TD 7: Collision-Resistant Hash Functions (corrected version)

Exercise 1.

Suppose $h_{1}:\{0,1\}^{2 n} \rightarrow\{0,1\}^{n}$ is a collision-resistant hash function.

1. Define $h_{2}:\{0,1\}^{4 n} \rightarrow\{0,1\}^{n}$ as follows: Write $x=x_{1} \| x_{2}$ with $x_{1}, x_{2} \in\{0,1\}^{2 n}$; return the value $h_{2}(x)=h_{1}\left(h_{1}\left(x_{1}\right) \| h_{1}\left(x_{2}\right)\right)$. Prove that h_{2} is collision-resistant.
0 Let $x \neq x^{\prime}$ be a collision for h_{2}. Let us write $x=x_{1} \| x_{2}$ and $x^{\prime}=x_{1}^{\prime} \| x_{2}^{\prime}$.

- If $h_{1}\left(x_{1}\right)\left\|h_{1}\left(x_{2}\right) \neq h_{1}\left(x_{1}^{\prime}\right)\right\| h_{1}\left(x_{2}^{\prime}\right)$, then this is a collision for h_{1}, as they both have the same image by h_{1}.
- Otherwise, notice there is a $b \in\{1,2\}$ such that $x_{b} \neq x_{b}^{\prime}$ (since $x \neq x^{\prime}$). Moreover $h_{1}\left(x_{b}\right)=h_{1}\left(x_{b}^{\prime}\right)$. Then $\left(x_{b}, x_{b}^{\prime}\right)$ is a collision for h_{1}.

In the end, if we can find a collision for h_{2} then we can find a collision for h_{1} in polynomial time (we have four hashes to compute and two equalities to check). Then if h_{1} is collision-resistant, so is h_{2}.
2. For $i \geq 2$, define $h_{i}:\{0,1\}^{2^{i} n} \rightarrow\{0,1\}^{n}$ as follows: Write $x=x_{1} \| x_{2}$ with $x_{1}, x_{2} \in\{0,1\}^{2^{i-1} n}$; return $h_{i}(x)=h_{1}\left(h_{i-1}\left(x_{1}\right) \| h_{i-1}\left(x_{2}\right)\right)$. Prove that h_{i} is collision-resistant.
a帠 First method: define the following induction hypothesis $\left(H_{i}\right)$: "If we can find a collision for h_{i} in polynomial time then we can find a collision for h_{1} in polynomial time".
This already holds for $i=2$. Let $i \geq 2$ and assume that $\left(H_{i}\right)$ is true.
Then the reduction procedes as follows: assume that we can find a collision $x \neq x^{\prime}$ for h_{i+1} in polynomial time.
Let $x=x_{1} \| x_{2}$ and $x^{\prime}=x_{1}^{\prime} \| x_{2}^{\prime}$. Then, by definition of h_{i+1}, either $h_{i}\left(x_{1}\right)\left\|h_{i}\left(x_{2}\right) \neq h_{i}\left(x_{1}^{\prime}\right)\right\| h_{i}\left(x_{2}^{\prime}\right)$ and we have a collision for h_{1} by computing only four hashes, or it is equal. If it is, take any $b \in\{1,2\}$ such that $x_{b} \neq x_{b}^{\prime}$: we have found a collision for h_{i} and can use the induction hypothesis to conclude and find a collision for h_{1} in polynomial time.
Then under the collision-resistance (and assumption that i is such that h_{i} can still be computed in polynomial time) of h_{1}, it holds that h_{i} is collision-resistant.
Second method: Given an adversary \mathcal{A}_{i+1} that finds a collision for h_{i+1} with advantage ε non-negligible and assuming that h_{1} and h_{i} are collision-resistant, we build two adversaries:

