TD 6: Message Authentication Codes (corrected version)

Exercise 1.

Insecure MACs

Let $F : \{0,1\}^t \times \{0,1\}^n \to \{0,1\}^n$ be a secure pseudo-random function (PRF). Show that each one of the following message authentication codes (MAC) is insecure:

1. To authenticate $m = m_1 \| \dots \| m_d$ where $m_i \in \{0,1\}^n$ for all *i*, compute $t = F(k, m_1) \oplus \dots \oplus$ $F(k, m_d)$.

😰 Definition : Secure MAC – existential unforgeability under a chosen message attack. Attacker has access to a signing oracle: $m_i \rightarrow t_i = Sign(k, m_i)$ for $i \leq q =$ queries nbr. Attacker must produce a new pair $(m, t) \notin (m_i, t_i)_i$, such that Verify(k, m, t) = 1

Ask a tag for $(m_1 \parallel 0 \parallel ... \parallel 0)$, $t_1 = F(k, m_1)(\oplus F(k, 0))$. Return $m = (0 \parallel ... \parallel 0 \parallel m_1)$ and t_1 .

2. To authenticate $m = m_1 \parallel \ldots \parallel m_d$ with $d < 2^{n/2}$ and $m_i \in \{0,1\}^{n/2}$ for all *i*, compute

 $t = F(k, 1 \parallel m_1) \oplus \ldots \oplus F(k, d \parallel m_d),$

where *i* is an *n*/2-bit long representation of *i*, for all $i \le d$.

 $\begin{array}{l} \text{Ask tag of } (0 \parallel 0 \parallel \ldots \parallel 0) \colon t_0 = \bigoplus_{i \geq 1} F(k, \underline{i} \parallel 0). \\ \text{Ask tag of } (m_1 \parallel 0 \parallel \ldots \parallel 0) \colon t_1 = F(k, \underline{1} \parallel m_1) \bigoplus_{i \geq 2} F(k, \underline{i} \parallel 0). \\ \text{Ask tag of } (0 \parallel m_2 \parallel 0 \parallel \ldots \parallel 0) \colon t_2 = F(k, \underline{1} \parallel 0) \oplus F(k, \underline{2} \parallel m_2) \oplus \bigoplus_{i \geq 3} F(k, \underline{i} \parallel 0). \end{array}$

Then $(t_0 \oplus t_1 \oplus t_2 = F(k, \underline{1} \parallel m_1) \oplus F(k, \underline{2} \parallel m_2) \bigoplus_{i \ge 3} F(k, \underline{i} \parallel 0))$ is a valid tag for $(m_1 \parallel m_2 \parallel 0 \parallel \ldots \parallel 0)$.

Exercise 2.

CCA Insecurity Let us consider the following symmetric encryption scheme, where $F : \{0,1\}^s \times \{0,1\}^n \to \{0,1\}^\ell$ is a secure PRF. To encrypt a message $m \in \{0, 1\}^{\ell}$ for $\ell \in \mathbb{N}$:

KeyGen (1^{λ}) : Output $k \leftarrow U(\{0,1\}^s)$.

Enc(*k*, *m*): Sample $r \leftarrow U(\{0,1\}^n)$ and output $c := (r, F(k, r) \oplus m)$.

Dec($k, c := (c_1, c_2)$): Output $m = c_2 \oplus F(k, c_1)$.

1. Recall the security definition of the CCA-security of an encryption scheme.

See the lecture.

2. Is this scheme CCA-secure?

Let A be the adversary that does the following. It samples two different messages m_0, m_1 and gets an encryption (r^*, c^*) of m_b for a b it has to guess. It then queries the decryption of (r^*, c) for any $(c \neq c^*)$ and gets $F(k, r^*) \oplus c$. With this it can get $F(k, r^*)$ back. And finally it can decrypt c^* and know the value of b. Then this scheme cannot be CCA-secure.

Exercise 3.

