
M1 – Cryptology and Security (2022–2023) A. Passelègue, J. Felderhoff

Homework 2 — Due date: 28 April 2023, 23.59pm

Chameleon hashing and static security of signatures

A chameleon hash function is a regular hash function with an additional algorithm Trap_Coll that com-
putes collisions when given as input a trapdoor information. More formally, a chameleon hash function
is a triple of probabilistic polynomial-time algorithms (Gen, Hash, Trap_Coll) with the following speci-
fications:

• Gen takes as input a security parameter and returns a public key pk and a trapdoor trap.

• Hash is deterministic: it takes as inputs a public key pk, a message M and an r that can be viewed as
a random string, and returns Hash(pk, M, r).

• Trap_Coll takes as inputs pk, trap, a pair (M1, r1) and a message M2, and returns r2 such that
Hash(pk, M1, r1) = Hash(pk, M2, r2). Intuitively, it finds a collision by modifying the random string
used to hash.

• Collision resistance: Given pk (but not trap), it must be hard to find (M1, r1) 6= (M2, r2) such
that Hash(pk, M1, r1) = Hash(pk, M2, r2).

• Uniformity: For any two messages M1, M2, the distributions Hash(pk, M1, r) and Hash(pk, M2, r)
for r uniform must be identical.

We consider the following chameleon hash function Hcham:

• Given a security parameter λ, algorithm Gen samples (G, g, p) where G = 〈g〉 is a cyclic group of
known prime order p. It samples x uniformly in (Z/pZ) \ {0} and computes h = gx. It returns pk =
(G, p, g, h) and trap = x.

• To hash M ∈ Z/pZ, it samples r uniformly in Z/pZ and returns Hcham(pk, M, r) = gM · hr.

1. Show that Hcham is collision-resistant, under the assumption that the Discrete Logarithm Problem
(DLP) is hard for G.

2. Describe a correct algorithm Trap_Coll.

3. Show that h is a generator of G. Derive that Hcham satisfies the uniformity property.

Chameleon hashing is used to transform a signature scheme that is existentially unforgeable for static cho-
sen messages (stat-EU-CMA) into a signature scheme that is existentially unforgeable for adaptive chosen
messages (EU-CMA). Stat-EU-CMA security of a signature scheme (KeyGen, Sign, Verify) is defined by
the following game:

• The adversary gives to the challenger the messages (M1, . . . , Mq) it wants to query (before anything
else);

• The challenger replies with a verification key vk and valid signatures (S1, . . . , Sq), i.e., satisfying
Verify(vk, Mi, Si) = 1 for all i;

• The adversary sends a pair (M∗, S∗) to the challenger;
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• The adversary wins the game if M∗ /∈ {M1, . . . , Mq} and Verify(vk, M∗, S∗) = 1.

The scheme is stat-EU-CMA-secure if no probabilistic polynomial-time adversary wins this game with
non-negligible probability. We recall that in the EU-CMA security game, the message queries are sent
from the adversary to the challenger after the challenger has made the verification key vk available to the
adversary.
We now assume that we have a stat-EU-CMA-secure signature scheme (KeyGen, Sign, Verify) and a
secure chameleon hash (Gen, Hash, Trap_Coll). Our goal is to build a signature scheme (KeyGen’, Sign’,
Verify’) that is EU-CMA-secure. We define:

• KeyGen’: Run KeyGen to get a verification key vk and a secret key sk. Run Gen to get a public key pk
and a trapdoor trap. Return vk′ = (vk, pk) and sk′ = sk.

• Sign’: To sign M using sk′ = sk, sample a uniform r, compute h = Hash(pk, M, r), and return S =
(r, Sign(sk, h)).

4. Give a (non-trivial) polynomial-time algorithm Verify’ that accepts properly generated signatures.

5. Show that if (KeyGen, Sign, Verify) is stat-EU-CMA-secure and (Gen, Hash, Trap_Coll) is a secure
chameleon hash function, then (KeyGen’, Sign’, Verify’) is EU-CMA-secure.

Regev public-key encryption

We work over Zq := Z/qZ for a prime q ∈ Z, so computations are always modulo q. We denote by ∆ the
statistical distance, defined for two random variables over X as:

∆(X, Y) :=
1
2 ∑

x∈X
|Pr[X = x]− Pr[Y = x]| .

Part 1: Leftover Hash Lemma

We say that a family of hash function (hk)k∈K with hk : X → Y for all k ∈ K, is 2-universal if for all
x, x′ ∈ X , x 6= x′, we have:

Pr
k←U(K)

[hk(x) = hk(x′)] =
1
|Y| .

