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Abstract—This paper introduces Out of Hypervisor (OoH),
a new virtualization research axis. Instead of emulating full
virtual hardware inside a VM to support a hypervisor, the OoH
principle is to individually expose current hypervisor-oriented
hardware virtualization features to the guest OS. This way,
guest’s processes could also take benefit from those features.
We illustrate OoH with Intel PML (Page Modification Logging),
a feature that allows efficient dirty page tracking to improve
VM live migration. Because dirty page tracking is at the heart
of many essential tasks including process checkpointing (e.g.,
CRIU) and concurrent garbage collection (e.g, Boehm GC),
OoH exposes PML to accelerate these tasks in the guest. We
present two OoH solutions namely Shadow PML (SPML) and
Extended PML (EPML) that we integrated into CRIU and
Boehm GC. Evaluation results showed that EPML speeds up
CRIU checkpointing by about 13× and Boehm garbage collection
by up to 6× compared to SPML, /proc, and userfaultfd while
reducing their overhead on monitored applications by about 16×.

Index Terms—virtualization, page modification logging, check-
pointing, garbage collection

I. INTRODUCTION

The attractive costs and the efficiency of Cloud com-
puting have led to its massive expansion, including to the
HPC domain. In the cloud, applications run inside virtual
machines (VM). In this context, dirty page tracking is an
important need for both the guest kernel and its userspace
processes. The former tracks dirty pages to know if a file-
backed memory page should be copied to disk when swapped
out. In userspace, dirty page tracking is used by several
applications such as garbage collectors (GC) [? ], container
or process checkpoint/restore systems [? ? ], use-after-free
vulnerability mitigation systems [? ], etc. For illustration,
dirty page tracking is used by concurrent GCs like Boehm [?
] to reduce application pause time during the construction
of reachable objects. Existing dirty page tracking solutions
rely on userfaultfd (hereafter ufd) or /proc/<PID>/pagemap
(hereafter /proc), two interfaces offered by Linux. As assessed
in Section III, these two interfaces are extremely expensive
since they are based on page write protection, which induces
a lot of page faults and world transitioning (kernel space to

userspace and vice versa). We measured an overhead of up to
15× with ufd and 4× with /proc.

Intel Page Modification Logging (PML) [? ] is a hardware
virtualization feature originally introduced to track dirty
pages at the scale of a whole VM by the hypervisor to
accelerate VM live migration [? ]. In this paper, we study
how PML can be diverted to be used by the guest kernel and
its applications to accelerate their execution. We identify three
main challenges to achieving that. (C1) PML can be exploited
uniquely by the hypervisor. In other words, only software (the
hypervisor) running in VMX root ring 0 CPU mode can use
PML. Yet, the guest kernel and its applications run in CPU
VMX non-root ring ≥ 0. (C2) PML operates in coarse-grained
that is, it concerns the entire VM. We want to use PML at
the granularity of a process within the VM while allowing
the hypervisor to continue using it at the scale of the VM.
(C3) PML only logs guest physical addresses (GPAs) while
userspace processes need guest virtual addresses (GVAs).

This paper presents Out Of Hypervisor (OoH), a principle
that allows the utilization of hardaware virtualization features
from inside the VM, while preserving the underlaying security
of hypervisor and VMs. The paper particularly focuses on
Intel PML1. We describe two solutions of OoH for PML
and present two systems that can use them. These systems
are Boehm (a GC) and CRIU (a process checkpoint/restore
system). The first OoH solution called Shadow PML (noted
SPML) requires no hardware modification. In contrast, the
second OoH solution called Extended PML (noted EPML)
slightly extends the hardware implementation of PML to
avoid the limitations of SPML. We investigated SPML to
point out the need for a hardware extension of PML. SPML
relies on hypercalls (VM → hypervisor) and virtual interrupts
(hypervisor → VM) to respectively enable/disable PML and
to periodically copy GPAs (logged by the CPU to a PML
buffer in the hypervisor) to a ring buffer shared between
the hypervisor and the guest OS. It is then up to the guest
OS to perform GPA to GVA reverse mapping. EPML on
its side hijacks two hardware virtualization features (VMCS

1Future work will present OoH for Intel SPP.
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shadowing [? ] and posted-interrupt [? ]), and slightly extends
PML to avoid the intervention of the hypervisor on the critical
path. EPML is able to log the address of a dirty page into two
buffers simultaneously. The first buffer is exclusively managed
by the guest OS while the second buffer is managed by the
hypervisor. Finally, EPML logs GVA to the guest level buffer
and logs GPA to the hypervisor level one.

To facilitate the utilization of OoH, we provide a generic
library that we implemented following the UIO driver prin-
ciple [? ]. The library has two parts: a kernel module and
a userspace template code. The former does not need to be
managed by the application developers, who simply needs
to integrate the template code into their applications. We
prototyped and evaluated SPML on a DELL Intel Core i7-
8565U processor machine that supports PML, using the Xen
hypervisor (a popular hypervisor used by Amazon). Regarding
EPML, we rely on BOCHS, the only emulator (to the best
of our knowledge) that implements PML. In both designs,
the guest OS is Linux. We use both micro- and macro-
benchmarks for evaluations. For the latter, we use all the
five in-memory database engines from tkrzw [? ] and six
applications from Phoenix [? ] (a MapReduce application set).
To evaluate our prototypes, we set up a rigorous methodol-
ogy, especially for EPML which extends the hardware. To
this end, we build a mathematical formula that accurately
approximates the overhead or improvement of each solution.
We systematically compare SPML and EPML with /proc
and ufd. We are interested in the impact of each solution
on the tracked application (e.g., Phoenix) and the tracking
system (e.g., CRIU). The solutions are classified as follows,
in decreasing order of the overhead they induce: SPML, ufd,
/proc, and EPML. /proc, which is the default solution
implemented in both CRIU and Boehm, incurs an overhead
of up to 102% with CRIU on the Phoenix pca application,
and up to 232% with Boehm on the Phoenix string-match
application. The overhead of SPML is up to 114% with CRIU
and 273% with Boehm on the same applications. EPML leads
to the lowest overhead, which is about 7% with CRIU on pca
and 24% with Boehm on string-match. Hence, EPML
can improve existing systems by up to 62%. Concerning the
tracking system and compared to /proc, SPML induces up
to 5× slowdown on CRIU and 3× slowdown on Boehm GC.
EPML brings up to 4× speedup compared to /proc and 13×
speedup compared to SPML for CRIU. Finally for Boehm,
EPML brings up to 2× speedup compared to /proc and up
to 6× speedup compared to SPML.

In summary, we make the following contributions:

• (Empirical contribution) We finely quantify the impact of
page fault-based dirty page tracking.

• (Conceptual contribution) We present OoH and two so-
lutions namely SPML and EPML.

• (Technical contribution) We prototype SPML and EPML
in real and emulated environments (BOCHS) using pop-
ular system software (Xen hypervisor and Linux guest
OS).

