
CR09 – Homework 2022-2023
Due date Jan. 25, 2023, 11:59pm

1 NIZK for Honest Partial Decryption

Recall that in the e-voting scheme constructed in class, the parties jointly compute a ciphertext
(c0, c1), which is an encryption of the sum of their individual votes, with respect to the public key
h =

∏N
i=1 hi, where hi = gsi (si is party Pi’s locally generated share of the secret key s). All parties

broadcast the partial decryption di = csi0 , and the result is computed as DLOGg(c1/
∏N
i=1 di).

Question 1. Construct a NIZK for each party Pi which guarantees that the decrypted result is
indeed the plaintext of (c0, c1) with respect to the public key h.

Question 2. Given all encrypted votes (c
(i)
0 , c

(i)
1 )i≤N , how could Pi prove anonymously to an external

player that they took part to the vote (i.e. without revealing which party Pi they are)? A high-level
description of how to construct the appropriate zero-knowledge proof will suffice here.

2 The Hybrid Proof Technique

The purpose of this exercise it to introduce the hybrid proof technique, a standard method to prove
reductions between indistinguishability-based security notions in cryptography.

We recall that a (bit) commitment scheme is an interactive protocol between two parties, a sender
S and a receiver R, with common input 1λ. The sender has an input bit b. The commitment is

– (computationally) hiding if for every PPT receiver R∗, it holds that

{〈S(0), R∗〉(1λ)}λ∈N
comp
≡ {〈S(1), R∗〉(1λ)}λ∈N,

where
comp
≡ denotes computational indistinguishability;

– (perfectly) binding if the probability, over the coin tosses of R, that a transcript T can simul-
taneously satisfy T = 〈S(0; r0), R∗〉(1λ) and T = 〈S(1; r1), R∗〉(1λ) (where r0, r1 denote some
choice of random tape for S) is negligible. That is, if S reveal that they committed to a bit b (by
revealing their random tape), they cannot pretend to have committed 1− b instead.

We say further that the scheme is n-vector hiding (where n = n(λ) is some integer polynomial in
λ) if for every PPT R∗ and every pairs of n-tuples b̄ = (b1, · · · , bn) ∈ {0, 1}n and b̄′ = (b′1, · · · , b′n) ∈
{0, 1}n, it holds that

{〈S̄(b̄), R̄∗〉(1λ)}λ∈N
comp
≡ {〈S̄(b̄′), R̄∗〉(1λ)}λ∈N,

where 〈S̄(b̄), R̄∗〉 (resp. b̄′) denote the interactive protocol obtained by running the n instances
〈S(bi), R

∗〉 (resp. b′i) of the commitment, for i = 1 to n, in parallel.

Question 1. Fix i ≤ n. Let b̄ and b̄′ bit two vectors that differ only in their i-th coordinate. Prove
formally that if the scheme is hiding, then it must hold that

{〈S̄(b̄), R̄∗〉(1λ)}λ∈N
comp
≡ {〈S̄(b̄′), R̄∗〉(1λ)}λ∈N. (1)

Hint: assume the existence of a PPT distinguisher A with advantage ε in distinguishing the distri-
bution ensemble of Equation 1. Given A, construct a distinguisher B with advantage ε against the
hiding property of the commitment scheme.
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Question 2. Fix arbitrary n-bit vectors b̄ and b̄′. Describe a sequence of n + 1 hybrid scenarios
H0, · · · , Hn (also called games), where H0 corresponds to the scenario where S commits to b̄, and Hn

to the scenario where S commits to b̄′, such that for any i < n, if there exists a PPT distinguisher
A with advantage ε in distinguishing the distribution ensemble of Hi from Hi+1, then there exists a
distinguisher B with advantage ε against the hiding property of the commitment scheme.

Question 3. Conclude by proving formally that the n-vector hiding property is implied by the hid-
ing property. The reduction should construct, given any adversary A with non-negligible advantage
ε against the n-vector hiding property, an adversary B with non-negligible advantage ε′ against the
hiding property. The quantity ε/ε′ is called the loss of the reduction. What is the loss of this reduction?

