{q}^{m}$. With non negligible probability and up to permuting the rows of A (and b), one can write $\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1} \\ \mathbf{A}_{2} \end{bmatrix}$, where $\mathbf{A}_{1} \in \mathbf{Z}_{q}^{n \times n}$ is invertible

Notice that in this case, $A_2A_1^{-1} \in \mathbb{Z}_a^{m' \times n}$ is still uniform because A_1 is invertible, and A_2 is uniformly sampled

Assume that we are given a sample $(\mathbf{A}, \mathbf{As} + \mathbf{e})$ of the LWE_{*q,m,n,B*} distribution. Set $\mathbf{e} =: (\mathbf{e}_1^\top, -\mathbf{e}_2^\top)^\top$ Consider the following:

$$(\mathbf{A}_2\mathbf{A}_1^{-1}, \mathbf{A}_2\mathbf{A}_1^{-1}(\mathbf{A}_1\mathbf{s} + \mathbf{e}_1) - \mathbf{A}_2\mathbf{s} + \mathbf{e}_2) = (\mathbf{A}_2\mathbf{A}_1, \mathbf{A}_2\mathbf{A}_1^{-1}\mathbf{e}_1 + \mathbf{e}_2).$$

This is exactly a sample from the new distribution, with secret e_1 and noise e_2 .

Assume now that we are given a sample (\mathbf{A}, \mathbf{b}) where \mathbf{b} is uniformly sampled. We write $\mathbf{b} =: (\mathbf{b}_1^{\top}, \mathbf{b}_2^{\top})^{\top}$. With the previous transformation we get: $A_2A_1^{-1}, A_2A_1^{-1}b_1 - b_2$. Whatever $A_2A_1^{-1}b_1$ is, since it is independent from b_2 , we get a uniform sample over $\mathbb{Z}_q^{m' \times n} \times \mathbb{Z}_q^{m'}$

This means that any distinguisher for the new decision problem is a distinguisher for decision LWE. Under the LWE assumption, any efficient distinguisher has negligible advantage and this concludes the proof.

Exercise 2.

CTR Security Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 || M_1 || \dots || M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample *IV* uniformly in $\{0, 1\}^n$.

• Return $IV ||C_0||C_1|| \dots ||C_{d-1}$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all *i*.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF *F* is secure.

- 1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
 - \mathbb{R}^{2} Let (KeyGen, Enc, Dec) be an encryption scheme. We consider the following experiments \exp_{h} for $b \in \{0, 1\}$:
 - Challenger samples $k \leftarrow \text{KeyGen}$,
 - Adversary makes q encryption queries on messages $(M_{i,0}, M_{i,1})$,
 - Challenger sends back $Enc(k, M_{i,b})$ for each i,
 - Adversary returns $b' \in \{0, 1\}$.

We define the advantage of the adversary ${\mathcal A}$ against the encryption scheme as

$$\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) = |\operatorname{Pr}(\mathcal{A} \xrightarrow{\operatorname{Exp}_1} 1) - \operatorname{Pr}(\mathcal{A} \xrightarrow{\operatorname{Exp}_0} 1)|.$$

Then, the encryption scheme is said to be secure against chosen plaintext attacks if no probabilistic polynomial-time adversary has a non-negligible advantage with respect to n.

(Note in particular that since A runs in polynomial time, q must be polynomial in n.)

Remark: in another equivalent definition, there is only one experiment in which the challenger starts by choosing the bit *b* uniformly at random, and the advantage is defined as $Adv^{CPA}(\mathcal{A}) = |Pr(\mathcal{A} \to 1 \mid b = 0) - Pr(\mathcal{A} \to 1 \mid b = 1)|$.

2. Assume an attacker makes Q encryption queries. Let IV_1, \ldots, IV_Q be the corresponding IV's. Let Twice denote the event "there exist $i, j \leq Q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j \mod 2^n$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^2d/2^{n-1}$.

Remark: the probability of Twice is obviously 1 if it is not required that i and j be distinct. Besides, considering the case i = j is not interesting for our purpose.

For $i, j \leq Q$, let $\mathsf{Twice}_{i,j}$ be the event " $\exists k_i, k_j < d : \mathsf{IV}_i + k_i = \mathsf{IV}_j + k_j \pmod{2^n}$ ", which is equivalent to " $\exists k, |k| < d$ and $\mathsf{IV}_i - \mathsf{IV}_j = k \pmod{2^n}$. As the IVs are chosen uniformly and independently, $\mathsf{IV}_i - \mathsf{IV}_j$ is uniform modulo 2^n and $\Pr(\mathsf{Twice}_{i,j}) \leq 2^{-n}(2d-1)$. (The inequality is strict when $2d - 1 > 2^n$, in which case $\Pr(\mathsf{Twice}_{i,j}) = 1$.) Then,

$$\Pr(\texttt{Twice}) \leq \sum_{1 \leq i \neq j \leq Q} \Pr(\texttt{Twice}_{i,j}) = Q(Q-1)2^{-n}(2d-1) \leq 2^{1-n}Q^2d.$$

3. Assume the PRF *F* is replaced by a uniformly chosen function $f : \{0,1\}^n \to \{0,1\}^n$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of *d*, *n* and the number of encryption queries *Q*.