• (Technical contribution) We integrate PML into two pop-
ular tracker systems namely CRIU and Boehm GC.

• (Empirical contribution) We rigourously evaluate our
designs using micro- and macro-benchmarks.

The rest of the paper is organized as follows. Section II
presents the background. Section III motivates our work.
Sections IV presents SPML and EPML, and discusses potential
security issue consideration. Section VI presents the evaluation
results. Section VII presents the state of the art. Section VIII
concludes the paper.

II. HARDWARE ASSISTED VIRTUALIZATION

This section provides the necessary background to under-
stand our contribution.

A. Virtual Machine Control Structure (VMCS)

Intel VT-x (Virtualization Technology extensions) is a hard-
ware virtualization technology for Intel processors. Its archi-
tecture is based on a central design decision that is to not
change the semantics of individual instructions of the ISA.
With VT-x, a virtualized environment may allow the guest
OS to execute exactly the same instructions as on bare metal.
Intel VT-x introduces two new CPU execution modes namely
vmx root and vmx non-root, that are orthogonal to the
traditional 4 cpl levels. The hypervisor runs in vmx root
mode cpl 0 whereas the guest OS runs in vmx non-root
mode cpl 0, thus avoiding the necessity to rewrite the guest
OS. Interactions and transitions between vmx root and vmx
non-root modes are automatically triggered by the CPU
using the virtual machine control structure (VMCS) associated
with the running vCPU. In addition to control structures, a
VMCS also stores the guest state (when transitioning from
guest to hypervisor) and the hypervisor state (when transition-
ing from the hypervisor to the guest).

VMCS is manipulated using new instructions (e.g.,
vmwrite, vmread, vmlaunch, etc.). In its early version,
VMCS was only manipulated in vmx root mode. To im-
prove nested virtualization, Intel recently introduced VMCS
shadowing which organizes VMCS into two types: ordinary
VMCS and shadow VMCS. A shadow VMCS is a VMCS
that is pointed to by another one, which becomes an ordinary
VMCS. The latter is only manipulated by the hypervisor while
the former can be directly accessed by the guest OS. Thus in
vmx non-root mode, vmread and vmwrite instructions
can be executed by the guest OS on shadow VMCS. Despite
the introduction of shadow VMCS, nested virtualization of an
entire VM is still inefficient because other hardware features
are still unavailable in vmx non-root mode for nested
hypervisors. Our work exploits VMCS shadowing to design
an efficient OoH use case.

B. Intel Page Modification Logging (PML)

PML is a hardware virtualization technology that has been
introduced to allow the hypervisor to efficiently monitor dirty
memory pages of guests. It relies on Extended Page Table
(EPT) and requires specific changes to VMCS. When PML is



Figure 1: Impact of /proc, ufd and OoH-PML methods on Tracked and Tracker. The two former methods lead to several
suspensions (red dashed lines) of Tracked, due to #PF -Page Faults- and context switches. ufd induces the longest suspension
time (#PF are handled in userspace). However, dirty page address collection takes much more time with /proc (due to the
parsing of /proc/PID/pagemap), thus impacting Tracker. OoH has the benefits of both world and does not require the
suspension of Tracked.

enabled, each write instruction that sets the dirty flag in EPT
during page table walk triggers the logging of the GPA at its
origin. To this end, a new 64-bit VM-execution control field
called PML Address is added to VMCS. The PML address
points to a 4KB memory page, called PML Buffer, that can
hold up to 512 logged GPAs. A new 16-bit guest-state field,
called PML Index, is also introduced to indicate the index
of the next logging entry in PML buffer. PML index starts
at 511. Whenever the PML buffer is full, the CPU triggers
a vmexit and the hypervisor takes over. The handler of that
vmexit copies the content of the PML buffer to a larger buffer
(managed by the hypervisor) and resets the PML index to
511. In Xen and KVM, which are two popular open-source
hypervisors (used by Amazon EC2), the content of the larger
buffer is used to know which pages should be resent during
the VM live migration pre-copy phase. It is important to note
that in its current implementation, the activation of PML is
machine (concerns all CPUs) and VM (concerns all vCPUs)
wide. In this paper, we are trying to make PML efficiently
usable from inside a VM, at the granularity of a process.

III. MOTIVATIONS

Dirty page tracking, thus PML, is not only essential for
hypervisors. A thread running inside a VM may also need to
monitor dirty pages for garbage collection or checkpointing.
We call Tracker the monitoring thread and Tracked the thread
whose memory is monitored. The traditional approach used
by Tracker is the invalidation of dirty and present bits from
Tracked’s page table entries (PTE). Linux offers two interfaces
that Tracker can leverage. These are ufd and /proc. Fig. 1
summarizes their functioning compared to a OoH-PML-based
solution. ufd and /proc are introduced in this section
while OoH-PML is presented in Section IV. The activity
of Tracker can generally be organized in four main phases:
the initialization of the tracking method, the monitoring, the
collection of dirty page addresses, and the exploitation of the
latter (e.g., for checkpointing).

We consider in this section that the fourth phase is empty as
its duration is agnostic to the tracking method, in comparison
with the three other phases. We launch Tracker and Tracked
at the same time but the latter is suspendend during the
initialization phase. The ideal execution time of Tracked is
when it runs without beeing tracked. The ideal execution time
of Tracker is the ideal execution time of Tracked. As one can
deduce from Fig. 1, the choice of the tracking method can

impact both Tracker and Tracked. We can see that OoH is the
only method which theoretically leads both systems to their
ideal execution time.

A. The cost of ufd

Fig. 1.b summarizes the functioning of a ufd-based dirty
page monitoring solution. To use ufd, Tracker first registers
the memory region it wants to monitor. After the registration,
it will be notified by the kernel each time a page fault
concerning the registered region occurs. ufd supports two
monitoring modes: miss and write_protect. For miss,
a notification is sent to Tracker when Tracked accesses a mon-
itored page for the first time. Concerning write_protect,
a notification is sent when Tracked attempts to modify a
monitored page. In both modes, Tracked is suspended until
the fault is resolved. In the case of write_protect, the
Tracker should write-unprotect the faulted page in order to
unpause Tracked. One can see that, with ufd, the collection
of dirty page addresses can be done during the monitoring
phase.

We assess the overhead of ufd using as Tracked a synthetic
program (presented in Section VI) that just parses and writes
to an array of buffers. The size of each buffer is 4KB, allocated
at page boundaries. We are interested in monitoring the entire
array. Table I second and fifth rows show the overhead of
ufd while we vary the array size. We can see that the
overhead linearly increases with the array size. We measured
an overhead of up to 15× and 14× for 1GB on Tracked and
Tracker respectively. We break down the page fault handling
time into two components: the time spent inside the kernel
(about 33.6ms for 1GB) and the time spent in Tracker (about
3,3383ms for 1GB). The total suspension time of Tracked
represents on average about 93% of its execution time.

