Homework (due before April, 8th. 3.45pm)

Exercise 1.

Exercise 2.

multi-bit Encryption with LWE

Let four integers n, m, q, B. Recall the Learning with Errors (with small secret) assumption¹ LWE_{n,m,q,B}: the distributions ($\mathbf{A}, \mathbf{As} + \mathbf{e}$) and (\mathbf{A}, \mathbf{b}) are computationally indistinguishable, where $\mathbf{A} \leftrightarrow U(\mathbb{Z}_q^{m \times n})$, $\mathbf{s} \leftarrow U((-B, B]^n)$, $\mathbf{e} \leftarrow U((-B, B]^m)$ and $\mathbf{b} \leftarrow U(\mathbb{Z}_q^m)$. Let k be another nonzero integer. We define the multi-secret Learning with Errors (with small secret) assumption msLWE_{n,m,q,B,k} as follows: the distributions ($\mathbf{A}, \mathbf{As}_1 + \mathbf{e}_1, \mathbf{As}_2 + \mathbf{e}_2, \dots, \mathbf{As}_k + \mathbf{e}_k$) and ($\mathbf{A}, \mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_k$) are computationally indistinguishable, where $\mathbf{A} \leftarrow U(\mathbb{Z}_q^{m \times n})$, $\mathbf{s}_i \leftarrow U((-B, B]^n)$,

and $\mathbf{e}_i \leftarrow U((-B, B]^m)$ and $\mathbf{b}_i \leftarrow U(\mathbb{Z}_q^m)$ for any $i \leq k$.

- **1.** Prove that, under the LWE_{*n*,*m*,*q*,*B*} assumption, the smLWE_{*n*,*m*,*q*,*B*,*k*} assumption holds for any polynomial *k*. *Hint: use an hybrid argument*.
- **2.** Adapt the LWE-based encryption scheme from the lecture and propose a public encryption scheme with message space $\{0,1\}^k$. Under which constraint is it correct? Prove that it is CPA-secure under the msLWE_{*n,m,q,B,k*} assumption.
- **3.** Is this scheme IND-CCA2 secure? If not, what can we do to turn it into an IND-CCA2 secure scheme?

OW-CPA implies IND-CPA

Let $\mathsf{PKE} = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ be a public-key encryption scheme with message space $\{0, 1\}^n$ and a hash function $H : \{0, 1\}^n \to \{0, 1\}^n$ modelled as a Random Oracle. We build the following encryption scheme PKE' :

Gen'(1^{λ}): Run and return (pk, sk) \leftarrow Gen(1^{λ}).

 $\operatorname{Enc}'(1^{\lambda})$: Sample $x \leftarrow \{0,1\}^n$. Return $c_0 := m \oplus H(x)$ and $c_1 := \operatorname{Enc}(\operatorname{pk}, x)$.

1. Give a decryption algorithm. Prove that the scheme is correct, assuming that PKE is correct.

We briefly recall the OW-CPA security game: the adversary is given a ciphertext, which is an encryption of an uniformly sampled message among the (finite) message space. The adversary wins if and only if it outputs the message. A PKE scheme is OW-CPA secure if no ppt adversary has non-negligible probability of winning.

- **2.** Let \mathcal{A} be an adversary against the IND-CPA security of the scheme. Let $c_0 := m_b \oplus H(x^*)$ and $c_1 := \text{Enc}(\text{pk}, x^*)$ be the challenge ciphertext. Let *QUERY* be the event " \mathcal{A} queries the random oracle on input x^* ". Give an upper bound on the advantage of \mathcal{A} as a function of Pr(QUERY).
- 3. Assuming that PKE is OW-CPA secure, show that PKE' is IND-CPA secure.

Exercise 3.

Lamport's signature

The notion of existential unforgeability under single-message attack for a signature scheme $\Pi = (\text{Gen}, \text{Sign}, \text{V})$ states that no adversary can output a valid tuple (m', σ) with non-negligible probability by only querying once the signing oracle for m with $m \neq m'$.

1. Give a formal definition of the euSMA-security.

¹We used to call it ssLWE_{*n*,*m*,*q*,*B* in the previous tutorials}

Let $H : \{0,1\}^n \to \{0,1\}^k$ with k < n/2 be a collision resistant hash function. We say that H is preimage resistant if no ppt adversary, given y = H(x) for x uniformly sampled, is able to compute x' such that H(x') = y with non-negligible probability.

2. Show that if *H* is collision-resistant then it is preimage resistant.

Lamport's signature scheme for messages of length ℓ is as follows:

Gen (1^{λ}) : Choose uniformly $x_{i,b} \leftarrow U(\{0,1\}^n)$ for any $(i,b) \in [1,\ell] \times \{0,1\}$. Return $vk := \{y_{i,b} := H(x_{i,b}), (i,b) \in [1,\ell] \times \{0,1\}\}$ and $sk := \{x_{i,b}, (i,b) \in [1,\ell] \times \{0,1\}\}$.

Sign(*sk*, *m*): To sign $m = (m_1, ..., m_\ell) \in \{0, 1\}^\ell$, return $(x_{1,m_1}, ..., x_{\ell,m_\ell})$.

- $V(vk, m, (x_1, \dots, x_\ell))$: To verify a signature, compute $H(x_i) =: y'_i$ for any $i \in [1, \ell]$. Return 1 if and only if $y'_i = y_{i,m_i}$ for all $i \in [1, \ell]$.
 - 3. Is this scheme euCMA-secure?
 - 4. Assuming that the hash function is preimage resistant, show the euSMA-security of the scheme.

Exercise 4.

Attacks on ElGamal

We consider the following signature scheme. Let p be a prime integer and g be a generator of \mathbb{Z}_p^* . The element $x \in \mathbb{Z}_{p-1}$ is uniformly chosen, and we compute $y = g^x \mod p$. The public key is (p, g, y) and the secret key is x.

- To sign $m \in \mathbb{Z}_{p-1}$, choose $k \in \mathbb{Z}_{p-1}^*$ uniformly at random and compute $r = g^k \mod p$ as well as $s = (m xr)/k \mod p 1$. The signature is (r, s).
- To verify (m, (r, s)), accept if and only if $(r, s) \in \mathbb{Z}_p^* \times \mathbb{Z}_{p-1}$ and $g^m = y^r r^s \mod p$.

We now study the security of this scheme.

- 1. Show the correctness of this scheme.
- **2.** Give a key only attack (i.e. without querying a signature) against the existential unforgeability. *Hint: try with* $r = g^a y^b \mod p$ *for some well-chosen a and b and then find s and m such that* (r, s) *is a valid signature for m.*