Note. This reduction finishes the proof, seen in class, that 3-coloring is zero-knowledge under the as-
sumption that the commitment scheme is hiding. Combined with the existence of hiding commitment
schemes from any pseudorandom generator, which in turn exist assuming any one-way function, this
yields (via extended Karp reduction) a proof that CZK contains NP.

Question 4. We introduce the following parallel composition lemma for witness indistinguishability
(recall that being witness-indistinguishable is a property of the prover for a language relation RL):
Lemma 1. Let L be an NP language with relation RL, P be a PPT algorithm, and assume that
〈P, V 〉 is a witness-indistinguishable interactive proof for RL. Let n = n(·) be a polynomial, and let
Pn denote the program which, on common input (x1, · · · , xn) and private input (w1, · · · , wn), runs P
in parallel n times where the i-th copy invoke P on common input xi and private input wi. Then Pn
is witness-indistinguishable for the parallel relation R̄L̄ = {(x̄, w̄) : ∀i, (xi, wi) ∈ RL}.

Using the same approach as in Questions 1 to 3, prove the parallel composition lemma.

Note.We saw in class that (1) 3COL is zero-knowledge assuming OWF, and (2) zero-knowledge implies
witness indistinguishability. Therefore, the parallel repetition of 3COL is witness indistinguishable by
the above lemma, which yields a 4-round WI with negligible soundness error for 3COL (two rounds
for the PRG-based commitment, three for the ZK proof itself, the first round of the proof being
merged with the second round of the commitment), hence for all NP languages, assuming any OWF.

3 More on the Power of Interactive Proofs

The purpose of this exercise will be to prove two additional statements about the power of the classes
CZK and IP: (1) IP supports efficient amplification, allowing to reduce the soundness error at an
exponential rate, and (2) assuming OWFs, CZK = IP = PSPACE (recall that we have seen in class
that IP = PSPACE and that, under OWFs, CZK contains NP; here, we will show that the power of
CZK goes in fact all the way to IP).

Question 1. Recall that AM is the class of languages that admit a two-round public-coin interactive
proof: Arthur (the verifier) sends a random string r to Merlin, and Merlin replies with a single
message m, from which Arthur accepts or rejects. Using the fact that all languages in NP admit a
(computational) zero-knowledge proof, show that if there exists a computationally hiding and perfectly
binding commitment scheme, AM ⊂ CZK.

Hint: the verifier’s decision to accept or reject is a deterministic polynomial-time function of the
transcript (r,m). Use this observation to build, for a language L ∈ AM, a well-chosen NP-language
L′ that depends both on the commitment and on an AM protocol for L. The zero-knowledge proof for
AM should use a ZK proof for this language (which exists since NP ⊂ CZK).

Question 2. Building upon the ideas of question 1, and the interactive protocol constructed in class
for quantified boolean formulae, prove that assuming a commitment scheme, QBF is in CZK. Since
QBF is PSPACE-complete, this implies CZK = IP = PSPACE.

Hint: you don’t need to use any specific property of the protocol, beyond the fact that it is an
interactive proof, and that is is public coin. Use these properties to build a well-chosen NP-language,
and conclude as in question 1.
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Question 3. Denote of IPα,β the class of languages admitting an interactive proof system with
completeness α and soundness β. That is,

x ∈ L ⇒ ∃P/Pr[outV 〈V, P 〉(x) = 1] ≥ α ,

and
x /∈ L ⇒ ∀P ∗,Pr[outV 〈V, P ∗〉(x) = 1] ≤ β .

In particular, we have IP = IP2/3,1/3. Show that:

1. IP1−2−|x|,1−2−|x| = IP.
2. IP1,1/3 = IP.
3. IP2/3,1 = NP.

4 Security of Schnorr’s Signature Scheme

Let G denote a cyclic group of prime order p and let g denote a generator of G. We remind Schnorr’s
signature scheme. Let H : {0, 1}∗ → Zp denote a hash function, modeled as a random oracle in the
rest of the exercise.