- First, \mathcal{A}_{1} is an adversary against the collision-resistance of h_{1} that on input $x \neq x^{\prime}$ from \mathcal{A}_{i+1} such that $h_{i+1}(x)=h_{i+1}\left(x^{\prime}\right)$ returns $\left(h_{i}\left(x_{1}\right)| | h_{i}\left(x_{2}\right), h_{i}\left(x_{1}^{\prime}\right) \| h_{i}\left(x_{2}^{\prime}\right)\right)$ if these two values are different. Otherwise it outputs FAIL.
- Second, \mathcal{A}_{i} is an adversary against the collision-resistance of h_{i} that on input $x \neq x^{\prime}$ from \mathcal{A}_{i+1} such that $h_{i+1}(x)=h_{i+1}\left(x^{\prime}\right)$ returns x_{b}, x_{b}^{\prime} if there eixsts a $b \in\{1,2\}$ such that $x_{b} \neq x_{b}^{\prime}$ and $h_{i}\left(x_{1}\right)\left\|h_{i}\left(x_{2}\right)=h_{i}\left(x_{1}^{\prime}\right)\right\| h_{i}\left(x_{2}^{\prime}\right)$. Otherwise it returns FAIL

Notice that

$$
\operatorname{Pr}\left(\mathcal{A}_{i+1} \text { wins }\right)=\operatorname{Pr}\left(\mathcal{A}_{i} \text { wins }\right)+\operatorname{Pr}\left(\mathcal{A}_{1} \text { wins }\right) .
$$

Since this corresponds to the advantages of the adversaries, it holds that the right hand side is negligible, under the security of h_{1} and h_{i}, but the left hand side is non-negligible, which is a contradiction: h_{i+1} is collision-resistant.

Exercise 2.

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a last block the binary representation of the length of this message. Suppose that we do not add this block: does this transform still lead to a collision-resistant hash function?
nqs No. Take for instance x of length $B \ell(n)-1$ for some $B \geq 2$, and $y=x \| 0$. In the transform, we start by padding x with one zero so that its length is a multiple of $\ell(n)$: we obtain y. In the rest of the process, the only thing that differs between x and y is that their "length blocks" are not the same; without this length block, x and y form a collision.
2. Before HMAC was invented, it was quite common to define a MAC by $\operatorname{Mac}_{k}(m)=H^{s}(k \| m)$ where H is a collision-resistant hash function. Show that this is not a secure MAC when H is constructed via the Merkle-Damgård transform.
[TE The goal is to construct (m, t) with Verify ${ }_{k}(m, t)=1$, having oracle access to Mac_{k} but without querying $\operatorname{Mac}_{k}(m)$ itself.
With Merkle-Damgård, the function H^{s} divides the message $k \| m$ in p blocks x_{1}, \ldots, x_{p} of size ℓ (padding the last block x_{p} with a Padding Block PB so that $x_{p} \|$ PB has size ℓ) and then adding a new block x_{p+1} of length ℓ depending on the bit length of $k \| m$. Then the Merkle-Damgård construction uses a (fixed-length) collision-resistant hash function h to compute its output as follows:

$$
H^{\varsigma}(k \| m)=h^{s}\left(x_{p+1}, h^{s}\left(x_{p} \| \text { PB }, h^{s}\left(x_{p-1}, h^{s}\left(\ldots, h^{s}\left(x_{1}, \text { IV }\right)\right)\right)\right)\right) .
$$

Given $H^{s}(k \| m)$, anyone can compute $H^{s}\left(k\|m\| \mathrm{PB}\left\|x_{p+1}\right\| \omega\right)$ for any ω; for instance, if ω is of size ℓ, using $h^{s}\left(x_{p+2}^{\prime}, h^{s}\left(\omega, H^{s}(k \| m)\right)\right)$ where x_{p+2}^{\prime} only depends on the length of $k\|m\| P B\left\|x_{p+1}\right\| \omega$ and can be publicly computed.

Exercise 3.

