HW 1 (Due before Feb. 18, 3.45pm)

Exercise 1.

Random Self-Reducibility

The notion of *random self-reducibility* states that, if there exists an efficient algorithm solving a problem for a non-negligible fraction of its inputs, then there exists an efficient algorithm efficiently solving the problem for any input.

- 1. Show that the Discrete Logarithm Problem is random self-reducible. More precisely, given a cyclic group \mathbb{G} of known prime order p and public generator g, assume that there exists an efficient deterministic algorithm \mathcal{A} that solves the Discrete Logarithm Problem (it takes as input $h \in \mathbb{G}$ and outputs the smallest $k \in [1, p]$ such that $g^k = h$ for a fraction $1/poly(\lambda)$ of its inputs. Prove that there exists an efficient probabilistic algorithm \mathcal{A}' that solves the DLP for any input $x \in \mathbb{G}$. *Hint:* What is the distribution of g^B for $B \leftarrow U([0, p-1])$?
- 2. Show that the search version of Learning with Errors is random self-reducible. More precisely, given parameters $q, m, n, B \in \mathbb{N}$ and $\mathbf{s} \in \mathbb{Z}_q^n$, the sLWE_{q,n,m,B}(\mathbf{s}) problem is the following:
 - Find **s**, given $(\mathbf{A}, \mathbf{As} + \mathbf{e})$ where $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \leftarrow U((-B, B]^m)$.

Assume that there exists an efficient algorithm \mathcal{A} that solves $\mathsf{sLWE}_{q,n,m,B}(\mathbf{s})$ for a fraction $1/\mathsf{poly}(\lambda)$ of **s**.

Design an efficient algorithm that solves $sLWE_{q,n,m,B}(\mathbf{s})$ for any $\mathbf{s} \in \mathbb{Z}_q^n$.

3. In the tutorial we defined LWE with small secret: instead of sampling $\mathbf{s} \leftarrow U(\mathbb{Z}_a^n)$, we sampled and restricted our choice of secrets to $\mathbf{s} \leftarrow U((-B, B]^n)$. Show that if we have an adversary that distinguishes with non-negligible probability between the distribution (A, As + e) for $A \leftarrow$ $U(\mathbb{Z}_q^{m \times n})$, $\mathbf{s} \leftrightarrow U(\mathbb{Z}_q^n)$ and $\mathbf{e} \leftrightarrow U((-B, B)^m)$ and the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$, then we can distinguish between $(\mathbf{A}, \mathbf{As} + \mathbf{e})$ where **A** and **e** are sampled as before but $s \leftarrow$ $U((-B,B]^n)$ and the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

Exercise 2.

Security of CTR

Let $F: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a PRF. To encrypt a message $M \in \{0,1\}^{d \cdot n}$, CTR proceeds as follows:

- Write $M = M_0 || M_1 || \dots || M_{d-1}$ with each $M_i \in \{0, 1\}^n$.
- Sample *IV* uniformly in $\{0, 1\}^n$.
- Return $IV ||C_0||C_1|| \dots ||C_{d-1}$ with $C_i = M_i \oplus F(k, IV + i \mod 2^n)$ for all *i*.

The goal of this exercise is to prove the security of the CTR encryption mode against chosen plaintext attacks, when the PRF F is secure.

- 1. Recall the definition of security of an encryption scheme against chosen plaintext attacks.
- **2.** Assume an attacker makes Q encryption queries. Let IV_1, \ldots, IV_Q be the corresponding IV's. Let Twice denote the event "there exist $i, j \leq Q$ and $k_i, k_j < d$ such that $IV_i + k_i = IV_j + k_j \mod 2^n$ and $i \neq j$." Show that the probability of Twice is bounded from above by $Q^2 d/2^{n-1}$.
- **3.** Assume the PRF *F* is replaced by a uniformly chosen function $f : \{0,1\}^n \to \{0,1\}^n$. Give an upper bound on the distinguishing advantage of an adversary \mathcal{A} against this idealized version of CTR, as a function of *d*, *n* and the number of encryption queries *Q*.
- 4. Show that if there exists a probabilistic polynomial-time adversary \mathcal{A} against CTR based on PRF *F*, then there exists a probabilistic polynomial-time adversary \mathcal{B} against the PRF *F*. Give a lower bound on the advantage degradation of the reduction.