TD 7: Collision-Resistant Hash Functions

Exercise 1.

Suppose $h_{1}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$ is a collision-resistant hash function.

1. Define $h_{2}:\{0,1\}^{4 n} \rightarrow\{0,1\}^{n}$ as follows: Write $x=x_{1} \| x_{2}$ with $x_{1}, x_{2} \in\{0,1\}^{2 n}$; return the value $h_{2}(x)=h_{1}\left(h_{1}\left(x_{1}\right) \| h_{1}\left(x_{2}\right)\right)$. Prove that h_{2} is collision-resistant.
2. For $i \geq 2$, define $h_{i}:\{0,1\}^{2^{i} n} \rightarrow\{0,1\}^{n}$ as follows: Write $x=x_{1} \| x_{2}$ with $x_{1}, x_{2} \in\{0,1\}^{2^{i-1} n}$; return $h_{i}(x)=h_{1}\left(h_{i-1}\left(x_{1}\right) \| h_{i-1}\left(x_{2}\right)\right)$. Prove that h_{i} is collision-resistant.

Exercise 2.

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a last block the binary representation of the length of this message. Suppose that we do not add this block: does this transform still lead to a collision-resistant hash function?
2. Before HMAC was invented, it was quite common to define a MAC by $\operatorname{Mac}_{k}(m)=H^{s}(k \| m)$ where H is a collision-resistant hash function. Show that this is not a secure MAC when H is constructed via the Merkle-Damgård transform.

Exercise 3.

Let $m \geq n \geq 2, q \geq 2$ and $B>0$ such that $m B \leq q / 4$, with q prime. Recall that the $\mathrm{LWE}_{m, n, q, B}$ hardness assumption states that the distribution $(\mathbf{A}, \mathbf{A s}+\mathbf{e})$, where $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$, $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $e \hookleftarrow U\left((-B, B]^{m}\right)$ is computationally indistinguishable from $U\left(\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}\right)$. Define the following hash function:

$$
\begin{aligned}
H_{\mathbf{A}} & :\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n} \\
& \mathbf{x} \mapsto \mathbf{x}^{\top} \cdot \mathbf{A} \bmod q
\end{aligned}
$$

1. (a) Recall the definition of the compression factor, and compute it for H.
(b) Show how to break the $\mathrm{LWE}_{m, n, q, B}$ assumption given a vector $\mathbf{x} \in\{-1,0,1\}^{m}$ such that $\mathbf{x}^{\top} \mathbf{A}=$ $\mathbf{0} \bmod q$ and $\mathbf{x} \neq \mathbf{0}$.
(c) Conclude on the collision-resistance of H.

Exercise 4.

Pedersen's hash function is as follows:

- Given a security parameter n, algorithm Gen samples (G, g, p) where $G=\langle g\rangle$ is a cyclic group of known prime order p. It then sets $g_{1}=g$ and samples g_{i} uniformly in G for all $i \in\{2, \ldots, k\}$, where $k \geq 2$ is some parameter. Finally, it returns ($G, p, g_{1}, \ldots, g_{k}$).
- The hash of any message $M=\left(M_{1}, \ldots, M_{k}\right) \in(\mathbb{Z} / p \mathbb{Z})^{k}$ is $H(M)=\prod_{i=1}^{k} g_{i}^{M_{i}} \in G$.

1. Bound the cost of hashing, in terms of k and the number of multiplications in G.
2. Assume for this question that G is a subgroup of prime order p of $(\mathbb{Z} / q \mathbb{Z})^{\times}$, where $q=2 p+1$ is prime. What is the compression factor in terms of k and q ? Which k would you choose? Justify your choice.
3. Assume for this question that $k=2$. Show that Pedersen's hash function is collision-resistant, under the assumption that the Discrete Logarithm Problem (DLP) is hard for G.
4. Same question as the previous one, with $k \geq 2$ arbitrary.