On Tracked 1MB 10MB 50MB 100MB 250MB 500MB 1GB
ufd 195 272 583 1,050 1,266 1,462 1,463
/proc 104 55 114 208 302 307 335

On Tracker 1MB 10MB 50MB 100MB 250MB 500MB 1GB
ufd 93 169 477 940 1,269 1,153 1,349
/proc 47 43 58 148 151 143 147

Table I: Overhead (in %) of ufd- and /proc-based dirty page
tracking methods.

B. The cost of /proc

Fig. 1.a summarizes the functioning of a /proc-based dirty
page monitoring solution. Tracker first instructs the kernel
to clear soft-dirty bits of Tracked’s PTEs. This is done by



writing 4 to /proc/PID/clear_refs file, where PID is
the process identifier of Tracked. This operation is dominated
by the time taken by the kernel to parse Tracked’s PTEs and to
flush the TLB (about 2.234ms when the monitored memory is
1GB). All of this lengthens the initialization step compared to
ufd. After this, once Tracked tries to modify a monitored page,
a fault occurs. The handler of that fault sets in Tracked’s PTE
the soft-dirty bit of the faulted page (this operation costs about
33.5µs). At the end of the monitoring period, Tracker reads
the soft-dirty bits (bit 55) from /proc/PID/pagemap to
determine all dirty page addresses (this costs about 594.187ms
when the monitored memory is 1GB). The total suspension
time represents about 73% of the total execution time of
Tracked. As shown in Table I top, the impact of /proc
on Tracked varies with the memory size. We measured an
overhead of more than 4× for 1GB of memory. This overhead
is lower than the one induced by /ufd as shown above.
Concerning Tracker, see Table I bottom, the overhead is up
to 2× (147%). When compared to /ufd, although /proc
increases the address collection phase, its cost is compensated
by the smaller suspension it induces during the monitoring
phase.

C. Alternative

A way to use PML for a process is to dedicate a VM to the
latter, thus exploiting PML as is only by the hypervisor. This
approach works for some use cases such as checkpointing. In
fact, to checkpoint the process the user would checkpoint the
corresponding VM.

However, this approach would not be effective for use cases
where PML is required at runtime. It is the case for garbage
collectors that we study in this paper. The GC runs inside
the guest, so it needs to access PML from there. It is not
possible, at the hypervisor level, to perform garbage collection
for processes running inside a guest (which is a black box for
the hypervisor).

Another important drawback of this approach is that it
is contrary to the current trends of colocating tasks within
VMs to save resources (thus money) and reduce Inter-Process
Communication costs (to which HPC applications are very
sensitive). This practice is common in FaaS platforms, where
functions of the same client are co-located within the same
VM [? ]. Besides, several HPC FaaS platforms are initiatives
developing [? ? ].

D. Generalization

We can organize hardware virtualization features in two
groups. (G1) Features that facilitate resource multiplexing,
such as EPT (Extended Page Table), SRIOV (Single Root
I/O Virtualization), APICv (Intel’s Advanced Programmable
Interrupt Controller virtualization), etc. These features are not
relevant for exposure to the guest OS in the spirit of OoH.
(G2) Features that are intended to facilitate and improve VM
management tasks realized by the hypervisor, such as Intel
PML, CAT (Cache Allocation Technology), SPP (Sub Page

write Permission), PT (Processor Tracing), and so on. Consid-
ering a VM as a process, it makes sense to expose features of
this G2 category to the guest, thus allowing it to improve its
management tasks. Although this paper focuses on illustrating
OoH with Intel PML, notice that we are also studying the
application of OoH principles to Intel SPP for improving
secure heap memory allocators that run from inside VMs.
In fact, to mitigate buffer overflows, several heap memory
allocators [? ? ? ] use memory guard pages as they allow
synchronous overflow detection. Nevertheless, guard pages
lead to significant memory waste. By relying on Intel SPP,
we intend to reduce that overhead by a factor of 32 according
to the number of sub-pages allowed by Intel SPP within a
memory page.

IV. OUT OF HYPERVISOR

The goal of OoH is to make some hardware virtualization
features usable from inside the guest OS. We do this with as
minimum changes as possible in the hardware, the hypervisor,
and the guest kernel. In addition, we want to propose a
simple utilization interface to application developers. §IV-A
presents the methodology that OoH designers can follow when
applying this principle to a hardware virtualization feature.
Then §IV-B-IV-E illustrate that methodology to the exposure
of Intel PML.

A. Methodology

OoH argues for software and hardware approaches. Obvi-
ously, the latter should be envisioned only when the former is
not efficient. When followed, the latter should try to re-use as
maximum as possible existing functionalities before thinking
of hardware changes. To expose a given hardware virtual-
ization feature, the OoH principle is as follows. To facilitate
the exploitation of the exposed feature, OoH designers should
provide userspace applications with a library. The latter should
rely on a guest kernel module that preserves the privilege of the
kernel on multiplexing the exposed feature. OoH designers use
hypercalls and event channels as communication mechanisms
between the hypervisor and the guest. Hypercalls allow the
guest (OoH kernel module) to instruct the hypervisor (feature
initialization for instance) while event channels allow the
hypervisor to send a specific signal to the guest. VMCS shad-
owing, a feature that has been invented for improving nested
virtualization, can be leveraged to implement OoH. It allows
to reduce the number of interventions of the hypervisor, thus
improving performance. Finally, and only when unavoidably
necessary, some hardware changes can be made such as ISA
extension or VMCS data structure modifications.

B. Overview

We present two solutions of OoH for PML, namely Shadow
PML (noted SPML) and Extended PML (noted EPML). SPML
requires no hardware modification, while EPML slightly ex-
tends the hardware for better performance. Fig. 2 presents
the architecture of the two solutions (detailed in §IV-C and
§IV-D). In the guest, we provide OoH as a userspace I/O



(UIO) driver composed of a kernel module (OoH Module) and
a userspace library (OoH Lib). At load time, the former does a
set of initialization operations, including ring buffer allocation
that is shared with userspace (and the hypervisor in SMPL
only). Tracker uses OoH Lib to register the PID of Tracked
with OoH Module. From there on, the processor can log dirty
pages’ addresses to a 512KB PML buffer, which is copied to
the ring buffer once full. Relying on OoH Lib, Tracker can
periodically fetch the collected addresses to achieve its goal
(e.g., checkpointing).
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Figure 2: OoH: SPML and EPML architectures.
Sofware/Hardware changes are highlighted in red.

EPML differs from SPML in two ways: (1) With EPML,
the processor also logs GVAs, thus avoiding costly reverse
mapping in OoH Lib; (2) With EPML, the guest kernel
can directly deal with the processor, thus avoiding costly
hypercalls.

