
Out of Hypervisor (OoH): Efficient Dirty Page Tracking 
In Userspace Using Hardware Virtualization Features

Stella Bitchebe
(bitchebe@i3s.unice.fr)

Alain Tchana
(alain.tchana@grenoble-inp.fr)

November 17th, 2022



1 Virtualized Clouds: Dirty Page Tracking in
Guest Userspace

1.1 Importance
1.2 State-of-the-art Techniques

2 Problem: Limits of Existing Solutions

3 Solution: Hardware-Assisted Virtualization
Out of Hypervisor (OoH)

4 OoH for PML

5 Evaluatons

6 Conclusion



Virtualized Clouds: Dirty Page
Tracking in Userspace

Purpose
I WSS (working set size) estimation (for memory overcommitment)
I Live migration (for maintenance)
I Checkpointing (for recovery after failure)
I Garbage collection (for better memory management)

Nomenclature
I Tracker: the monitoring thread (e.g., CRIU, Boehm GC)
I Tracked: the thread whose memory is monitored (any application)

2 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Virtualized Clouds: Dirty Page
Tracking in Userspace

Purpose
I WSS (working set size) estimation (for memory overcommitment)
I Live migration (for maintenance)
I Checkpointing (for recovery after failure)
I Garbage collection (for better memory management)

Nomenclature
I Tracker: the monitoring thread (e.g., CRIU, Boehm GC)
I Tracked: the thread whose memory is monitored (any application)

2 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Virtualized Clouds: Dirty Page
Tracking in Userspace

Current approach
I Page write protection
I Two main solutions

I Linux /proc interface
I Linux userfaultfd (ufd) interface

3 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



1 Virtualized Clouds: Dirty Page Tracking in
Guest Userspace

2 Problem: Limits of Existing Solutions

3 Solution: Hardware-Assisted Virtualization
Out of Hypervisor (OoH)

4 OoH for PML

5 Evaluatons

6 Conclusion



Problem: Limits of Page Write
Protextion

Overhead
I ufd: Page fault (#PF) handling and context switches

I 15.6× and 14.5× slowdown for 1GB on Tracked and Tracker
respectively

I /proc: #PF handling and page table (PT) walks
I ∼2.234ms: parse PT and flush TLB (in the kernel)
I ∼594.187ms: parse PT in userspace (/proc/PID/pagemap) for 1GB
I 4.3× and 2.5× slowdown for 1GB on Tracked and Tracker

respectively

4 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Problem: Limits of Page Write
Protextion

Overhead
I ufd: Page fault (#PF) handling and context switches

I 15.6× and 14.5× slowdown for 1GB on Tracked and Tracker
respectively

I /proc: #PF handling and page table (PT) walks
I ∼2.234ms: parse PT and flush TLB (in the kernel)
I ∼594.187ms: parse PT in userspace (/proc/PID/pagemap) for 1GB
I 4.3× and 2.5× slowdown for 1GB on Tracked and Tracker

respectively

4 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



1 Virtualized Clouds: Dirty Page Tracking in
Guest Userspace

2 Problem: Limits of Existing Solutions

3 Solution: Hardware-Assisted Virtualization
Out of Hypervisor (OoH)

3.1 Virtualization Technologies
3.2 Categorization of Virtualization Technologies
3.3 OoH Principle

4 OoH for PML

5 Evaluatons

6 Conclusion



Virtualization Technologies

I Goal: reduce overheads of virtualization
I AMD-v (2006) and Intel VT (2005)

I CPU virtualization (e.g., VT-x)
I MMU virtualization (e.g., EPT)
I I/O virtualization (e.g., SRIOV)

5 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Intel VT Features Categorization
2 main groups:
G1: Multiplexing Features
I Extended Page Table (EPT)
I Single Root I/O Virtualization (SRIOV)
I Advanced Programmable Interrupt Controller virtualization

(APICv)

G2: Management Features
I Page Modification Logging (PML)
I Sub-Page write Permissions (SPP)
I Cache Allocation Technology (CAT)

G2’s features can be exploited in VMs

6 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Intel VT Features Categorization
2 main groups:
G1: Multiplexing Features
I Extended Page Table (EPT)
I Single Root I/O Virtualization (SRIOV)
I Advanced Programmable Interrupt Controller virtualization

(APICv)

G2: Management Features
I Page Modification Logging (PML)
I Sub-Page write Permissions (SPP)
I Cache Allocation Technology (CAT)

G2’s features can be exploited in VMs

6 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Intel VT Features Categorization
2 main groups:
G1: Multiplexing Features
I Extended Page Table (EPT)
I Single Root I/O Virtualization (SRIOV)
I Advanced Programmable Interrupt Controller virtualization

(APICv)

G2: Management Features
I Page Modification Logging (PML)
I Sub-Page write Permissions (SPP)
I Cache Allocation Technology (CAT)

G2’s features can be exploited in VMs
6 / 26

Stella Bitchebe & Alain Tchana, SC22, November 17th 2022
N



OoH Principle

I New research axis
I Objective

I Make some hardware virtualization features usable within the guest
OS

I From conception/design of features

I Methodology
I Kernel module and userspace library
I Hypercalls and event channels between hypervisor and guests
I Leverage existing extensions for direct passthrough
I Hardware changes (e.g., ISA extension)

