
M1 – Cryptography and Security (2023/2024) Arthur Herlédan Le Merdy and A. Passelègue

HW2: Public Key Cryptography

This homework is due before Monday, April 8th at 1pm.
You can either hand your copy before the exam or submit it by email at:
alain.passelegue@ens-lyon.fr;arthur.herledan_le_merdy@ens-lyon.fr
Late submissions will receive a 2-point penalty for each day after the due date.

Exercise 1.
Let H : {0, 1}2n 7→ {0, 1}n. We say that H is second-preimage resistant if for all efficient adversary A,
the probability that A succeeds in the following experiment is negligible. It is given x ← U({0, 1}2n)
and it has to find x′ ̸= x such that H(x′) = H(x).

1. Recall the definition of collision resistance. Show that collision resistance implies second-preimage
resistance.

2. Assume that there exists a second-preimage resistant H : {0, 1}2n 7→ {0, 1}n. Show that there
exists a second-preimage resistance H′ that is not collision-resistant.

Exercise 2.
Let N = pq with p and q primes of identical bit-size, and ϕ be the Euler function. We first want to
study the algebraic structure of (Z/N2Z)⋆.

1. Show the following propositions:

1. gcd(N, ϕ(N)) = 1.

2. For any a ∈ (Z/NZ), (1 + N)a = (1 + aN) mod N2.

3. (1 + N) has order N mod N2.

4. (Z/N2Z)⋆ is isomorphic to (Z/NZ)× (Z/NZ)⋆ with the following function f (a, b) = (1 +
N)a · bN mod N2.

2. We say that an element x of (Z/N2Z)⋆ is a residue if it can be written as an N-th power (that
is, x = yN mod N2 for some y ∈ (Z/N2Z)⋆). Show that the set of residues of (Z/N2Z)⋆ is
isomorphic to

{(a, b) ∈ (Z/NZ)× (Z/NZ)⋆ | a = 0}.
We define the Decisional Composite Residue problem (DCR) as follows: the goal of an adversary A is
to distinguish with non-negligible advantage between rN mod N2 and r mod N2, where r is sampled
uniformly in (Z/N2Z)⋆.

3. Show that if an adversary knows the factorisation of N, then he can solve the DCR problem.

We now define the Paillier’s Encryption scheme. The public key pk of the scheme is N = pq with
p and q prime, and the secret key sk is ϕ(N) and ϕ(N)−1 mod N. For a message m ∈ (Z/NZ), the
encryption algorithm picks r ∈ (Z/NZ)⋆ at random and returns:

Encpk(m) = (1 + N)m · rN mod N2.

4. Give a decryption function.

5. Show that if the DCR problem is hard, then Paillier’s encryption is IND-CPA secure.

6. Show that this scheme is additively homomorphic, i.e., that given the public key and the encryp-
tions of two messages m1 and m2, one can compute a valid ciphertext for m1 + m2. That is, given
ct1 = Encpk(m1) and ct2 = Encpk(m2), explain how to obtain ct1+2 such that Decsk(ct1+2) =
m1 + m2. Is it an interesting property?
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7. Show a similar property for the ElGamal encryption scheme.

Hint: prove the same for the group law ∗ of G. Then, explain also how we can obtain the same for the
addition + over Zp assuming the plaintexts are small over Zp (e.g., poly(λ)).

Exercise 3.
The notion of existential unforgeability under single-message attack for a signature scheme Π =
(Gen,Sign,V) states that no adversary can output a valid tuple (m′, σ) with non-negligible probability
by only querying once the signing oracle for m with m ̸= m′.
The goal of this exercise is to go from euSMA-security to euCMA-security. The idea is, for each bit of
the message, to generate two new public keys, sign them using the public key from the previous bit,
and use one of them for the next bit (depending on the value of the current bit). This can be seen as
building a binary tree.
Let F be a secure PRF. It will come in handy to make sure we use the same randomness to generate
the keys (so that we do not have memory to store them, from one signature to the next one).
We assume the following about the PRF: its output is long enough to be given to Gen as randomness
seed, and there is some one-to-one deterministic padding in the case where the input is too small.
Here is the construction, where m|i denotes the first i bits of m and m|0 is the empty word ε:

Gen⋆(1λ): Generate (vkε, skε)← Gen(1λ) and two PRF keys k, k′. Return vk = vkε and sk = (skε, k, k′).

Sign⋆(sk, m): Let n = |m|. For i = 0 to n do the following: Compute rm|i |0 := F(k, m|i|0), and rm|i |1 :=

F(k, m|i|1). Then generate vkm|i |1, skm|i |1 ← Gen(1λ; rm|i |0) and vkm|i |0, skm|i |0 ← Gen(1λ; rm|i |1).
Then, sign σm|i ← Sign(skm|i , (vkm|i |0, vkm|i |1); r′m|i ), where r′m|i ← F(k′, m|i).

Compute σm ← Sign(skm, m; F(k′, m)).

Then, return
(
{σm|i , vkm|i |0, vkm|i |1}i, σm

)
.

1. Give a verification algorithm V⋆. How many times does it call V, depending on the message size?
How many public keys are manipulated (i.e. generated, used to sign or signed) during one call
to Sign⋆?

In order to prove the euCMA-security of this scheme, we introduce the following hybrid H1: the game
is the same as in the euCMA setup (we will call it H0), except that F(k, ·) is replaced by a truly random
function, whose table is built adaptively.

2. Show that H0 and H1 are indistinguishable.

Then we introduce H2, which is as H1 except that this time F(k′, ·) is replaced by a truly uniform
function, whose table is also built adaptively.

3. Show that H1 and H2 are indistinguishable.

4. Show that under the euSMA security of the base signature, no adversary has non-negligible
advantage in the game H2.

5. Conclude.
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