C. Shadow PML (SPML)

The basic idea behind SPML is to make the hypervisor
emulate PML for guest’s processes. Indeed, in this solution,
the hypervisor is the only component able to perform PML’s
instructions to the processor. Fig. 2 left summarizes SPML
functioning, with three main features.
(1) To ensure that the processor only logs GPAs for
tracked processes, we introduce two new hypercalls
disable_logging and enable_logging. The former
is called by OoH Module every time a tracked process is
scheduled-out. This hypercall copies the content of the PML
buffer to the ring buffer and instructs the processor to stop
logging. enable_logging is the inverse operation, invoked
by OoH Module when a tracked process is scheduled-in.
(2) In SPML, the processor logs GPAs while Tracker needs
GVAs. To fill this gap, OoH Lib reverse maps GPA to GVA by
parsing the page table of Tracked using the /proc interface.
(3) Recall that the hypervisor can also use PML for its
own purposes (e.g., VM live migration). To coordinate the
two levels, we introduce two flags (enabled_by_guest
and enable_by_hyp) that indicate which level has enabled
PML. When the PML buffer is full, the hypervisor does not
fill the ring buffer unless enabled_by_guest is set. And
similarly, if enabled_by_hyp is not set, the hypervisor
bypasses the operations corresponding to its use of PML, thus
avoiding unnecessary additional CPU time consumption. If

the hypervisor wants to deactivate PML, it first checks that
enabled_by_guest is not set and vice versa.

The main limitation of SPML lies in its performance over-
head caused by the high number of hypercalls and reverse
mapping operations that it generates, justifying EPML.

D. Extended PML (EPML)

Fig. 2 right summarizes EPML. The basic idea behind it is
to provide a second level of PML directly controlled by the
guest OS (OoH Module). Every tracked process is associated
with a guest-level PML buffer by OoH Module, exactly as the
hypervisor manages a PML buffer per vCPU.

To minimize hardware changes, EPML leverages the exist-
ing VMCS shadowing (see Section II) feature which allows a
guest to perform vmread and vmwrite instructions without
vmexit to the hypervisor. At load time, OoH Module calls the
hypervisor to enable and configure VMCS shadowing. This
is the only hypercall performed in EPML. Therefore, when
a tracked process is scheduled-in or out, OoH Module ac-
cordingly enables or disables address logging using vmwrite
instruction. Contrary to SPML, EPML does not interfere with
the hypervisor’s needs.

From a hardware point of view, EPML makes the following
small changes. We introduce in the VMCS a new field (called
Guest PML Address) that represents the address of the
guest-level PML buffer. Because the guest (OoH Module here)
only sees GPA, the value that it sets to the Guest PML Address
should be translated to a host physical address (HPA) so that
the processor can log to the right location in RAM. To tackle
this challenge, we extend the VMX ISA so that if a vmwrite
instruction to the Guest PML Address field is performed
when the processor is in guest mode, it first translates the
address to a HPA (using EPT) before writing it to the shadow
VMCS.

Another improvement brought by EPML is the capability
to log GVAs, thus avoiding reverse mapping by OoH Lib.
We modify the page walk circuit to make the processor log
the GVA to the guest-level PML buffer and the GPA to the
hypervisor-level PML buffer.

The last hardware extension is to handle guest-level PML
buffer full events. We modify the hardware so that when
the guest-level PML buffer is full, the processor raises a
virtual self-IPI (Inter-Processor Interrupt) which is handled
in the guest by OoH Module. Notice that, this is a very small
modification that leverages an existing feature called Posted-
Interrupts. With the latter, the processor is able to directly
deliver interrupts to the guest OS when running in the guest
mode without vmexits.

E. Implementation

We implemented OoH in Xen 4.10.0 hypervisor, Linux
4.15.0 guest OS, and BOCHS 2.6.11 Intel x86 emulator (only
for EPML, which extends the hardware). We use CRIU and
Boehm GC as Trackers.



Xen: It is a popular hypervisor used by Amazon
EC2. The main changes we made concern the intro-
duction of the two hypercalls disable_logging and
enable_logging, and the copy of the content of the PML
buffer to RB.

Linux Core: We essentially modified the interrupt table
to handle the virtual self-IPI raised by the processor when
the guest-level PML buffer is full in EPML. Notice that OoH
Module is a kernel module, thus it is not part of the Linux
core.

BOCHS: It is a very popular Intel machine emulator,
which yet implements PML. We modified it to implement
EPML, mainly by extending: the vmwrite instruction, the
page table walk circuit to log GVAs, and the PML logging
process to raise self-IPI on buffer full.

CRIU: It is a popular checkpoint/restore tool inte-
grated into many well-known projects such as OpenVZ [?
], Podman [? ], or Docker [? ]. CRIU relies on
/proc. To integrate OoH with it, we mainly patched two
steps: (1) Initialization: OoH avoids pausing (echo 4 >
/proc/PID/clear_refs) Tracked at the initialization
phase because the activation of PML is immediate and does
not interfere with the execution of Tracked, as illustrated
in Fig. 1.c. (2) Address collection: OoH avoids parsing the
/proc/<PID>/pagemap file to retrieve dirty pages’ ad-
dresses. The ring buffer is read instead.

Boehm GC: Boehm GC [? ] is a popular C and C++
garbage collector that is included in many well-known projects
such as Mozilla [? ], GNU Java compiler [? ], or Inkscape [? ].
Boehm GC provides incremental and generational collection
based on dirty page tracking. In its current implementation,
Boehm relies on /proc. To integrate OoH, we mainly patched
the mark phase, corresponding to where the GC checks
for modified pages. As with CRIU, OoH avoids reading
from /proc/PID/pagemap and resetting dirty bits via
/proc/PID/clear_refs.

Table ?? summarizes for each system, the number of LOC
and modified files that the implementation required.

System Xen Linux Bochs CRIU Boehm

#LOC SPML 182 6 N/A 251 254
EPML 120 14 44 140 144

#files SPML 13 2 N/A 9 4
EPML 9 9 6 9 4

Table II: Number of LOC and modified files in OoH imple-
mentation.

V. SECURITY AND ISOLATION

OoH empowers the guest processes by sharing some
hypervisor-oriented hardware virtualization features (PML in
this paper) with guest OSes. One may legitimately see this
as a source of potential threats. In this section, we show that
neither SPML nor EPML increases the vulnerability of the
hypervisor (against guest OSes), the guest OS (against others),
and processes (against others within the same guest VM). Our
trust model is the same as that of /proc and ufd that is,

the hypervisor does not trust guest OSes, which in turn do not
trust their processes. We elaborate below on the security of
the hypervisor, VMs, and processes.

Concerning the hypervisor, (1) only SPML requires its
modification, which represents only 194 LOC. The latter is
negligible compared to the hypervisor code size (about 900K+
LOC for Xen). Accordingly, we are pretty confident that our
added code is at least as safe as existing hypercalls. (2) In
both SPML and EPML, the guest OS does not see hardware
physical addresses (HPA). Remember that SPML logs GPA
and EPML logs GVA, both being virtual addresses. These
address types are traditionally seen and managed by the guest
OS, including when /proc and ufd are used. In OoH, the
hypervisor remains the sole layer that sees and manages HPA.
(3) The ring buffer that the hypervisor shares with each guest
OS is allocated within the guest’s address space and not that
of the hypervisor. Thus, a guest can not leverage it to corrupt
the hypervisor.