6. For m > n, we consider the family of hash functions (hA)A∈Zm×n
q

with hA : Zm
q → Zn

q , defined as

hA : r 7→ rTA. Show that this family is 2-universal.

For a distribution D over X , we define its min-entropy as:

H∞(D) := − log(maxx∈X Pr
x′←D

[x′ = x]) .

That is, if D has min-entropy H, then for any x ∈ X , Prx′←D [x′ = x] ≤ 1
2H .

We admit the following lemma, termed Leftover Hash Lemma (Impagliazzo-Levin-Luby, 1990), which
states that for a 2-universal hash function family, the evaluation of hk on some secret input x is statistically
close to a uniform value over Y , even when k is public, as long as x is sampled from a distribution with
high enough min-entropy.
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Lemma: Let (hk)k∈K be a 2-universal family of hash functions with hk : X → Y for all k ∈ K. Let D be a
distribution over X with min-entropy H. Then, we have:

∆({(k, hk(x))}, {(k, y)}) ≤
√
|Y|
2H ,

where the distributions are over k← U(K), x ← D, and y← U(Y).

7. Let D = U({0, 1}m). Applying the above lemma, show that if m ≥ 3n log q, then we have:

∆({(A, hA(r))}, {(A, u)}) ≤ 1
qn ,

where the distributions are over A← U(Zm×n
q ), r← D, and u← U(Zn

q ).

Part 2: Standard IND-CPA security

Consider the following public-key encryption scheme (Gen, Enc, Dec) with message space {0, 1} (so β ∈
{0, 1} below):

• Gen(1λ): sample A ← U(Zm×n
q ), s ← U(Zn

q ), e ← U({−η, . . . , η}m), let b = As + e. Return
pk = (A, b) and sk = s;

• Enc(pk, β): Parse pk as (A, b). Sample r ← {0, 1}m, compute ct1 ← rTA and ct2 ← rTb + βdq/2c,
return (ct1, ct2);

• Dec(sk, (ct1, ct2)): return 0 if |ct2 − ct1 · s| ≤ q/4, else return 1.

The goal of this exercise is to show that this PKE scheme achieves IND-CPA security.

8. Show that the scheme is correct as long as mη ≤ q/4.

9. Show that the distribution of pk is computationally indistinguishable from the uniform distribution,
under LWE.

10. Show that, when pk is uniformly random, the distribution of ciphertexts is statistically close to the
uniform distribution over Zn+1

q , assuming m ≥ 3n log q

11. Conclude about IND-CPA security of the original scheme.

We say that the `-secret LWEn,m,q,η assumption holds if distributions {(A, AS + E)} and {(A, U)} are
computationally indistinguishable, where the distributions are over A ← U(Zm×n

q ), S ← U(Zn×`
q ), E ←

U({−η, . . . , η}m×`), and U← U(Zm×`
q ).

12. Propose a variant of the above scheme which allows to encrypt `-bit messages (and which is more
compact that encrypting each bit of the messages with the previous scheme) and whose security
relies on the above assumption.
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LWE with small secret

Consider an LWEn,q,η instance (A, As + e) with small secret, that is, with A← U(Zm×n
q ), s← U({0, 1}n),

e← U({−η, . . . , η}m). We aim to show that such instances are also pseudorandom assuming the standard
LWE assumption (with parameters to be specified). Note that the exercise also uses the multi-secret LWE
introduced just above (question 12).

13. Show that the above instance (A, As + e) is computationally indistinguishable from instance (BC +
N, (BC+N) · s+ e), where B, C, N are respectively uniformly sampled from Zm×k

q ,Zk×n
q , and {−ν, . . . , ν}m×n

for some ν > 0 to be specified later.

14. Show that the new distribution of (BC + N, (BC + N) · s + e) described in the previous question is
statistically close to the distribution (BC + N, (BC) · s + e) if η � nν (e.g., η > 2λnν).

15. Using the Leftover Hash Lemma, show that the latter distribution (BC + N, BC · s + e) described in
the previous question is statistically close to the distribution (BC + N, Bt + e) if n ≥ 3k log q, where
t is uniform over Zk

q.

16. Finally show that the latter distribution (BC + N, Bt + e) described in the previous question is com-
putationally indistinguishable from the distribution (A, As+ e), where A and s is uniform over Zm×n

q
and Zn

q respectively. Conclude.
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