Homework (due before April, 8th. 3.45pm)

Exercise 1.

multi-bit Encryption with LWE
Let four integers n, m, q, B. Recall the Learning with Errors (with small secret) assumption ${ }^{1}$ LWE $_{n, m, q, B}$: the distributions $(\mathbf{A}, \mathbf{A s}+\mathbf{e})$ and (\mathbf{A}, \mathbf{b}) are computationally indistinguishable, where $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$, $\mathbf{s} \hookleftarrow U\left((-B, B]^{n}\right), \mathbf{e} \hookleftarrow U\left((-B, B]^{m}\right)$ and $\mathbf{b} \hookleftarrow U\left(\mathbb{Z}_{q}^{m}\right)$.
Let k be another nonzero integer. We define the multi-secret Learning with Errors (with small secret) assumption $\mathrm{msLWE}_{n, m, q, B, k}$ as follows: the distributions ($\mathbf{A}, \mathbf{A} \mathbf{s}_{1}+\mathbf{e}_{1}, \mathbf{A} \mathbf{s}_{2}+\mathbf{e}_{2}, \ldots, \mathbf{A} \mathbf{s}_{k}+\mathbf{e}_{k}$) and $\left(\mathbf{A}, \mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{k}\right)$ are computationally indistinguishable, where $\mathbf{A} \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathbf{s}_{i} \hookleftarrow U\left((-B, B]^{n}\right)$, and $\mathbf{e}_{i} \hookleftarrow U\left((-B, B]^{m}\right)$ and $\mathbf{b}_{i} \hookleftarrow U\left(\mathbb{Z}_{q}^{m}\right)$ for any $i \leq k$.

1. Prove that, under the $\mathrm{LWE}_{n, m, q, B}$ assumption, the $\operatorname{smLWE}_{n, m, q, B, k}$ assumption holds for any polynomial k. Hint: use an hybrid argument.
2. Adapt the LWE-based encryption scheme from the lecture and propose a public encryption scheme with message space $\{0,1\}^{k}$. Under which constraint is it correct? Prove that it is CPAsecure under the $\operatorname{msLWE}_{n, m, q, B, k}$ assumption.
3. Is this scheme IND-CCA2 secure? If not, what can we do to turn it into an IND-CCA2 secure scheme?

Exercise 2.

OW-CPA implies IND-CPA
Let PKE $=\left(\right.$ Gen, Enc, Dec) be a public-key encryption scheme with message space $\{0,1\}^{n}$ and a hash function $H:\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ modelled as a Random Oracle. We build the following encryption scheme PKE^{\prime} :
$\operatorname{Gen}^{\prime}\left(1^{\lambda}\right):$ Run and return $(\mathrm{pk}, \mathrm{sk}) \leftarrow \operatorname{Gen}\left(1^{\lambda}\right)$.
$\operatorname{Enc}^{\prime}\left(1^{\lambda}\right)$: Sample $x \leftarrow\{0,1\}^{n}$. Return $c_{0}:=m \oplus H(x)$ and $c_{1}:=\operatorname{Enc}(\mathrm{pk}, x)$.

1. Give a decryption algorithm. Prove that the scheme is correct, assuming that PKE is correct.

We briefly recall the OW-CPA security game: the adversary is given a ciphertext, which is an encryption of an uniformly sampled message among the (finite) message space. The adversary wins if and only if it outputs the message. A PKE scheme is OW-CPA secure if no ppt adversary has non-negligible probability of winning.
2. Let \mathcal{A} be an adversary against the IND-CPA security of the scheme. Let $c_{0}:=m_{b} \oplus H\left(x^{*}\right)$ and $c_{1}:=\operatorname{Enc}\left(\mathrm{pk}, x^{*}\right)$ be the challenge ciphertext. Let $Q U E R Y$ be the event " \mathcal{A} queries the random oracle on input $x^{* \prime \prime}$. Give an upper bound on the advantage of \mathcal{A} as a function of $\operatorname{Pr}(Q U E R Y)$.
3. Assuming that PKE is OW-CPA secure, show that PKE^{\prime} is IND-CPA secure.

Exercise 3.

Lamport's signature
The notion of existential unforgeability under single-message attack for a signature scheme $\Pi=$ (Gen, Sign, V) states that no adversary can output a valid tuple $\left(m^{\prime}, \sigma\right)$ with non-negligible probability by only querying once the signing oracle for m with $m \neq m^{\prime}$.

1. Give a formal definition of the euSMA-security.
[^0]Let $H:\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ with $k<n / 2$ be a collision resistant hash function. We say that H is preimage resistant if no ppt adversary, given $y=H(x)$ for x uniformly sampled, is able to compute x^{\prime} such that $H\left(x^{\prime}\right)=y$ with non-negligible probability.
2. Show that if H is collision-resistant then it is preimage resistant.

Lamport's signature scheme for messages of length ℓ is as follows:
$\operatorname{Gen}\left(1^{\lambda}\right)$: Choose uniformly $x_{i, b} \hookleftarrow U\left(\{0,1\}^{n}\right)$ for any $(i, b) \in[1, \ell] \times\{0,1\}$. Return $v k:=\left\{y_{i, b}:=\right.$ $\left.H\left(x_{i, b}\right),(i, b) \in[1, \ell] \times\{0,1\}\right\}$ and $s k:=\left\{x_{i, b},(i, b) \in[1, \ell] \times\{0,1\}\right\}$.
$\operatorname{Sign}(s k, m):$ To sign $m=\left(m_{1}, \ldots, m_{\ell}\right) \in\{0,1\}^{\ell}$, return $\left(x_{1, m_{1}}, \ldots, x_{\ell, m_{\ell}}\right)$.
$\mathrm{V}\left(v k, m,\left(x_{1}, \ldots, x_{\ell}\right)\right)$: To verify a signature, compute $H\left(x_{i}\right)=: y_{i}^{\prime}$ for any $i \in[1, \ell]$. Return 1 if and only if $y_{i}^{\prime}=y_{i, m_{i}}$ for all $i \in[1, \ell]$.
3. Is this scheme euCMA-secure?
4. Assuming that the hash function is preimage resistant, show the euSMA-security of the scheme.

Exercise 4.

Attacks on ElGamal
We consider the following signature scheme. Let p be a prime integer and g be generator of \mathbb{Z}_{p}^{\star}. The element $x \in \mathbb{Z}_{p-1}$ is uniformly chosen, and we compute $y=g^{x} \bmod p$. The public key is (p, g, y) and the secret key is x.

- To sign $m \in \mathbb{Z}_{p-1}$, choose $k \in \mathbb{Z}_{p-1}^{\star}$ uniformly at random and compute $r=g^{k} \bmod p$ as well as $s=(m-x r) / k \bmod p-1$. The signature is (r, s).
- To verify $(m,(r, s))$, accept if and only if $(r, s) \in \mathbb{Z}_{p}^{\star} \times \mathbb{Z}_{p-1}$ and $g^{m}=y^{r} r^{s} \bmod p$.

We now study the security of this scheme.

1. Show the correctness of this scheme.
2. Give a key only attack (i.e. without querying a signature) against the existential unforgeability. Hint: try with $r=g^{a} y^{b} \bmod p$ for some well-chosen a and b and then find s and m such that (r, s) is a valid signature for m.

[^0]: ${ }^{1}$ We used to call it $s s L W E_{n, m, q, B}$ in the previous tutorials

