
M1 – Cryptography and Security (2023/2024) A. Passelègue and A. Herlédan Le Merdy

TD 7: Collision-Resistant Hash Functions (corrected version)

Exercise 1.
Suppose h1 : {0, 1}2n → {0, 1}n is a collision-resistant hash function.

1. Define h2 : {0, 1}4n → {0, 1}n as follows: Write x = x1∥x2 with x1, x2 ∈ {0, 1}2n; return the
value h2(x) = h1(h1(x1)∥h1(x2)). Prove that h2 is collision-resistant.
☞ Let x ̸= x′ be a collision for h2. Let us write x = x1||x2 and x′ = x′1||x′2.

• If h1(x1)||h1(x2) ̸= h1(x′1)||h1(x′2), then this is a collision for h1, as they both have the same image by h1.
• Otherwise, notice there is a b ∈ {1, 2} such that xb ̸= x′b (since x ̸= x′). Moreover h1(xb) = h1(x′b). Then (xb , x′b) is a collision

for h1.

In the end, if we can find a collision for h2 then we can find a collision for h1 in polynomial time (we have four hashes to compute and

two equalities to check). Then if h1 is collision-resistant, so is h2.

2. For i ≥ 2, define hi : {0, 1}2in → {0, 1}n as follows: Write x = x1∥x2 with x1, x2 ∈ {0, 1}2i−1n;
return hi(x) = h1(hi−1(x1)∥hi−1(x2)). Prove that hi is collision-resistant.
☞ First method: define the following induction hypothesis (Hi): “If we can find a collision for hi in polynomial time then we can
find a collision for h1 in polynomial time”.

This already holds for i = 2. Let i ≥ 2 and assume that (Hi) is true.

Then the reduction procedes as follows: assume that we can find a collision x ̸= x′ for hi+1 in polynomial time.

Let x = x1||x2 and x′ = x′1||x′2. Then, by definition of hi+1, either hi(x1)||hi(x2) ̸= hi(x′1)||hi(x′2) and we have a collision for h1 by
computing only four hashes, or it is equal. If it is, take any b ∈ {1, 2} such that xb ̸= x′b: we have found a collision for hi and can use
the induction hypothesis to conclude and find a collision for h1 in polynomial time.

Then under the collision-resistance (and assumption that i is such that hi can still be computed in polynomial time) of h1, it holds
that hi is collision-resistant.

Second method: Given an adversary Ai+1 that finds a collision for hi+1 with advantage ε non-negligible and assuming that h1 and hi
are collision-resistant, we build two adversaries:

• First, A1 is an adversary against the collision-resistance of h1 that on input x ̸= x′ from Ai+1 such that hi+1(x) = hi+1(x′)
returns (hi(x1)||hi(x2), hi(x′1)||hi(x′2)) if these two values are different. Otherwise it outputs FAIL.

• Second, Ai is an adversary against the collision-resistance of hi that on input x ̸= x′ from Ai+1 such that hi+1(x) = hi+1(x′)
returns xb , x′b if there eixsts a b ∈ {1, 2} such that xb ̸= x′b and hi(x1)||hi(x2) = hi(x′1)||hi(x′2). Otherwise it returns FAIL

Notice that
Pr(Ai+1 wins) = Pr(Ai wins) + Pr(A1 wins).

Since this corresponds to the advantages of the adversaries, it holds that the right hand side is negligible, under the security of h1

and hi, but the left hand side is non-negligible, which is a contradiction: hi+1 is collision-resistant.

Exercise 2.

1. In the Merkle-Damgård transform, the message is split into consecutive blocks, and we add as a
last block the binary representation of the length of this message. Suppose that we do not add
this block: does this transform still lead to a collision-resistant hash function?
☞ No. Take for instance x of length Bℓ(n)− 1 for some B ≥ 2, and y = x∥0. In the transform, we start by padding x with one zero

so that its length is a multiple of ℓ(n): we obtain y. In the rest of the process, the only thing that differs between x and y is that their

“length blocks” are not the same; without this length block, x and y form a collision.

2. Before HMAC was invented, it was quite common to define a MAC by Mack(m) = Hs(k ∥ m)
where H is a collision-resistant hash function. Show that this is not a secure MAC when H is
constructed via the Merkle-Damgård transform.
☞ The goal is to construct (m, t) with Verifyk(m, t) = 1, having oracle access to Mack but without querying Mack(m) itself.