– Setup(G, g) : Sample s← U(Zp) and let sk← s, vk← gs. Return (vk, sk).
– Sign(sk,m ∈ {0, 1}∗) : Sample r ← U(Zp). Let t← gr, c← H(vk,m, t), and z ← r+ c · sk. Return
σ = (t, c, z).

– Verify(vk,m, σ) : Parse σ as (t, c, z). Return 1 if:
(i) c = H(vk,m, t);
(ii) gz = t · vkc
Else return 0.

The goal of this exercise is to prove that Schnorr’s signature is secure in the random oracle model
assuming the discrete logarithm problem is hard in G.

We also recall that a signature is secure if any PPT adversary A fails to winning the following
game, except with negligible probability.

The challenger first sample (vk, sk)← Setup(G, g) and sends vk to the adversary A. The adversary
can adaptively make sign queries to the challenger by sending a messagemi ∈ {0, 1}∗. In response, the
challenger returns σi where σi ← Sign(sk,mi). Let qS denote the number of sign queries made by the
adversary, and denote by L = ((m1, σ1), . . . , (mqS , σqS )) the list of queries/answers. The adversary
can further make hash queries to the challenger to learn the evaluation of H on an input of its
choice. Let qH denote the number of hash queries made by the adversary, and assume without loss
of generality that all such queries are of the form (vk,mi, ti), for mi ∈ {0, 1}∗ and ti ∈ G.

The adversary wins if it returns a pair (m∗, σ∗) /∈ L such that Verify(vk,m∗, σ∗) = 1.

Question 1. Let σ∗ = (t∗, c∗, z∗) denote the output of A. Show that if A has not made a hash query
for (vk,m∗, t∗), then A wins with probability at most 1/p.

Question 2. Show that, the challenger (which controls the random oracle) can answer signing queries
correctly without using the secret key. That is, show that there exists a poly-time simulator Sim, which
given vk and a query mi, produces a valid signature σi = (ti, ci, zi).

Question 3. Show that, given (t∗, c∗, z∗) and (t∗, c′∗, z′∗) such that each satisfy Equation (ii) of the
verification process and c′∗ 6= c∗, one can compute sk.

Question 4. Conclude about security of Schnorr’s signature by relying on the splitting lemma.

5 5-Round Zero-Knowledge Proofs

We consider Pedersen commitment scheme, defined over a cyclic group G of prime order p with 2
random public generators (g, h) as follows: to commit to a message m ∈ Zp, the sender samples a
randomness r ← U(Zp) and produces a commitment gmhr ← Com(m; r). To open a commitment, it
reveals (m, r).
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Question 1. Show that Pedersen commitment is perfectly hiding and computationally binding. That
is, for m ∈ Zp, let Dm the distribution {Com(m; r) | r ← U(Zp)}, then show that ∆(Dm,Dm′) = 0,
for all m,m′. Also, show that a sender being able to open a commitment C to distinct messages
m′ 6= m can be used to solve the discrete logarithm problem in G.

Question 2. Let Σ denote a sigma-protocol with challenge space Zp and achieving special-soundness
and special honest-verifier zero-knowledge. Show that such a protocol achieves soundness 1/p.

Question 3. Consider the 5-round protocol defined by adding two additional rounds before running
the sigma-protocol:

1. P first sends public parameters for Pedersen commitment (G, g, h) to V;
2. V replies with a group element C ← Com(c; r), with c, r ← U(Zp), which is a commitment to a

uniformly random challenge c;
3. This is the first round of the sigma-protocol Σ;
4. V reveals the challenge by opening C. P aborts if the opening is invalid;
5. This is the third round of the sigma-protocol Σ.

Show that this protocol now achieves (computational) zero-knowledge (and not just honest-verifier
zero-knowledge), and still has soundness 1/p.
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