HW1: Symetric Cryptography

This homework is due before Wednesday, March 6th at 8am. You can either hand your copy before class or submit it by email at: alain.passelegue@ens-lyon.fr;arthur.herledan_le_merdy@ens-lyon.fr Late submissions will receive a 2-point penalty for each day after the due date.

1 From a 1-bit stretch PRG to a full PRF

Let $G: \{0,1\}^k \to \{0,1\}^{k+1}$ be a secure pseudo-random generator.

- **1.** Let $\ell < k + 1$ and define $G_{\ell} : \{0,1\}^k \to \{0,1\}^{\ell}$ such that $G_{\ell}(x) = [G(x)]_{1...\ell}$, where this denotes the first ℓ bits of G(x). Prove that G_{ℓ} satisfies the security notion of a PRG (pseudorandomness). Is G_{ℓ} a PRG?
- **2.** Consider $G^{(1)} : \{0,1\}^k \to \{0,1\}^{k+2}$ defined as follows. On input $x \in \{0,1\}^k$, algorithm $G^{(1)}$ first evaluates G(x) and obtains $(x^{(1)}, y^{(1)}) \in \{0,1\}^k \times \{0,1\}$ such that $G(x) = x^{(1)} \parallel y^{(1)}$. It then evaluates G on $x^{(1)}$ and eventually returns $G(x^{(1)}) \parallel y^{(1)}$. Show that if G is a secure PRG, then so is $G^{(1)}$.
- **3. (a)** Let $n \ge 1$. Propose a construction of a PRG $G^{(n)} : \{0,1\}^k \to \{0,1\}^{k+n+1}$ based on *G*. Show that if *G* is a secure PRG, then so is $G^{(n)}$.

(b) Evaluate the cost of your construction.

As a result, we just showed that you can construct a length-doubling PRG from a PRG with 1-bit stretch.

Let $G : \{0,1\}^s \to \{0,1\}^{2s}$ be a secure length-doubling PRG. The Goldreich-Goldwasser-Micali construction shows how to build a secure Pseudo-Random Function for any input size from *G*.

4. Let us denote $G(k) =: G_0(k) ||G_1(k)$ for any $k \in \{0,1\}^s$ where $G_0, G_1 : \{0,1\}^s \to \{0,1\}^s$. Define $F_0 : \{0,1\}^s \times \{0,1\} \to \{0,1\}^s$ such that:

$$\forall k \in \{0,1\}^s, \forall b \in \{0,1\}, F_0(k,b) := G_b(k).$$

Prove that F_0 is a secure PRF.

We now expand our construction to arbitrary input size *n*. Define the iterated PRF $F_n : \{0,1\}^s \times \{0,1\}^n \rightarrow \{0,1\}^s$ that does the following: on inputs *k* and $x = x_0x_1...x_{n-1}$, define $k_0 := k$ and compute recursively $k_i := G_{x_{i-1}}(k_{i-1})$ for i = 1 to *n*. Finally output k_n . *Remark:* This can be seen as going down a binary tree.

5. Before proving the security of F_n , we prove that the distribution $(G(k_1), G(k_2), \dots, G(k_Q))$, where $k_i \leftrightarrow U(\{0,1\}^s)$ is indistinguishable from $U(\{0,1\}^{2Qs})$ for any Q = poly(s), under the security of G.

We use the hybrid argument by defining the following hybrid distributions:

 $\forall i \in [0, Q], D_i := (G(k_1), \dots, G(k_i), U(\{0, 1\}^{2s(Q-i)}) \text{ where } k_i \leftarrow U(\{0, 1\}^s) \forall j \leq i.$

Notice that D_0 and D_Q correspond to the distributions defined previously.

Prove that D_0 and D_Q are indistinguishable under the security of *G*. Estimate the security loss. We move on to the proof that F_n is secure. 6. To do so, we use the hybrid argument by introducing the following hybrid experiments. Let us first define

$$F_{n,i}^{(K_i)}:(x_0,\ldots,x_{n-1})\mapsto G_{x_{n-1}}(\ldots(G_{x_i}(R_i(x_0,\ldots,x_{i-1}))))),$$

where $R_i : \{0, 1\}^i \to \{0, 1\}^s$ is a map.

- (a) Prove that $F_{n,0}^{(U(\{\varepsilon\}\to\{0,1\}^s))}(\cdot)$ is actually the distribution $F_n(U(\{0,1\}^s),\cdot)$.
- (b) Prove that $F_{n,n}^{(U(\{0,1\}^n \to \{0,1\}^s))}$ is actually the distribution $U(\{0,1\}^n \to \{0,1\}^s)$.
- (c) We define the hybrid experiment Exp_i for $i \in [1, n]$ as: the challenger flips a coin b and samples R uniformly over $\{0, 1\}^{i-b} \to \{0, 1\}^n$. The adversary is then given access to an oracle, which on query $x \in \{0, 1\}^n$ answers with $F_{n,i-b}^{(R)}(x)$. Eventually, the adversary outputs a guess b' and wins if and only if b = b'.