Concerning guest OSes, neither SPML nor EPML reduces
their isolation level. In SPML, a dedicated ring buffer is used
per guest. Therefore, a guest can only see logged addresses
that belong to its address space.

In the previous version of our prototype, all tracked pro-
cesses of the same guest could see the same SPML/EPML
logging buffer. That implementation could potentially lead
to side-channel attacks as a tracked process could learn the
memory access pattern of tenant tracked processes. (Thanks
to reviewer feedback, we have (easily) updated that imple-
mentation to dedicate a per-process ring buffer and restrict its
access to tracker processes only. This was an implementation
detail.)

VI. EVALUATIONS

This section presents the evaluation results. We want to
answer the following questions: (1) what is the potential
overhead or improvement of SPML and EPML compared
to existing solutions (/proc and ufd)? (2) what is the
scalability of SPML and EPML? (3) to what extent SPML
and EPML are able to efficiently capture all dirty pages?

A. Experimental environment

a) Machines and Systems: We carried out the experi-
ments on a machine with 8 Intel Core i7-8565U and 16 GB
of RAM. Especially to evaluate ufd we use Linux 5.11 be-
cause version 4.15.0 does not support the write_protect
mode. To emulate EPML we used BOCHS. In the emulated
environment, the VM has 1 vCPU and 1GB of memory (due to
BOCHS constraints). In all experiments on the real machine,
the VM has 1 dedicated CPU (to meet the emulated setup)
with 5GB of memory.

b) Benchmarks: We used both micro- and macro-
benchmarks. The former is composed of two applications:
an array parser (shown in Listing 1) and GCBench [? ],
a popular micro-benchmark to evaluate GCs. For macro-
benchmarks, we used two benchmark suites: tkrzw [? ] a
suite of key value data processing engines, and Phoenix [? ] a



Application Config. small ?? Memory Cons. Config. medium ?? Memory Cons. Config. large ?? Memory Cons.

Phoenix & GCBench
GCbench 500K 16 18 ?? 15.07MB 650K 18 20 ?? 67.76MB 750K 20 22 ?? 223.41MB
histogram 0.1GB-datafile ?? 102.27MB 0.5GB-datafile ?? 441.28MB 1.5GB-datafile ?? 1.49GB

kmeans -d 500 -c 500 -p 500 -p 100 ?? -d 1K -c 1K -p 1K -s 100 ?? -d 5K -c 5K -p 5K -s 100 ??
4.26MB 16.41MB 195.64MB

matrix-multiply 500 500 ?? 5.56MB 1K 1K ?? 16.21MB 2K 2K ?? 47.33MB
pca -r 1K -c 1K -s 200 ?? 8.12MB -r 5K -c 5K -s 200 ?? 97.85MB -r 10K -c 10K -s 200 ?? 195.50MB
string-match 50MB-datafile ?? 56.40MB 100MB-datafile ?? 106.14MB 200MB-datafile ?? 212.09MB
word-count 50MB-datafile ?? 100.65MB 100MB-datafile ?? 143.99 200MB-datafile ?? 205.88MB

tkrzw
baby –iter 3M –threads 3 ?? 253.64MB –iter 5M –threads 3 ?? 421.48MB –iter 10M –threads 3 ?? 848.56MB
cache –iter 3M –cap_rec_num 3M –threads 5 ?? 218.21MB –iter 5M –cap_rec_num 5M –threads 5 ?? 361.91MB –iter 10M –cap_rec_num 10M –threads 5 ?? 721.46MB

stdhash –iter 3M –buckets 100K –record_comp zlib –threads 2 ?? –iter 5M –buckets 100K –record_comp zlib –threads 2 ?? –iter 10M –buckets 100K –record_comp zlib –threads 2 ??
358.64MB 595.80MB 1.18GB

stdtree –iter 3M –threads 2 ?? 415.12MB –iter 5M –threads 2 ?? 694.07MB –iter 10M –threads 2 ?? 1.38GB
tiny –iter 5M –buckets 30M –threads 3 ?? 681.35MB –iter 5M –buckets 30M –threads 5 ?? 977.66MB –iter 5M –buckets 30M –threads 7 ?? 1.27GB

Table III: Configuration setup and memory consumption for each tkrzw (bottom), Phoenix and GCbench (top) applications.
For GCBench, the parameters are the array size, the lived tree depth and, the stretch tree. histogram, string-match,
and word-count use datafile as input parameter.

shared-memory implementation of Google’s MapReduce data
processing model. Concerning tkrzw, we focused on the five
in-memory engines and we injected set requests. For each of
the macro-benchmarks, we consider three configuration sizes
namely Small, Medium, and Large. Table III presents the per-
application memory size for each configuration. All results
presented in this section are mean of 5 runs.

1 . . .
2 # d e f i n e PAGE_SIZE s y s c o n f ( _SC_PAGE_SIZE )
3 # d e f i n e num_pg xx / / memory s i z e =xx∗PAGE_SIZE
4

5 vo id main ( vo id )
6 {
7 u n s i g n e d long ∗ r e g i o n = m a l loc ( num_pg∗PAGE_SIZE ) ;
8 /∗
9 ∗ Pin a l l t h e pages in−memory t o be s u r e t h a t

10 ∗ t h e y a r e n o t swapped o u t
11 ∗ /
12 m l o c k a l l (MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT) ;
13 f o r ( ; ; )
14 f o r ( u n s i g n e d long i =0; i <num_pg ; i ++)
15 r e g i o n [ ( i∗PAGE_SIZE ) / s i z e o f ( u n s i g n e d long ) ]= i ;
16 }

Listing 1: Micro-benchmark code.

B. Methodology

Since we do not have a real machine equipped with EPML,
we build a formula to estimate its impact compared to other
techniques. We first present a generic formula that captures the
functioning of all techniques. Then we specialize the formula
for each technique. Finally, we demonstrate the accuracy
of each formula using metric values collected during real
experiments. For ease of understanding, we consider in the rest
of this section that Tracked is a single-threaded application.
Let us recall that Tracker executes in the same thread with
Tracked, so each time Tracker runs, it disrupts the execution
flow of Tracked.

