TD 9: IND-CCA Security (corrected version)

Exercise 1.

Recall the (Lyubashevsky-Palacio-Segev) LWE-based encryption scheme from the lecture.

• KeyGen (1^{λ}) : Let m, n, q, B be integers such that $m \ge n$ and $q > 12mB^2$. Sample $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$, $\mathbf{s} \leftarrow U((-B, B]^n)$ and $\mathbf{e} \leftarrow U((-B, B]^m)$. Return

$$pk := (A, b = As + e)$$
 and $sk := s$.

• Enc(pk, $\mu \in \{0,1\}$): Sample (**t**, **f**, *g*) $\leftarrow U((-B, B]^m \times (-B, B]^n \times (-B, B])$ and output

$$(c_1, c_2) = (\mathbf{t}^\top \mathbf{A} + \mathbf{f}^\top, \mathbf{t}^\top \mathbf{b} + g + \lfloor \frac{q}{2} \rfloor \mu).$$

- Dec(sk, c_1, c_2): take the representative of $\mu' = c_2 c_1 \cdot \text{sk}$ in (-q/2, q/2] and return 0 if it has norm < q/4, 1 otherwise.
- **1.** Prove correctness and IND-CPA security of this scheme.
- Show that this scheme is not IND-CCA2 secure.
 If Let A be the adversary, that, given an encryption (c₁, c₂) of either 0 or 1, queries the decryption oracle for (c₁, c₂ + 1 mod q) and returns its output. Let µ denote the representative in (-q/2, q/2] of c₂ c₁ ⋅ sk. It fails if and only if |µ| = [q/4] 1 (it returns 1 when the message is 0) or µ = [q/2] 1 (it returns 0 when the message is 1). In terms of advantage, it holds:

$$|1 - \Pr(\bar{\mu} = |q/4| - 1|m = 0) - \Pr(\bar{\mu} = |q/2| - 1|m = 1)| = \mathsf{Adv}(\mathcal{A}).$$

The left hand side is non-negligible. Indeed, recall that $c_2 - c_1 \cdot s\mathbf{k} = \mathbf{t}^\top \cdot \mathbf{e} + g - \mathbf{f}^\top \mathbf{s} + \lfloor \frac{q}{2} \rfloor \cdot m$, where m = 0 or 1. The probability of getting $\bar{\mu} = \lfloor q/4 \rfloor - 1$ or $\lfloor q/2 \rfloor - 1$ is not close to 1.

Exercise 2.

Let $\Pi_0 = (\text{Keygen}_0, \text{Encrypt}_0, \text{Decrypt}_0)$ be an IND-CCA2-secure public-key encryption scheme which only encrypts single bits (i.e., the message space is $\{0,1\}$). We consider the following multi-bit encryption scheme $\Pi_1 = (\text{Keygen}_1, \text{Encrypt}_1, \text{Decrypt}_1)$, where the message space is $\{0,1\}^L$ for some Lpolynomial in the security parameter λ .

Keygen₁(1^{λ}): Generate a key pair (*PK*, *SK*) $\leftarrow \Pi_0$.Keygen₀(1^{λ}). Output (*PK*, *SK*).

Encrypt₁(*PK*, *M*): In order to encrypt $M = M[1] \dots M[L] \in \{0, 1\}^L$, do the following.

- 1. For i = 1 to L, compute $C[i] \leftarrow \Pi_0.\mathsf{Encrypt}_0(PK, M[i])$.
- 2. Output C = (C[1], ..., C[L]).
- **Decrypt**₁(*SK*, *C*) Parse the ciphertext *C* as C = (C[1], ..., C[L]). Then, for each $i \in \{1, ..., L\}$, compute $M[i] = \Pi_0$.Decrypt₀(*SK*, *C*[*i*]). If there exists $i \in \{1, ..., L\}$ such that $M[i] = \bot$, output \bot . Otherwise, output $M = M[1] ... M[L] \in \{0, 1\}^L$.
 - Show that Π₁ does not provide IND-CCA2 security, even if Π₀ is secure in the IND-CCA2 sense.
 Assume L = 2. Let M₀ = 01 and M₁ = 10. Given the challenge C = (C₀, C₁), query (C₀, C₀) and (C₁, C₁), which are both different from C by perfect correctness, to the decryption oracle. Then deduce the value of b such that M_b was encrypted. if L > 2, then pad the messages with 0's.