Let $m \geq n \geq 2, q \geq 2$ and $B>0$ such that $m B \leq q / 4$, with q prime. Recall that the $\operatorname{LWE}_{m, n, q, B}$ hardness assumption states that the distribution $(\mathbf{A}, \mathbf{A s}+\mathbf{e})$, where $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$ and $e \hookleftarrow U\left((-B, B]^{m}\right)$ is computationally indistinguishable from $U\left(\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}\right)$. Define the following hash function:

$$
\begin{aligned}
H_{\mathbf{A}} & :\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n} \\
& \mathbf{x} \mapsto \mathbf{x}^{\top} \cdot \mathbf{A} \bmod q
\end{aligned}
$$

1. (a) Recall the definition of the compression factor, and compute it for H.

48 The compression factor is the ratio of the bitsize of the input over the bitsize of the output. Here, the compression factor is $\frac{m}{n \log _{2} 9}$.
(b) Show how to break the $\operatorname{LWE}_{m, n, q, B}$ assumption given a vector $\mathbf{x} \in\{-1,0,1\}^{m}$ such that $\mathbf{x}^{\top} \mathbf{A}=$ $\mathbf{0} \bmod q$ and $\mathbf{x} \neq \mathbf{0}$.
Leq Let $\mathbf{u} \hookleftarrow U\left(\mathbb{Z}_{q}^{m}\right)$. Then $\mathbf{x}^{\top} \mathbf{u} \bmod q$ is uniform over \mathbb{Z}, because q is prime and the coefficients of \mathbf{u} are independently sampled.
However, $\mathbf{x}^{\top}(\mathbf{A s}+\mathbf{e})=\mathbf{x}^{\top} \mathbf{e} \bmod q$, and this has absolute value $\leq m \cdot B \leq q / 4$ (we take representatives in $(-q / 2, q / 2]$).
It is then possible to distinguish between these two distributions with advantage $1 / 2$.
(c) Conclude on the collision-resistance of H.

0 Ass Assume that an adversary \mathcal{A} can find collisions in polynomial time with non-negligible probability.
We build a distinguisher \mathcal{B} that does the following: on input (\mathbf{A}, \mathbf{b}), it sends \mathbf{A} to \mathcal{A}. If \mathcal{A} fails, it returns a random bit. When it finds a collision ($\mathbf{x}, \mathbf{x}^{\prime}$), adversary \mathcal{B} computes $\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{\top} \mathbf{b}$ and returns $L W E$ if it has absolute value $\leq q / 4$, otherwise it returns UNIF.
Then the advantage of \mathcal{B} is $\operatorname{Adv}(\mathcal{A}) / 2$, which is non-negligible.

Exercise 4.

Pedersen's hash function is as follows:

- Given a security parameter n, algorithm Gen samples (G, g, p) where $G=\langle g\rangle$ is a cyclic group of known prime order p. It then sets $g_{1}=g$ and samples g_{i} uniformly in G for all $i \in\{2, \ldots, k\}$, where $k \geq 2$ is some parameter. Finally, it returns ($G, p, g_{1}, \ldots, g_{k}$).
- The hash of any message $M=\left(M_{1}, \ldots, M_{k}\right) \in(\mathbb{Z} / p \mathbb{Z})^{k}$ is $H(M)=\prod_{i=1}^{k} g_{i}^{M_{i}} \in G$.