Let x be a tracking technique. x is either /proc, ufd,
SPML, EPML or oracle. The latter represents a hypothetical
technique able to provide all dirty pages with no additional
cost. Tracker’s code (noted Ctker) can be organized into two
parts: the tracking technique (noted Cx) and the tracking
routine (noted Cp). The latter is the part of Tracker that

implements the tracking goal, e.g., writing to disk during
checkpointing. In Tracker’s execution flow, Cx and Cp alter-
nate. We note Ctked the original code of Tracked (i.e., without
being monitored by any Tracker). We are interested in the
overhead of the tracking technique x on the execution time of
Tracker and Tracked.

a) Overhead of x on Tracker: The execution time of
Tracker when it implements x can be computed using For-
mula 1:

E(Ctker) = E(Cx) + E(Cp) + I(Cx, Cp) (1)

where E(C) is the execution time of code C (with
E(Coracle) = 0) and I(C1, C2) is the impact of C1 on C2.
This impact mainly consists of cache pollution. We experi-
mentally observed that I(Cx, Cp) is negligible. Therefore, the
overhead of x on Tracker is reduced to E(Cx). Formula 1 can
be developed for each technique as follows:

E(C/proc) = E(Cecho 4 > /proc/PID/clear_refs)

+ E(Cpage table walk in userspace)

E(CUFD) = E(Cioctl write_protect)

+ E(Cioctl register)

+ E(Cioctl write_unprotect)

E(CSPML) = E(Cring buffer copy)

+ E(Creverse mapping)

+ E(Cenable/disable PML)

E(CEPML) = E(Cring buffer copy)

+ E(Cenable/disable PML)

(2)

Table Va and Table Vb present the measured costs for all
events involved in Formula 2.b) Overhead of x on Tracked: The execution time of
Tracked when it is monitored by a tracker using the technique
x can be expressed by Formula 3:

E(Ctked_tker) = E(Ctked) + E(Ctker) + I(Cx, Ctked) (3)

where I(Cx, Ctked) consists of page faults, vmexits, etc.,
which are not negligible. Thus, the overhead of x on Tracked
is E(Ctker)+I(Cx, Ctked). Formula 4 develops I(Cx, Ctked)



for each technique:

I(C/proc, Ctked) = E(CPFH in kernelspace)

+ E(Ccontext switch)

I(CUFD, Ctked) = E(CPFH in userspace)

+ E(Ccontext switch)

I(CSPML, Ctked) = E(Cvmexits)

+N × E(Cvmread/vmwrite)

I(CEPML, Ctked) = N × E(Cvmread/vmwrite)

(4)

where N is the number of context switches during PML
execution, and PFH stands for Page Fault Handling.

c) Validation of the formulas: To validate our formulas,
we executed Tracker and Tracked for each technique and we
collected the following metrics: the execution time, and the
number of occurrences of each event related to the tracking
technique. Using these values, we compute E(Ctker) and
E(Ctked_tker). Then, we compare the obtained results with
real measurements, except for EPML. Notice that by validating
/proc, ufd, and SPML formulas, we are also validating by
construction the formula for EPML. For illustration, Table IVa
and Table IVb present results respectively for SPML and
/proc when Tracker is CRIU and Tracked is baby (from
tkrzw benchmark suite). We can see that Formula 2 and
Formula 4 estimate E(Ctker) and E(Ctked_tker) with an
average accuracy of 96.34% and 99% respectively. We can
then consider that the formula that estimates the impact of
EPML is relevant.

Metric Time (ms)
E(Ctker)
measured 5503.79

E(Ctked_tker)
measured 135255.35

E(Cp) 251.35
E(Ccopy_rb) 0.49
E(Cdisable pml) 2.06
E(Crev. mapping) 5419
E(Ctker)
estimated 5672.9

E(Cvmexits) 18000
N 39
E(Cvmread,vmwrite) 1.73 × 10−3

E(Ctked_tker)
estimated 136919.85

(a) SPML

Metric Time (ms)
E(Ctker)
measured 1097.99

E(Ctked_tker)
measured 115283.98

E(Cp) 251.35
E(Cclear_refs) 1.409
E(CPTwalk) 0.89
E(Ctker)
estimated 1116.09

E(CPFHuser) 0.27
E(Ctked_tker)
estimated 114418.58

(b) /proc

Table IV: Metrics collected to estimate E(Ctker) and
E(Ctked_tker) for techniques SPML and /proc using For-
mulas 1, 2, 3, and 4.

About the estimation of I(CEPML, Ctked), we rely on
SPML to obtain N, the number of context switches required
to compute I(CEPML, Ctked). Indeed, by construction, this
number is the same in both SPML and EPML. We validated
this by repeating the previous experiments with EPML and
SPML techniques in the emulated environment provided by
BOCHS. We collected N with a percentage difference of 2%.

C. Basic costs

We present in this section the cost of all internal metrics that
allow us to understand the higher-level performance metrics.
The values of these metrics also tell us about the scalability of
each tracking technique. The first column of Table Va lists the
metrics, organized into nine categories. For each metric, we
indicate whether or not its value depends on Tracked memory
size (second column of Table Va). For metrics that are agnostic
to the size of Tracked memory, their basic costs are presented
in the third column of Table Va. For the other metrics we
report their basic costs in Table Vb while varying the Tracked
memory size. We also indicate in column four of Table Va
which tracking methods the metric is associated with.

Metric Depend Cost (µs) Techniqueon mem.
M1. context switch No 0.315 All(from user to kernel space)
ioctl syscalls
M2. write_protect Yes - ufd
M3. init. PML No 5, 651 SPML & EPML
M4. deactivate PML No 2, 816 SPML & EPML
page fault handling
M5. in kernel space Yes - /proc, ufd
M6. in userspace Yes - ufd
vmx operations
M7. vmread No 0.936 EPML
M8. vmwrite No 0.801 EPML
hypercalls
M9. init. PML No 5, 495 SPML
M10. + init. VMCS shadowing No 5, 878 EPML
M11. PML deact. No 2, 060 SPML
M12. + VMCS shadowing deact. No 2, 755 EPML
M13. enable PML logging No 0.3 SPML
M14. disable PML logging Yes - SPML
M15. clear_refs Yes - /proc
M16. page table walk Yes - /proc & SPML(in userspace)
M17. reverse mapping Yes - SPML
M18. ring buffer copy Yes - EPML & SPML

(a) Metrics that are agnostic to Tracked memory size. clear_refs
is the shortcut for echo 4 > /proc/PID/clear_refs.

1MB 10MB 50MB 100MB 250MB 500MB 1GB
M15 0.032 0.0912 0.174 0.288 0.613 1.153 2.234
M16 1.912 14.479 41.832 82.289 161.973 307.109 594.187
M5 0.003 0.3 1.68 3.34 8.39 16.79 33.58
M6 2.5 27.3 152.3 347.1 882.8 1,585 3,483
M14 0.042 0.047 0.138 0.156 0.189 0.203 0.208
M18 0.003 0.01 0.03 0.048 0.109 0.383 0.671
M17 6.183 24.653 85.117 255.437 1,211 4,123 15,738

(b) Metrics that depend on Tracked memory size. Times are given in
milliseconds (ms).