Let $\Pi = (\text{Keygen}, \text{Encrypt}, \text{Decrypt})$ be an IND-CCA2-secure public-key encryption scheme with message space $\{0,1\}^L$ for some $L \in \mathbb{N}$. We consider the modified public-key encryption scheme $\Pi' = (\text{Keygen'}, \text{Encrypt'}, \text{Decrypt'})$ where the message space is $\{0,1\}^{L-1}$ and which works as follows.

Keygen' (1^{λ}) : Generate two key pairs $(PK_0, SK_0) \leftarrow \text{Keygen}(1^{\lambda}), (PK_1, SK_1) \leftarrow \text{Keygen}(1^{\lambda}).$ Define $PK := (PK_0, PK_1), SK := (SK_0, SK_1).$

Encrypt'(*PK*, *M*): In order to encrypt $M \in \{0, 1\}^{L-1}$, do the following.

- 1. Choose a random string $R \leftarrow U(\{0,1\}^{L-1})$ and define $M_L = M \oplus R \in \{0,1\}^{L-1}$ and $M_R = R$.
- 2. Compute $C_L \leftarrow \Pi$.Encrypt $(PK_0, 0||M_L)$ and $C_1 \leftarrow \Pi$.Encrypt $(PK_1, 1||M_R)$.

Output $C = (C_L, C_R)$.

- **Decrypt**'(*SK*, *C*) Parse *C* as (C_L , C_R). Then, compute $\tilde{M}_L = \Pi$.Decrypt(*SK*₀, C_L) and $\tilde{M}_R = \Pi$.Decrypt(*SK*₁, C_R). If $\tilde{M}_L = \bot$ or $\tilde{M}_R = \bot$, output \bot . If the first bit of M_L (resp. M_R) is not 0 (resp. 1), return \bot . Otherwise, parse \tilde{M}_L as $0||M_L$ and \tilde{M}_R as $1||M_R$, respectively, where M_L , $M_R \in \{0,1\}^{L-1}$, and output $M = M_L \oplus M_R \in \{0,1\}^{L-1}$.
 - 2. Show that the modified scheme Π' does not provide IND-CCA2 security, even if the underlying scheme Π does.

If C_0, C_1 is the challenge reply for any messages $M_0 \neq M_1$ we have chosen, then create $C'_1 = Enc(pk_1, 1 \| 0^{L-1})$ and query $Dec(C_0, C'_1)$. This gives $M_b \oplus R$. Similarly, create $C'_0 = Enc(pk_0, 0 \| 0^{L-1})$ and query $Dec(C'_0, C_1)$. This gives R. M_b is $M_b \oplus R \oplus R$.

3. Show that, if Π provides IND-CCA1 security, so does the modified scheme Π'. Namely, show that an IND-CCA1 adversary against Π' implies an IND-CCA1 adversary againt Π.

Let us build a reduction \mathcal{B} from an adversary \mathcal{A} against the IND-CCA1 security of Π' . The reduction \mathcal{B} is an adversary against the IND-CCA1 security of Π . On input a public key pk, it samples $pk_1, sk_1 \leftarrow Gen(1^{\lambda})$ and sends pk, pk_1 to \mathcal{A} . Whenever \mathcal{A} makes a decryption query $c = (C_L, C_R)$, the reduction \mathcal{B} sends C_L to its decryption oracle, and it decrypts C_R using the secret key sk_1 . Given these two decryptions, it can complete the decryption and it returns the message to \mathcal{A} . Given a challenge M_0, M_1 , the reduction \mathcal{B} samples R uniformly and sends $0||(M_0 \oplus R), 0||(M_1 \oplus R)$ as its own challenge and gets C_L^* . Using pk_1 , the reduction then encrypts 1||R, gets C_R^* and returns the couple (C_L^*, C_R^*) to \mathcal{A} . Note that this couple is a valid encryption of M_b , generated (in \mathcal{A} 's view) following the encryption algorithm of Π' . When the adversary outputs a bit, the reduction outputs the same.

It holds then that the advantage of the reduction is the same as the one of the adversary. This proves that if Π is IND-CCA1 secure, then so is Π' .

We have in particular proven that the existence of IND-CCA2 secure schemes implies the existences of IND-CCA1 secure schemes that are not IND-CCA2.