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TD 9: IND-CCA Security (corrected version)

Exercise 1.
Recall the (Lyubashevsky-Palacio-Segev) LWE-based encryption scheme from the lecture.

• KeyGen(1λ): Let m, n, q, B be integers such that m ≥ n and q > 12mB2. Sample A←↩ U(Zm×n
q ), s←↩

U((−B, B]n) and e←↩ U((−B, B]m). Return

pk := (A, b = As + e) and sk := s.

• Enc(pk, µ ∈ {0, 1}): Sample (t, f, g)←↩ U((−B, B]m × (−B, B]n × (−B, B]) and output

(c1, c2) = (t⊤A + f⊤, t⊤b + g + ⌊ q
2
⌋µ).

• Dec(sk, c1, c2): take the representative of µ′ = c2 − c1 · sk in (−q/2, q/2] and return 0 if it has
norm < q/4, 1 otherwise.

1. Prove correctness and IND-CPA security of this scheme.

☞

2. Show that this scheme is not IND-CCA2 secure.
☞ Let A be the adversary, that, given an encryption (c1, c2) of either 0 or 1, queries the decryption oracle for (c1, c2 + 1 mod q) and
returns its output. Let µ̄ denote the representative in (−q/2, q/2] of c2 − c1 · sk. It fails if and only if |µ̄| = ⌊q/4⌋ − 1 (it returns 1
when the message is 0) or µ̄ = ⌊q/2⌋ − 1 (it returns 0 when the message is 1). In terms of advantage, it holds:

|1− Pr(µ̄ = ⌊q/4⌋ − 1|m = 0)− Pr(µ̄ = ⌊q/2⌋ − 1|m = 1)| = Adv(A).

The left hand side is non-negligible. Indeed, recall that c2 − c1 · sk = t⊤ · e + g− f⊤s + ⌊ q
2 ⌋ ·m, where m = 0 or 1. The probability of

getting µ̄ = ⌊q/4⌋ − 1 or ⌊q/2⌋ − 1 is not close to 1.

Exercise 2.
Let Π0 = (Keygen0,Encrypt0,Decrypt0) be an IND-CCA2-secure public-key encryption scheme which
only encrypts single bits (i.e., the message space is {0, 1}). We consider the following multi-bit en-
cryption scheme Π1 = (Keygen1,Encrypt1,Decrypt1) , where the message space is {0, 1}L for some L
polynomial in the security parameter λ.

Keygen1(1λ): Generate a key pair (PK, SK)← Π0.Keygen0(1λ). Output (PK, SK).

Encrypt1(PK, M): In order to encrypt M = M[1] . . . M[L] ∈ {0, 1}L, do the following.

1. For i = 1 to L, compute C[i]← Π0.Encrypt0(PK, M[i]).

2. Output C = (C[1], . . . , C[L]).

Decrypt1(SK, C) Parse the ciphertext C as C = (C[1], . . . , C[L]). Then, for each i ∈ {1, . . . , L}, com-
pute M[i] = Π0.Decrypt0(SK, C[i]). If there exists i ∈ {1, . . . , L} such that M[i] =⊥, output ⊥.
Otherwise, output M = M[1] . . . M[L] ∈ {0, 1}L.

1. Show that Π1 does not provide IND-CCA2 security, even if Π0 is secure in the IND-CCA2 sense.

☞ Assume L = 2. Let M0 = 01 and M1 = 10. Given the challenge C = (C0, C1), query (C0, C0) and (C1, C1), which are both different

from C by perfect correctness, to the decryption oracle. Then deduce the value of b such that Mb was encrypted. if L > 2, then pad

the messages with 0’s.
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Let Π = (Keygen,Encrypt,Decrypt) be an IND-CCA2-secure public-key encryption scheme with mes-
sage space {0, 1}L for some L ∈ N. We consider the modified public-key encryption scheme Π′ =
(Keygen′,Encrypt′,Decrypt′) where the message space is {0, 1}L−1 and which works as follows.

Keygen’(1λ): Generate two key pairs (PK0, SK0)← Keygen(1λ), (PK1, SK1)← Keygen(1λ).

Define PK := (PK0, PK1), SK := (SK0, SK1).

Encrypt’(PK, M): In order to encrypt M ∈ {0, 1}L−1, do the following.

1. Choose a random string R ← U({0, 1}L−1) and define ML = M ⊕ R ∈ {0, 1}L−1 and
MR = R.

2. Compute CL ← Π.Encrypt(PK0, 0||ML) and C1 ← Π.Encrypt(PK1, 1||MR).

Output C = (CL, CR).

Decrypt’(SK, C) Parse C as (CL, CR). Then, compute M̃L = Π.Decrypt(SK0, CL) and M̃R = Π.Decrypt(SK1, CR).
If M̃L =⊥ or M̃R =⊥, output ⊥. If the first bit of ML (resp. MR) is not 0 (resp. 1), return ⊥.
Otherwise, parse M̃L as 0||ML and M̃R as 1||MR, respectively, where ML, MR ∈ {0, 1}L−1, and
output M = ML ⊕MR ∈ {0, 1}L−1.

2. Show that the modified scheme Π′ does not provide IND-CCA2 security, even if the underlying
scheme Π does.

☞ If C0, C1 is the challenge reply for any messages M0 ̸= M1 we have chosen, then create C′1 = Enc(pk1, 1∥0L−1) and query Dec(C0, C′1).

This gives Mb ⊕ R. Similarly, create C′0 = Enc(pk0, 0∥0L−1) and query Dec(C′0, C1). This gives R. Mb is Mb ⊕ R⊕ R.

3. Show that, if Π provides IND-CCA1 security, so does the modified scheme Π′. Namely, show
that an IND-CCA1 adversary against Π′ implies an IND-CCA1 adversary againt Π.
☞
Let us build a reduction B from an adversary A against the IND-CCA1 security of Π′. The reduction B is an adversary against the
IND-CCA1 security of Π. On input a public key pk, it samples pk1, sk1 ← Gen(1λ) and sends pk, pk1 to A. Whenever A makes a
decryption query c = (CL , CR), the reduction B sends CL to its decryption oracle, and it decrypts CR using the secret key sk1. Given
these two decryptions, it can complete the decryption and it returns the message to A. Given a challenge M0, M1, the reduction B
samples R uniformly and sends 0||(M0 ⊕ R), 0||(M1 ⊕ R) as its own challenge and gets C⋆

L. Using pk1, the reduction then encrypts 1||R,
gets C⋆

R and returns the couple (C⋆
L , C⋆

R) to A. Note that this couple is a valid encryption of Mb, generated (in A’s view) following the
encryption algorithm of Π′. When the adversary outputs a bit, the reduction outputs the same.

It holds then that the advantage of the reduction is the same as the one of the adversary. This proves that if Π is IND-CCA1 secure,
then so is Π′.

We have in particular proven that the existence of IND-CCA2 secure schemes implies the existences of IND-CCA1 secure schemes that
are not IND-CCA2.
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