Table V: Cost of internal metrics.
Table VI summarizes our analysis of the values reported in
Table Va and Table Vb:

• /proc: it involves 4 metrics, among which 3 depend on
Tracked memory size. The most costly metric is page
table walk in userspace (M16) which can take up to
594ms. Page fault handling in kernel space (M5) is the
second most costly metric. It can take up to 33ms, which
is quite significant since it may be involved frequently
during the monitoring phase. This is why it dramati-
cally impacts /proc scalability (from both Tracked and
Tracker perspectives).



/proc ufd SPML EPML

associated metrics M1, M5, M15, M16 M1, M2, M5, M6
M1, M3, M4, M9, M11, M1, M3, M4, M7,

M13, M14, M16, M17, M18 M8, M10, M12, M18

metrics depending on Tracked mem. size 3 (M5, M15, M16) 3 (M2, M5, M6) 4 (M14, M16, M17, M18) 1 (M18)
metrics involved in the monitoring phase 1 (M5) 2 (M5, M6) 2 (M13, M14) 2 (M7, M8)
the two most costly metrics M5, M16 M5, M6 M16, M17 M10, M12

metrics which impact scalability 3 (M5, M15, M16) 3 (M2, M5, M6) 4 (M14, M16, M17, M18) 1 (M18)from Tracker point of view
metrics which impact scalability 3 (M5, M15, M16) 2 (M5, M6) 2 (M13, M14) 2 (M7, M8)from Tracked point of view

Table VI: Influence of /proc, ufd, SPML and EPML on internal metrics. {Mi} are defined in Table Va.

• ufd: it involves 3 metrics, among which 2 depend on
Tracked memory size. The most costly metric is page
fault handling in userspace (M6), which costs up to
3, 483ms when Tracked memory size is 1GB. This metric
is further involved during the monitoring phase, thus
impacting the scalability of ufd (from both Tracked and
Tracker perspectives).

• SPML: it involves 10 metrics, among which 4 depend on
Tracked memory size. The most costly metric is reverse
mapping (M17) which takes up to 15s for 1GB Tracked
memory size. This metric will only impact the scalability
of Tracker because it is not involved in the monitoring
phase. Figure 3 presents the proportion of time taken
by each step of the collection phase in SPML. We can
observe that reverse mapping is the bottleneck of SPML
and represents on average more than 68% of the total
collection time.

• EPML: it involves 8 metrics, among which only one
depends on Tracked memory size. The most costly metric
is PML initialization (M10) which also includes VMCS
shadowing initialization. It costs about 5, 878ms. Because
this metric does not depend on Tracked memory, it does
not impact the scalability of Tracker. The metrics that
impact the scalability of Tracked are vmread (M7) and
vmwrite (M8) whose costs are very low (less than 1µs).
This makes EPML scalable.

D. Micro-benchmark Results

This section evaluates the impact of each dirty page tracking
technique on Tracked where it is a micro-benchmark applica-
tion. We vary the memory size of Tracked and we measure
its execution time with and without the tracking technique.
Figure 4 plots the slowdown incurred by each technique.
We can observe that except EPML, the overhead on Tracked
increases with its memory size. For almost all memory sizes,
SPML incurs the greatest slowdown, up to 66×. This high
overhead is due to reverse mapping that can take up to 15s
for 1GB of memory (see Figure 3). Figure 4 reveals that ufd
also highly increases the execution time of Tracked (by up
to 15×). When the memory size is less than 250MB, ufd
appears to be the worst technique. This is explained by the fact
that page fault handling in userspace, which is the bottleneck
of ufd technique (see Table Vb), is more costly than reverse
mapping for a working set less than 250MB. The overhead of
EPML is negligible regardless of the memory size of Tracked,

confirming its scalability. With a maximum overhead of about
0.6%, EPML appears to be the best technique.
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E. Boehm Results
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Figure 5: Execution time of Boehm GC when implemented
with /proc, SPML, and EPML. The figure highlights the
first garbage collection cycle during which Boehm performs
the reverse mapping with SPML, the reason why its execution
time is higher for SPML compared to the two other techniques.

In this section, we evaluate the impact of /proc, SPML,
and EPML on Boehm GC using GCBench and Phoenix
macro-benchmarks. We do not evaluate Boehm using the
tkrzw benchmark because the former only works properly for
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Figure 6: Impact of Boehm GC on Tracked execution time when using /proc, SPML and EPML techniques. The baseline is
the ideal execution time of the application, i.e. when not tracked.

C applications [? ]. We implemented SPML and EPML in
Boehm. We evaluate both the impact on Tracker and Tracked.

a) Impact on Tracker (Boehm GC): Figure 5 presents
the impact of each technique on Boehm GC. Due to page
limitations, we do not present the results for all applications.
Boehm GC can perform from 2 (e.g., for histogram config.
Small) to 23 (e.g., for GCBench config. Large) cycles of
garbage collection depending on the allocation intensity of
the workload. Figure 5 plots the garbage collection time
during the execution of each application. We emphasize the
first cycle as it highlights the overhead of SPML on Boehm
which performs the reverse mapping during this cycle 2. We
can observe in Figure 5 that if we ignore the first cycle,
SPML outperforms /proc. This explains why EPML is the
best solution, as it avoids reverse mapping (see Figure 3).
Nonetheless, SPML outperforms /proc by up to 36% for ap-
plications histogram (configuration Large), word-count
(configuration Medium), and GCBench (configurations Large
and Medium). EPML outperforms both /proc and SPML
respectively by up to 58% and 47% (with GCBench config.
Medium).

b) Impact on Tracked: The execution time of applica-
tions (Tracked) that use Boehm GC will be impacted at least
by the duration of the GC (see Figure 5). Figure 6 assesses
the level of this impact according to the technique that Boehm
uses. We can see that compared to /proc, SPML increases
the overhead of Boehm GC on most applications. But for
GCBench configuration Medium, SPML reduces the over-
head of Boehm compared to /proc by about 1.7%. About
matrix-multiply that runs in 51ms, SPML increases
by about 63% the overhead of Boehm compared to /proc .
This increase is only 2% for GCBench configuration Medium
which runs in 6s and 0.5% for histogram configuration
Large which runs in 7.3s. EPML significantly reduces the
overhead of Boehm compared to /proc and SPML for all
applications, by about 62% with string-match application.

F. CRIU Results

In this section, we evaluate the impact of /proc, SPML,
and EPML on CRIU using macro-benchmarks. For Phoenix
applications, we use the Large configuration and we increase
the number of map-reduce tasks to make the applications have
long execution times for checkpointing.

