
M1 – Cryptography and Security (2023/2024) A. Passelègue and A. Herlédan Le Merdy

TD 6: Message Authentication Codes (corrected version)

Exercise 1. Insecure MACs
Let F : {0, 1}t × {0, 1}n → {0, 1}n be a secure pseudo-random function (PRF). Show that each one of
the following message authentication codes (MAC) is insecure:

1. To authenticate m = m1∥ . . . ∥md where mi ∈ {0, 1}n for all i, compute t = F(k, m1) ⊕ . . . ⊕
F(k, md).
☞ Definition : Secure MAC – existential unforgeability under a chosen message attack. Attacker has access to a signing oracle:
mi → ti = Sign(k, mi) for i ≤ q = queries nbr. Attacker must produce a new pair (m, t) /∈ (mi , ti)i, such that Veri f y(k, m, t) = 1.

Ask a tag for (m1 ∥ 0 ∥ . . . ∥ 0), t1 = F(k, m1)(⊕F(k, 0)). Return m = (0 ∥ . . . ∥ 0 ∥ m1) and t1.

2. To authenticate m = m1 ∥ . . . ∥ md with d < 2n/2 and mi ∈ {0, 1}n/2 for all i, compute

t = F(k, 1 ∥ m1)⊕ . . .⊕ F(k, d ∥ md),

where i is an n/2-bit long representation of i, for all i ≤ d.
☞
Ask tag of (0 ∥ 0 ∥ . . . ∥ 0): t0 =

⊕
i≥1 F(k, i ∥ 0).

Ask tag of (m1 ∥ 0 ∥ . . . ∥ 0): t1 = F(k, 1 ∥ m1)
⊕

i≥2 F(k, i ∥ 0).
Ask tag of (0 ∥ m2 ∥ 0 ∥ . . . ∥ 0): t2 = F(k, 1 ∥ 0)⊕ F(k, 2 ∥ m2)⊕

⊕
i≥3 F(k, i ∥ 0).

Then (t0 ⊕ t1 ⊕ t2 = F(k, 1 ∥ m1)⊕ F(k, 2 ∥ m2)
⊕

i≥3 F(k, i ∥ 0)) is a valid tag for (m1 ∥ m2 ∥ 0 ∥ . . . ∥ 0).

Exercise 2. CCA Insecurity
Let us consider the following symmetric encryption scheme, where F : {0, 1}s × {0, 1}n → {0, 1}ℓ is a
secure PRF. To encrypt a message m ∈ {0, 1}ℓ for ℓ ∈ N:

KeyGen(1λ): Output k←↩ U({0, 1}s).

Enc(k, m): Sample r ←↩ U({0, 1}n) and output c := (r, F(k, r)⊕m).

Dec(k, c := (c1, c2)): Output m = c2 ⊕ F(k, c1).

1. Recall the security definition of the CCA-security of an encryption scheme.

☞ See the lecture.

2. Is this scheme CCA-secure?

☞ Let A be the adversary that does the following. It samples two different messages m0, m1 and gets an encryption (r∗ , c∗) of mb

for a b it has to guess. It then queries the decryption of (r∗ , c) for any (c ̸= c∗) and gets F(k, r∗)⊕ c. With this it can get F(k, r∗) back.

And finally it can decrypt c∗ and know the value of b. Then this scheme cannot be CCA-secure.

Exercise 3. CBC-MAC
Let F : {0, 1}k × {0, 1}n → {0, 1}n be a PRF, d > 0 and L = nd. Prove that the following modifications
of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-length MAC. Define ti := F(K, ti−1⊕mi)
for i ∈ [1, d] and t0 := IV = 0.

1. Modify CBC-MAC so that a random IV ←↩ U({0, 1}n) (rather than IV = 0) is used each time a
tag is computed, and the output is (IV, td) instead of td alone.

☞ If an adversary asks for a tag (t0, td) of any (m1, . . . , md), then it can output (t0 ⊕ x, td), (m1 ⊕ x, . . . , md) as a forgery, as it is a

valid pair of a tag and a message. Such an adversary wins everytime and has non-negligible advantage in the unforgeability game.

1

md

K F

result

· · ·

m2

K F

IV = 0

m1

K F

Figure 1: CBC-MAC

md

K1

K2

F

F

result

· · ·

m2

K1 F

IV = 0

m1

K1 F

Figure 2: ECBC-MAC

2. Modify CBC-MAC so that all the outputs of F are output, rather than just the last one.
☞

If an adversary aks for a tag (t1, t2, . . . , td) of any message (0, m2, . . . , md), then it can output (t2, t3, . . . , td , t1), (m2 ⊕ t1, m3, . . . , md , td)

as a forgery as it is a valid pair (tag, message). Such an adversary wins everytime. Indeed, F(K, m2 ⊕ t1 ⊕ 0) = t2 by definition

and F(K, td ⊕ td) = t1 since m1 = 0.

We now consider the following ECBC-MAC scheme: let F : K × X → X be a PRF, we define FECBC :
K2 × X≤L → X as in Figure 2, where K1 and K2 are two independent keys.
If the message length is not a multiple of the block length n, we add a pad to the last block: m =
m1| . . . |md−1|(md∥pad(m)).

3. Show that there exists a padding for which this scheme is not secure.
☞
We could for instance pad with as many 0s as necessary.

Let m of length < n. Then, m||pad(m) = m||0||pad(m||0). As such we build an adverary for the unforgeability game that:

• asks for a tag for m of length < n.
• Gets a tag t.
• Returns the forgery (m||0, t).

This adversary always wins and as such breaks the unforgeability of the scheme.

For the security of the scheme, the padding must be invertible, and in particular for any message
m0 ̸= m1 we need to have m0||pad(m0) ̸= m1||pad(m1). In practice, the ISO norm is to pad with
10 · · · 0, and if the message length is a multiple of the block length, to add a new “dummy” block
10 · · · 0 of length n.

2

4. Prove that this scheme is not secure if the padding does not add a new “dummy” block if the
message length is a multiple of the block length.

☞ Let m = m1 ∥ 100 of the length of a block, then m = m1 ∥ pad(m1), so any valid tag for m is a valid tag for m1.

Remark: The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k1, k2). If
the message length is not a multiple of the block length, then we append the ISO padding to it and
then we also XOR this last block with the key k1. If the message length is a multiple of the block
length, then we XOR this last block with the key k2. After that, we perform a last encryption with
F(k, .) to obtain the tag.

3

	1. Insecure MACs
	2. CCA Insecurity
	3. CBC-MAC