1. Bound the cost of hashing, in terms of k and the number of multiplications in G.

0 罗 Here is a simple algorithm (the algorithm could be more adaptive and, before exponentiation, group together M_{i} 's that are close to each other... we really don't care about that here!). First, use fast exponentiation to compute the powers of g_{i}, and then multiplies them together. This is done in, roughly, $\mathcal{O}(k \log (p))$ multiplications in the group G (more precisely, $\left\lceil\log _{2}\left(M_{1}\right)\right\rceil+\cdots+\left\lceil\log _{2}\left(M_{k}\right)\right\rceil+$ $k-1)$.
2. Assume for this question that G is a subgroup of prime order p of $(\mathbb{Z} / q \mathbb{Z})^{\times}$, where $q=2 p+1$ is prime. What is the compression factor in terms of k and q ? Which k would you choose? Justify your choice.
$4 \mathcal{8}$ An element of G is represented with $\|p\|$ bits, where $\|p\|$ stands for the bitsize of q as an element of $\mathbb{Z} / p \mathbb{Z}$ is represented with $\|p\|=\|q-1\|-1$ bits, and since q is odd, $\|p\|=\|q\|-1$. Thus, the compression factor of this function $(\mathbb{Z} / p \mathbb{Z})^{k} \rightarrow G$ is $k\|p\| /\|p\|=k$.
Now, we choose k which minimizes the ratio "computation cost / compression factor" (we want the hashing to be as fast as possible and to compress as much as possible). The computation cost, in this specific context, is of $k\|p\|$ multiplications in G. Then the ratio is $\|q\|$ which is constant: any k is good.
3. Assume for this question that $k=2$. Show that Pedersen's hash function is collision-resistant, under the assumption that the Discrete Logarithm Problem (DLP) is hard for G.

[^0]1. Run \mathcal{A} on (G, p, g, h) and obtain $M=\left(M_{1}, M_{2}\right)$ and $M^{\prime}=\left(M_{1}^{\prime}, M_{2}^{\prime}\right)$.
2. If $M \neq M^{\prime}$ and $H(M)=H\left(M^{\prime}\right)$ (collision):
(a) If $h=1$ then return 0 .
(b) Otherwise, return $\left(M_{1}-M_{1}^{\prime}\right)\left(M_{2}^{\prime}-M_{2}\right)^{-1} \bmod p$.
3. Otherwise, fail

By construction, the input (G, p, g, h) is distributed exactly as in the collision experiment for \mathcal{A}, so that the probability of having a collision (satisfying the assertion of the first if statement) is $\varepsilon(n)$. Then, if $\left(M, M^{\prime}\right)$ is indeed a collision, we show that \mathcal{A}^{\prime} solves the DLP, that is, returns $\log _{g}(h)$. This is obvious if $h=1$, since then \mathcal{A}^{\prime} returns 0 .

Now, if $h \neq 1$, we have $g^{M_{1}} h^{M_{2}}=g^{M_{1}^{\prime}} h^{M_{2}^{\prime}}$ with necessarily $M_{2} \neq M_{2}^{\prime}$ (otherwise, $g^{M_{1}}=g^{M_{1}^{\prime}}$ and since g generates the group we would have $M=M^{\prime}$), and therefore $M_{2}-M_{2}^{\prime}$ is invertible modulo the prime number p. Thus, writing $x=\log _{g}(h)$, we obtain $g^{M_{1}+x M_{2}}=g^{M_{1}^{\prime}+x M_{2}^{\prime}}$, so that $x=\left(M_{1}-M_{1}^{\prime}\right)\left(M_{2}^{\prime}-M_{2}\right)^{-1}($ in $\mathbb{Z} / p \mathbb{Z})$.
4. Same question as the previous one, with $k \geq 2$ arbitrary.

䟚 Let \mathcal{A} be a PPT algorithm which finds a collision for H with probability $\varepsilon(n)$. We will use \mathcal{A} to solve the DLP. More precisely, we show that the following PPT algorithm \mathcal{A}^{\prime} solves the DLP with good probability of success (close to $\varepsilon(n)$).
Algorithm \mathcal{A}^{\prime} :
Input: G, p, g, h.
Output: $x \in \mathbb{Z} / p \mathbb{Z}$.