With Merkle-Damgård, the function Hs divides the message k ∥ m in p blocks x1, . . . , xp of size ℓ (padding the last block xp with a
Padding Block PB so that xp ∥ PB has size ℓ) and then adding a new block xp+1 of length ℓ depending on the bit length of k ∥ m.
Then the Merkle-Damgård construction uses a (fixed-length) collision-resistant hash function h to compute its output as follows:

Hs(k ∥ m) = hs(xp+1, hs(xp ∥ PB, hs(xp−1, hs(. . . , hs(x1, IV))))).

Given Hs(k ∥ m), anyone can compute Hs(k ∥ m ∥ PB ∥ xp+1 ∥ ω) for any ω; for instance, if ω is of size ℓ, using hs(x′p+2, hs(ω, Hs(k ∥ m)))

where x′p+2 only depends on the length of k ∥ m ∥ PB ∥ xp+1 ∥ ω and can be publicly computed.

1

Exercise 3.
Let m ≥ n ≥ 2, q ≥ 2 and B > 0 such that mB ≤ q/4, with q prime. Recall that the LWEm,n,q,B
hardness assumption states that the distribution (A, As + e), where A ←↩ U(Zm×n

q), s ←↩ U(Zn
q)

and e←↩ U((−B, B]m) is computationally indistinguishable from U(Zm×n
q ×Zm

q). Define the following
hash function:

HA :{0, 1}m → Zn
q

x 7→ x⊤ ·A mod q

1. (a) Recall the definition of the compression factor, and compute it for H.
☞ The compression factor is the ratio of the bitsize of the input over the bitsize of the output. Here, the compression factor

is m
n log2 q .

(b) Show how to break the LWEm,n,q,B assumption given a vector x ∈ {−1, 0, 1}m such that x⊤A =
0 mod q and x ̸= 0.
☞ Let u←↩ U(Zm

q). Then x⊤u mod q is uniform over Z, because q is prime and the coefficients of u are independently sampled.

However, x⊤(As + e) = x⊤e mod q, and this has absolute value ≤ m · B ≤ q/4 (we take representatives in (−q/2, q/2]).

It is then possible to distinguish between these two distributions with advantage 1/2.

(c) Conclude on the collision-resistance of H.
☞ Assume that an adversary A can find collisions in polynomial time with non-negligible probability.
We build a distinguisher B that does the following: on input (A, b), it sends A to A. If A fails, it returns a random bit. When it
finds a collision (x, x′), adversary B computes (x− x′)⊤b and returns LWE if it has absolute value ≤ q/4, otherwise it returns UNIF.

Then the advantage of B is Adv(A)/2, which is non-negligible.

Exercise 4.
Pedersen’s hash function is as follows:

• Given a security parameter n, algorithm Gen samples (G, g, p) where G = ⟨g⟩ is a cyclic group
of known prime order p. It then sets g1 = g and samples gi uniformly in G for all i ∈ {2, . . . , k},
where k ≥ 2 is some parameter. Finally, it returns (G, p, g1, . . . , gk).

• The hash of any message M = (M1, . . . , Mk) ∈ (Z/pZ)k is H(M) = ∏k
i=1 gMi

i ∈ G.

1. Bound the cost of hashing, in terms of k and the number of multiplications in G.

☞ Here is a simple algorithm (the algorithm could be more adaptive and, before exponentiation, group together Mi’s that are close to

each other. . . we really don’t care about that here!). First, use fast exponentiation to compute the powers of gi, and then multiplies

them together. This is done in, roughly, O(k log(p)) multiplications in the group G (more precisely, ⌈log2(M1)⌉+ · · ·+ ⌈log2(Mk)⌉+
k− 1).

2. Assume for this question that G is a subgroup of prime order p of (Z/qZ)×, where q = 2p + 1 is
prime. What is the compression factor in terms of k and q? Which k would you choose? Justify
your choice.
☞ An element of G is represented with ∥p∥ bits, where ∥p∥ stands for the bitsize of q as an element of Z/pZ is represented with
∥p∥ = ∥q− 1∥− 1 bits, and since q is odd, ∥p∥ = ∥q∥− 1. Thus, the compression factor of this function (Z/pZ)k → G is k∥p∥/∥p∥ = k.