CBC-MAC

Let $F: \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$ be a PRF, d > 0 and L = nd. Prove that the following modifications of CBC-MAC (recalled in Figure 1) do not yield a secure fixed-length MAC. Define $t_i := F(K, t_{i-1} \oplus m_i)$ for $i \in [1, d]$ and $t_0 := IV = 0$.

1. Modify CBC-MAC so that a random $IV \leftrightarrow U(\{0,1\}^n)$ (rather than $IV = \mathbf{0}$) is used each time a tag is computed, and the output is (IV, t_d) instead of t_d alone.

If an adversary asks for a tag (t_0, t_d) of any (m_1, \dots, m_d) , then it can output $(t_0 \oplus x, t_d), (m_1 \oplus x, \dots, m_d)$ as a forgery, as it is a valid pair of a tag and a message. Such an adversary wins everytime and has non-negligible advantage in the unforgeability game.

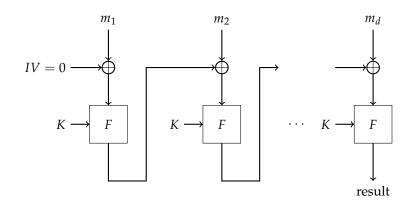


Figure 1: CBC-MAC

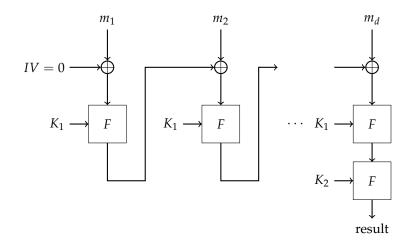


Figure 2: ECBC-MAC

2. Modify CBC-MAC so that all the outputs of *F* are output, rather than just the last one.

If an adversary aks for a tag (t_1, t_2, \ldots, t_d) of any message $(0, m_2, \ldots, m_d)$, then it can output $(t_2, t_3, \ldots, t_d, t_1), (m_2 \oplus t_1, m_3, \ldots, m_d, t_d)$ as a forgery as it is a valid pair (tag, message). Such an adversary wins everytime. Indeed, $F(K, m_2 \oplus t_1 \oplus 0) = t_2$ by definition and $F(K, t_d \oplus t_d) = t_1$ since $m_1 = 0$.

We now consider the following ECBC-MAC scheme: let $F : K \times X \to X$ be a PRF, we define $F_{ECBC} : K^2 \times X^{\leq L} \to X$ as in Figure 2, where K_1 and K_2 are two independent keys.

If the message length is not a multiple of the block length *n*, we add a pad to the last block: $m = m_1 | \dots | m_{d-1} | (m_d || \text{pad}(m))$.

3. Show that there exists a padding for which this scheme is not secure.

We could for instance pad with as many 0s as necessary. Let m of length < n. Then, m||pad(m) = m||0||pad(m||0). As such we build an adverary for the unforgeability game that:

- asks for a tag for m of length < n.
- Gets a tag t.
- Returns the forgery (m||0,t).

This adversary always wins and as such breaks the unforgeability of the scheme.

For the security of the scheme, the padding must be invertible, and in particular for any message $m_0 \neq m_1$ we need to have $m_0 || pad(m_0) \neq m_1 || pad(m_1)$. In practice, the ISO norm is to pad with $10 \cdots 0$, and if the message length is a multiple of the block length, to add a new "dummy" block $10 \cdots 0$ of length *n*.

¹³

- **4.** Prove that this scheme is not secure if the padding does not add a new "dummy" block if the message length is a multiple of the block length.
 - Let $m = m_1 \parallel 100$ of the length of a block, then $m = m_1 \parallel pad(m_1)$, so any valid tag for m is a valid tag for m_1 .

Remark: The NIST standard is called CMAC, it is a variant of CBC-MAC with three keys (k, k_1, k_2) . If the message length is not a multiple of the block length, then we append the ISO padding to it and then we also XOR this last block with the key k_1 . If the message length is a multiple of the block length, then we XOR this last block with the key k_2 . After that, we perform a last encryption with F(k,.) to obtain the tag.