1. Choose uniformly $\alpha_{2}, \beta_{2}, \ldots, \alpha_{k}, \beta_{k}$ in $\mathbb{Z} / p \mathbb{Z}$, set $\alpha_{1}=1, \beta_{1}=0$ and set $g_{i}=g^{\alpha_{i}} h^{\beta_{i}}$ for all $i \in\{1, \ldots, k\}$.
2. Run \mathcal{A} on $\left(G, p, g_{1}, \ldots, g_{k}\right)$ and obtain $M=\left(M_{1}, \ldots, M_{k}\right)$ and $M^{\prime}=\left(M_{1}^{\prime}, \ldots, M_{k}^{\prime}\right)$.
3. If $M \neq M^{\prime}$ and $H(M)=H\left(M^{\prime}\right)$ (collision):
(a) If $\sum_{i} \beta_{i}\left(M_{i}^{\prime}-M_{i}\right) \neq 0$, return $\sum_{i} \alpha_{i}\left(M_{i}-M_{i}^{\prime}\right)\left(\sum_{i} \beta_{i}\left(M_{i}^{\prime}-M_{i}\right)\right)^{-1} \bmod p$.
(b) Otherwise, fail
4. Otherwise, fail

By construction, the input ($G, p, g_{1}, \ldots, g_{k}$) is distributed exactly as in the collision experiment for \mathcal{A} Thus the probability of having a collision is $\varepsilon(n)$. Then, if $\left(M, M^{\prime}\right)$ is indeed a collision, we show that \mathcal{A}^{\prime} returns $\log _{g}(h)$ with probability close to 1 .

Writing $x=\log _{g}(h)$, we have $g^{\sum_{i} \alpha_{i} M_{i}+x \beta_{i} M_{i}}=g^{\sum_{i} \alpha_{i} M_{i}^{\prime}+x \beta_{i} M_{i}^{\prime}}$. Thus, $\sum_{i} \alpha_{i}\left(M_{i}-M_{i}^{\prime}\right)=x\left(\sum_{i} \beta_{i}\left(M_{i}^{\prime}-M_{i}\right)\right)$. Moreover, if $M \neq M^{\prime}$, there exists an index i such that $M_{i}^{\prime}-M_{i} \neq 0 \bmod p$. Since β_{i} is uniform over $\mathbb{Z} / p \mathbb{Z}$, it holds that $\sum_{i} \beta_{i}\left(M_{i}^{\prime}-M_{i}\right)$ is also uniformly distributed and thus invertible with probability $\frac{p-1}{p}$. This holds because the distribution of the g_{i} is independent from β_{i} for $i \geq 2$. Indeed,

$$
\begin{aligned}
\operatorname{Pr}\left(\beta_{i}=k \cap \alpha_{i}+x \cdot \beta_{i}=\ell\right) & =\sum_{m \in \mathbb{Z} / p \mathbb{Z}} \operatorname{Pr}(x=m) \cdot \operatorname{Pr}\left(\beta_{i}=k \cap \alpha_{i}=\ell-m k\right) \\
& =\sum_{m \in \mathbb{Z} / p \mathbb{Z}} \operatorname{Pr}(x=m) \cdot \operatorname{Pr}\left(\beta_{i}=k\right) \cdot 1 / p \\
& =\operatorname{Pr}\left(\beta_{i}=k\right) \cdot \operatorname{Pr}\left(\alpha_{i}+x \beta_{i}=\ell\right)
\end{aligned}
$$

as $\alpha_{i}+x \beta_{i}$ is uniformly distributed over $\mathbb{Z} / p \mathbb{Z}$, because α_{i} is independent from x and β_{i}.
Assuming that $\sum_{i} \beta_{i}\left(M_{1}^{\prime}-M_{i}\right)$ is invertible, then we directly obtain that \mathcal{A}^{\prime} indeed returns $x=\sum_{i} \alpha_{i}\left(M_{i}-M_{i}^{\prime}\right)\left(\sum_{i} \beta_{i}\left(M_{i}^{\prime}-M_{i}\right)\right)^{-1}$.

[^0]: 哦 Let \mathcal{A} be a PPT algorithm which finds a collision for H with probability $\varepsilon(n)$. We will use \mathcal{A} to solve the DLP. More precisely, we show that the following PPT algorithm \mathcal{A}^{\prime} solves the DLP with probability of success $\varepsilon(n)$.
 Algorithm \mathcal{A}^{\prime} :
 Input: G, p, g, h.
 Output: $x \in \mathbb{Z} / p \mathbb{Z}$.