Prove that the PRF F_n is secure under the security of the PRG G and estimate the advantage loss.

2 On weak PRFs and the DDH problem

In the PRF security game, the adversary may adaptively make function evaluation queries: for i = 1, 2, ..., it sends x_i of its choice, and gets $F_k(x_i)$ (resp. $f(x_i)$) from the challenger, where F_k is the PRF (resp. f is the uniformly chosen function). A weak-PRF consists of the same algorithms as a PRF, but the queries are modified as follows: the adversary does not get to see $F_k(x_i)$ (resp. $f(x_i)$) for **an input** x_i **of its choice**, but instead every time the adversary requests a new pair, **the challenger samples a fresh uniform** x_i and sends $(x_i, F_k(x_i))$ (resp. $(x_i, f(x_i))$) to the adversary.

- 7. Give a formal definition of a weak-PRF, based on a security game.
- 8. Show that a PRF is a weak-PRF, by providing a security reduction.
- 9. Assuming that a weak-PRF exists, build a weak-PRF that is not a PRF.
- 10. What is the difference between a PRG and a weak-PRF?

Let G = (g) be a cyclic group of known prime order p. We recall that the DDH hardness assumption states that the distributions (g^a, g^b, g^{ab}) and (g^a, g^b, g^c) are computationally indistinguishable when a, b and c are independently and uniformly distributed in $\mathbb{Z}/p\mathbb{Z}$. Let $k \in \mathbb{Z}/p\mathbb{Z}$ a uniformly chosen key. We consider the function $F_k : h \in G \mapsto h^k \in G$.

- **11.** Let $Q \ge 1$. Consider the (randomized) map ϕ that takes $(g_1, g_2, g_3) \in G^3$ as input, samples $(x_i, y_i) \in (\mathbb{Z}/p\mathbb{Z})^2$ uniformly and independently for $i \le Q$ and returns $(g_1^{x_i}g^{y_i}, g_3^{x_i}g_2^{y_i})_{i \le Q}$.
 - Show that if (g₁, g₂, g₃) = (g^a, g^b, g^{ab}), then the output is distributed as (g^{r_i}, g^{br_i})_{i≤Q} for r_i's in ℤ/pℤ uniform and independent.
 - Show that if (g₁, g₂, g₃) = (g^a, g^b, g^c) for c ≠ ab, then the output is distributed as (g^{r_i}, g^{s_i})_{i≤Q} for (r_i, s_i)'s in (ℤ/pℤ)² uniform and independent.
- **12.** Show that F_k is a weak-PRF under the DDH hardness assumption. *Hint: set "k = b" and use the previous question to build the weak PRF challenger.*
- **13.** Is F_k a secure PRF? Justify your answer.

3 A CCA-secure symmetric encryption scheme

Consider the following construction of symmetric encryption, where $\Pi = (Gen, Mac, Verify)$ is a MAC.

Gen(1^{λ}): Choose a random key $K_1 \leftarrow \text{Gen}'(1^{\lambda})$ for an IND-CPA secure symmetric encryption scheme (Gen', Enc', Dec'). Choose a random key $K_0 \leftarrow \Pi$.Gen(1^{λ}) for the MAC Π . The secret key is $K = (K_0, K_1)$.

Enc(K, M): To encrypt M, do the following.

- 1. Compute $c = Enc'(K_1, M)$.
- 2. Compute $t = \Pi$.Mac (K_0, c) .

Return C = (t, c).

Dec(*K*, *C*): Return \perp if \prod . Verify(K_0, c, t) = 0. Otherwise, return $M = \text{Dec}'(K_1, c)$.

- 14. Assume that the MAC is weakly unforgeable. Assume however that there exists an algorithm \mathcal{F} , which on input a valid message for the MAC and a tag (M, t), outputs a forgery (M, t') such that $t \neq t'$. In particular, the MAC is not strongly unforgeable. Show that the scheme is not IND-CCA secure.
- **15.** We assume that: (i) (Gen', Enc', Dec') is IND-CPA-secure; (ii) Π is strongly unforgeable under chosen-message attacks. We will prove in this question the IND-CCA security of the new encryption scheme under these assumptions. Let A be an adversary against the IND-CCA security of the scheme.
 - (a) Define the event Valid as the event where A makes a valid (i.e. accepted by the MAC) decryption query for (*c*, *t*) where the ciphertext *c* was not encrypted by the encryption oracle nor is (*c*, *t*) the challenge ciphertext. Prove that if Pr(Valid) is non-negligible then there exists an adversary with non-negligible advantage against the strong unforgeability of the MAC. The intuition is that since this event has negligible probability, the decryption oracle is useless to an attacker A.
 - (b) Prove that if $|\Pr(A \text{ wins } \land \forall \text{alid}) 1/2|$ is non-negligible, then there exists an efficient adversary against the IND-CPA security of the encryption scheme (Gen', Enc', Dec').
 - (c) Conclude.