2During the following cycles, Boehm just reuses the addresses collected
during the first cycle.

a) Impact on Tracker (CRIU): We evaluated each stage
of the CRIU checkpointing algorithm, which includes among
others the memory write (MW) phase and the memory dump
(MD) phase. CRIU collects the dirty pages to be dumped
during the MD phase and writes them to the disk during the
MW phase. Depending on the tracking technique implemented
by CRIU, these two phases can be done sequentially or
simultaneously. When CRIU implements the /proc technique
it walks the process page table to get dirty pages and writes
them to the disk as it finds them. While with SPML and
EPML it first collects all dirty pages from the ring buffer and
then writes them to the disk. This is the reason why SPML
and EPML significantly improve the MW phase compared to
/proc, as shown in Figure 7. We measured an improvement
of up to 26× with application tiny configuration Large. In
addition, MW time is almost constant with SPML and EPML
while with /proc it can take up to 5.7s.
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Figure 7: Memory write time during CRIU checkpointing.

Figure 8 presents the complete checkpointing time, highlight-
ing the MD phase. When using SPML, CRIU performs reverse
mapping during the MD phase, which drastically increases the
checkpointing time. This leads to a non-negligible overhead
as we can see in Figure 8. Indeed, complete checkpointing is
up to 5× slower with SPML compared to /proc for both
tkrzw (baby configuration Large) and kmeans configuration
Large). Since reverse mapping represents on average more
than 66% of MD time with SPML, avoiding it may lead to
better performance compared to /proc. This is why EPML
allows CRIU to execute faster compared to /proc and SPML.
Indeed, EPML brings up to 4× speedup to CRIU checkpoint-
ing compared to /proc and up to 13× speedup compared to
SPML, respectively with tiny and baby configuration Large
(in Figure 8).

b) Impact on Tracked: Applications are paused during
checkpointing. Therefore, CRIU increases the execution time
of the checkpointed application. Figure 9 presents the overhead



of CRIU. The default implementation of CRIU (that uses
/proc) can significantly impact the checkpointed application,
by up to ∼102% for pca application. Concerning SPML, it
incurs a higher overhead on the application execution time
compared to /proc. Figure 9 shows that this overhead can
vary from ∼1% (with kmeans) to ∼114% (with pca). EPML
leads to the best results. Its overhead does not exceed 14%,
with an average of only 3%.
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Figure 8: Execution time of CRIU when implemented with
/proc, SPML, and EPML. The figure MD phase during
which CRIU performs the reverse mapping with SPML.
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Figure 9: Impact of CRIU on Tracked execution time when
using /proc, SPML and EPML techniques. The baseline
is the ideal execution time of the application, i.e. when not
tracked.

G. Scalability

In Sections VI-E and VI-F we have evaluated the scalability
of SPML and EPML with different working set sizes. In the
present section, we vary the number of tenant VMs from one

up to 5. The evaluation scenario is the same as in the pre-
vious sections. We use Boehm and the Phoenix-histogram
application (Config. Large). Results are presented in Fig. 10
and 11. We can observe that, the performance impact of both
SPML and EPML on Tracker (Fig. 10) and Tracked (Fig. 11)
is the same as what we obtained with one VM (Fig. 5 and
Fig. 6 config. Large). In addition, this performance remains
quite constant when the number of VMs increases.

VII. RELATED WORK

a) Nested virtualization: The main source of perfor-
mance degradation in virtualized environments is VM traps.
The latter lead to VM execution suspension and also to cache
pollution [? ] due to context switches. The number of VM
traps increases at least by a factor of two in nested virtualized
environments [? ]. The reduction of VM traps is a hot topic
in both non-nested [? ? ? ] and nested virtualized systems [?
? ? ]. Device passthrough is a simple approach for improving
I/O performance in nested and non-nested virtualized envi-
ronments by providing direct access to the VM. However, it
dedicates the entire device to a single VM, resulting in sub-
optimal resource utilization. In addition, device passthrough
does not permit VM live migration, which is an important
operation for cloud providers as it is used for maintenance.
VMCS shadowing [? ], that EPML leverages, has been in-
troduced by Intel to reduce traps when a nested hypervisor
accesses some VMCS fields. SVT , by Vilanova et al. [? ],
exploited simultaneous multithreading (SMT) processors to
minimize VM traps. SVT runs every nested virtualization level
on a separate SMT thread and it replaces VM trap and VM
resume to avoid context switches between nested hypervisors
and the host hypervisor (the one that directly runs atop the
hardware). In SVT , only one SMT thread can run at a given
time leading to core waste.

DVH, by Lim et al. [? ], proposed that the host hypervisor
provides virtual devices directly to nested VMs without the
intervention of intermediate hypervisors. The intermediate
hypervisors only intervene at virtual device initialization time
to make it visible and directly accessible to the nested VM.
The authors illustrated DVH with four devices: virtual-IO,
virtual timer, virtual IPI, and virtual idle. Although DVH is
promising, its application to all devices that compose full
hardware is unpractical. With OoH, we are advocating for
exposing only hardware virtualization features that could help
applications, which is tractable.

b) Dirty page tracking: This activity is necessary for
both hypervisors and processes. The hypervisor relies on it to
perform pre-copy based live migration and also checkpointing.
Dirty page monitoring is at the heart of concurrent garbage
collectors and other userspace processes such as CRIU for
container and processes checkpointing, or Redis for dumping
the database. So far, the main approach used for monitoring
dirty pages is two steps: invalidation of PTE dirty bit and
present bit, and page faults interception. To minimize the
overhead of this approach, some alternatives have been pro-
posed. For the hypervisor, Intel introduced PML, the hardware
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Figure 10: Impact of each tracking technique on Tracker when varying the number of VMs.
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Figure 11: Impact of each tracking technique on Tracked when
varying the number of VMs.

feature that we study in the present paper. Bitchebe et al. [?
] showed that PML can decrease both VM live migration and
checkpointing duration. The authors also extended PML to
log read pages in order to efficiently estimate VM working
set size. In non-virtualized environments, Lu et al. [? ] built
a memory allocator which maps several objects to the same
physical page, thus reducing the number of tracked pages.
Nevertheless, this solution does not avoid frequent interruption
of the tracked process due to page faults.

VIII. CONCLUSION

This paper introduces Out of Hypervisor (OoH), a new
research axis that advocates the exposure of individually
current hypervisor-oriented hardware virtualization features
to the guest OS so that its processes can also take benefit
from those features. We illustrated OoH with Intel PML, a
feature that allows efficient dirty page tracking. We prototyped
OoH following two solutions namely Shadow (SPML) and
Extended PML (EPML). The former requires no hardware
changes but incurs significant performance overhead. It is
not the case of EPML that extends the original PML to
avoid SPML limitations. We evaluated and compared SPML
and EPML with two popular dirty page tracking techniques
namely /proc and ufd. We implemented OoH using the Xen
hypervisor, Linux OS, and the Bochs emulator. We considered
CRIU and Boehm GC as the use cases, where the target
applications are Phoenix (a shared-memory data processing
model) and tkrzw (a key value data processing model). The
evaluation results showed that the different techniques can be
classified as follows, from the most to the least costly: SPML,
ufd, /proc, and EPML. Indeed, EPML brings up to 13×
speedup to systems using the other techniques, while reducing
their overhead on applications by up to 16×.
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