Now, we choose k which minimizes the ratio “computation cost / compression factor” (we want the hashing to be as fast as possible
and to compress as much as possible). The computation cost, in this specific context, is of k∥p∥ multiplications in G. Then the ratio
is ∥q∥ which is constant: any k is good.

3. Assume for this question that k = 2. Show that Pedersen’s hash function is collision-resistant,
under the assumption that the Discrete Logarithm Problem (DLP) is hard for G.
☞ Let A be a PPT algorithm which finds a collision for H with probability ε(n). We will use A to solve the DLP. More precisely, we
show that the following PPT algorithm A′ solves the DLP with probability of success ε(n).

Algorithm A′:
Input: G, p, g, h.
Output: x ∈ Z/pZ.

2

1. Run A on (G, p, g, h) and obtain M = (M1, M2) and M′ = (M′1, M′2).

2. If M ̸= M′ and H(M) = H(M′) (collision):

(a) If h = 1 then return 0.
(b) Otherwise, return (M1 −M′1)(M′2 −M2)−1 mod p.

3. Otherwise, fail

By construction, the input (G, p, g, h) is distributed exactly as in the collision experiment for A, so that the probability of having a
collision (satisfying the assertion of the first if statement) is ε(n). Then, if (M, M′) is indeed a collision, we show that A′ solves the
DLP, that is, returns logg(h). This is obvious if h = 1, since then A′ returns 0.

Now, if h ̸= 1, we have gM1 hM2 = gM′1 hM′2 with necessarily M2 ̸= M′2 (otherwise, gM1 = gM′1 and since g generates the group
we would have M = M′), and therefore M2 − M′2 is invertible modulo the prime number p. Thus, writing x = logg(h), we obtain

gM1+xM2 = gM′1+xM′2 , so that x = (M1 −M′1)(M′2 −M2)−1 (in Z/pZ).

4. Same question as the previous one, with k ≥ 2 arbitrary.
☞ Let A be a PPT algorithm which finds a collision for H with probability ε(n). We will use A to solve the DLP. More precisely, we
show that the following PPT algorithm A′ solves the DLP with good probability of success (close to ε(n)).

Algorithm A′:
Input: G, p, g, h.
Output: x ∈ Z/pZ.

1. Choose uniformly α2, β2, . . . , αk , βk in Z/pZ, set α1 = 1, β1 = 0 and set gi = gαi hβi for all i ∈ {1, . . . , k}.
2. Run A on (G, p, g1, . . . , gk) and obtain M = (M1, . . . , Mk) and M′ = (M′1, . . . , M′k).

3. If M ̸= M′ and H(M) = H(M′) (collision):

(a) If ∑i βi(M′i −Mi) ̸= 0, return ∑i αi(Mi −M′i) (∑i βi(M′i −Mi))
−1 mod p.

(b) Otherwise, fail

4. Otherwise, fail

By construction, the input (G, p, g1, . . . , gk) is distributed exactly as in the collision experiment for A Thus the probability of having a
collision is ε(n). Then, if (M, M′) is indeed a collision, we show that A′ returns logg(h) with probability close to 1.

Writing x = logg(h), we have g∑i αi Mi+xβi Mi = g∑i αi M′i+xβi M′i . Thus, ∑i αi(Mi −M′i) = x (∑i βi(M′i −Mi)). Moreover, if M ̸= M′, there
exists an index i such that M′i −Mi ̸= 0 mod p. Since βi is uniform over Z/pZ, it holds that ∑i βi(M′i −Mi) is also uniformly distributed
and thus invertible with probability p−1

p . This holds because the distribution of the gi is independent from βi for i ≥ 2. Indeed,

Pr(βi = k ∩ αi + x · βi = ℓ) = ∑
m∈Z/pZ

Pr(x = m) · Pr(βi = k ∩ αi = ℓ−mk)

= ∑
m∈Z/pZ

Pr(x = m) · Pr(βi = k) · 1/p

= Pr(βi = k) · Pr(αi + xβi = ℓ),

as αi + xβi is uniformly distributed over Z/pZ, because αi is independent from x and βi.

Assuming that ∑i βi(M′1 −Mi) is invertible, then we directly obtain that A′ indeed returns x = ∑i αi(Mi −M′i) (∑i βi(M′i −Mi))
−1.

3

	1.
	2.
	3.
	4.