We write $M^{i,\beta} = M_0^{i,\beta} \| \dots \| M_{d-1}^{i,\beta} \|$ with $1 \le i \le Q$ and $\beta \in \{0,1\}$ the encryption queries of the adversary \mathcal{A} and $C^i = \mathrm{IV}_i \| C_0^i \| \dots \| C_{d-1}^i \| W^i \| W^i \| C_{d-1}^i \| W^i \| W^i \| C_{d-1}^i \| W^i \| C_{d-1}^i \| W^i \| C_{d-1}^i \| W^i \| W$

If Twice does not occur, then all the $IV_i + j \pmod{2^n}$ for $1 \le i \le Q$ and $0 \le j < d$ are pairwise distinct. Then the values of f at these points are independent and uniformly distributed, since $f : \{0,1\}^n \to \{0,1\}^n$ is chosen uniformly at random. Therefore, all the C_j^i are also independent and uniformly distributed regardless of the value of b, so that $Pr(\neg Twice \land \mathcal{A} \to 1 \mid b = 0) = Pr(\neg Twice \land \mathcal{A} \to 1 \mid b = 1)$. It follows that

$$\begin{split} \mathsf{Adv}^{\mathsf{CPA}}_{\mathcal{U}}(\mathcal{A}) &= |\mathrm{Pr}(\mathtt{Twice} \land \mathcal{A} \to 1 \mid b = 0) - \mathrm{Pr}(\mathtt{Twice} \land \mathcal{A} \to 1 \mid b = 1)| \\ &= |\mathrm{Pr}(\mathcal{A} \to 1 \mid b = 0, \mathtt{Twice}) - \mathrm{Pr}(\mathcal{A} \to 1 \mid b = 1, \mathtt{Twice})| \operatorname{Pr}(\mathtt{Twice}) \\ &\leq \mathrm{Pr}(\mathtt{Twice}) \leq 2^{1-n}Q^2d. \end{split}$$

4. Show that if there exists a probabilistic polynomial-time adversary A against CTR based on PRF *F*, then there exists a probabilistic polynomial-time adversary B against the PRF *F*. Give a lower bound on the advantage degradation of the reduction.

 \mathbb{R}^{2} Assume that \mathcal{A} is a PPT adversary against the encryption scheme with a non-negligible advantage for a chosen plaintext attack. We build an adversary \mathcal{B} against the underlying PRF F as follows:

- 1. Choose $b \in \{0,1\}$ uniformly at random.
- 2. For each encryption query (M^0,M^1) from ${\cal A},$ encrypt M^b using the given scheme, that is,
 - (a) Choose IV $\in \{0,1\}^n$ uniformly at random.
 - (b) For j = 0 to d 1, send a query for IV + j and with the reply f_j compute $C_j = M_j^b \oplus f_j$.

(c) Send $IV \|C_0\| \dots \|C_{d-1}$ back to \mathcal{A} .

3. When $\mathcal A$ finally outputs a bit $b' \in \{0,1\}$, output 1 if b' = b and 0 otherwise.

The advantage of ${\mathcal B}$ against the PRF F is

$$\mathsf{Adv}_{F}^{\mathsf{PRF}}(\mathcal{B}) = |\operatorname{Pr}(\mathcal{B} \to 1 \mid \mathsf{PRF}) - \operatorname{Pr}(\mathcal{B} \to 1 \mid \mathsf{Unif})|$$

where PRF is the experiment in which replies to \mathcal{B} are computed by calling F and Unif is the one in which replies to \mathcal{B} are computed from a uniformly chosen random function f.

Considering the two terms separately gives

$$Pr(\mathcal{B} \to 1 \mid E) = \frac{1}{2} \left(Pr(b' = 0 \mid E, b = 0) + Pr(b' = 1 \mid E, b = 1) \right)$$
$$= \frac{1}{2} \left(1 + Pr(\mathcal{A} \to 1 \mid E, b = 1) - Pr(\mathcal{A} \to 0 \mid E, b = 0) \right)$$

where E is either PRF or Unif. Therefore

$$\mathsf{Adv}_F^{\mathsf{PRF}}(\mathcal{B}) \geq \frac{1}{2} \left(\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - \mathsf{Adv}_{\mathcal{U}}^{\mathsf{CPA}}(\mathcal{A}) \right) \geq \frac{1}{2} \mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A}) - 2^{1-n} Q^2 dn$$

using the previous question. Thus, if $\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A})$ is non-negligible then so is $\mathsf{Adv}_F^{\mathsf{PRF}}(\mathcal{B})$, which is then about a half of $\mathsf{Adv}^{\mathsf{CPA}}(\mathcal{A})$.