7 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



OoH Principle

I New research axis
I Objective

I Make some hardware virtualization features usable within the guest
OS

I From conception/design of features
I Methodology

I Kernel module and userspace library
I Hypercalls and event channels between hypervisor and guests
I Leverage existing extensions for direct passthrough
I Hardware changes (e.g., ISA extension)

7 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



1 Virtualized Clouds: Dirty Page Tracking in
Guest Userspace

2 Problem: Limits of Existing Solutions

3 Solution: Hardware-Assisted Virtualization
Out of Hypervisor (OoH)

4 OoH for PML
4.1 PML Functioning
4.2 Shadow PML (SPML)
4.3 Extended PML (EPML)
4.4 Security and Isolation

5 Evaluatons

6 Conclusion



PML Functioning
Allows the hypervisor to track guest memory accesses

Intel PML in the OoH Context
I To accelerate CRIU checkpointing and Boehm garbage collection

8 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



PML-based Dirty Page Tracking in
Userspace

9 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



OoH for PML

Challenges
I (C1) PML can only be managed by the hypervisor
I (C2) PML works at coarse-grained, that is it concerns the entire

VM
I (C3) PML only logs GPAs

10 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



OoH for PML

Two Solutions
I Shadow PML (SPML): no hardware modification

2 Its significant overhead justifies EPML
I Extended PML (EPML): modest hardware changes

11 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Shadow PML (SPML): Design

12 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Shadow PML (SPML): Limitations
I Costly reverse mapping (∼15.739 s for 1GB working set)

 0

 4

 8

 12

 16

1 10 50 100 250 500 1000

Ti
m

e 
(s

)

Memory Size (MB)

Reverse Mapping
Page Table Walk
Ring Buffer Copy

I Costly hypercalls (4.49µs for empty hypercall)

13 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Extended PML (EPML): Design

14 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Extended PML (EPML): Design

14 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



OoH Security and Isolation

Vis-à-vis the Hypervisor
I Small TCB1 (194LOC) - at least safe as existing hypercalls
I Guest does not see nor manipulate host physical memory
I Ring buffer allocated from VM’s memory

Between VMs
I Same isolation level
I Ring buffer allocated per VM’s address space => no possible

inference
I Per process ring buffer and restriction to tracker process only

1Trust Code Base
15 / 26

Stella Bitchebe & Alain Tchana, SC22, November 17th 2022
N



OoH Security and Isolation

Vis-à-vis the Hypervisor
I Small TCB1 (194LOC) - at least safe as existing hypercalls
I Guest does not see nor manipulate host physical memory
I Ring buffer allocated from VM’s memory

Between VMs
I Same isolation level
I Ring buffer allocated per VM’s address space => no possible

inference
I Per process ring buffer and restriction to tracker process only

1Trust Code Base
15 / 26

Stella Bitchebe & Alain Tchana, SC22, November 17th 2022
N



1 Virtualized Clouds: Dirty Page Tracking in
Guest Userspace

2 Problem: Limits of Existing Solutions

3 Solution: Hardware-Assisted Virtualization
Out of Hypervisor (OoH)

4 OoH for PML

5 Evaluatons
5.1 Implementation and Benchmarks
5.2 Tracker Evaluation
5.3 Tracked Evaluation

6 Conclusion



Evaluations: Implementation

I We implemented EPML’s hardware changes in BOCHS
I We used Xen as the hypervisor and Linux as the guest OS
I We integrated OoH Lib with:

v CRIU: Checkpoint/Restore in User space
• Integrated in OpenVZ, Docker, etc.
• Based on /proc technique

v Boehm GC: popular C/C++ garbage collector
• Included in Mozilla, GNU Java Compiler, etc.
• Based on /proc technique

16 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Benchmarks

I Macro-benchmarks: tkrzw applications (key value store) and Phoenix
applications (MapReduce)

I Three working set sizes (Small, Medium, and Large)

17 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Methodology for
EPML

Approach
I Build a formula f
I Show the accuracy of f on other techniques that are measurable

18 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Methodology for
EPML

Impact on Tracker
Execution time of Tracker when implementing technique x :
E (Ctker) = E (Cx) + E (Cp) + I(Cx ,Cp)
x : /proc, SPML, EPML - Cx : enable_PML, ring buffer copy, etc.

Impact on Tracked
Time of Tracked when monitored by a Tracker using technique x :
E (Ctked_tker) = E (Ctked) + E (Ctker) + I(Cx ,Ctked)
I(Cx ,Ctked): page faults, vmexits, etc.

19 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Formulas Validation

Metric Time (ms)
E(Ctker )
measured 5503.79

E(Ctked_tker )
measured 135255.35

E(Cp) 251.35
E(Ccopy_rb) 0.49
E(Cdisable pml ) 2.06
E(Crev. mapping ) 5419
E(Ctker )
estimated 5672.9

E(Cvmexits) 18000
N 39
E(Cvmread,vmwrite) 1.73 × 10−3

E(Ctked_tker )
estimated 136919.85

(a) SPML

Metric Time (ms)
E(Ctker )
measured 1097.99

E(Ctked_tker )
measured 115283.98

E(Cp) 251.35
E(Cclear_refs) 1.409
E(CPTwalk) 0.89
E(Ctker )
estimated 1116.09

E(CPFHuser ) 0.27
E(Ctked_tker )
estimated 114418.58

(b) /proc

Table: An accuracy of 96.34% and 99% respectively

20 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Formulas Validation

SPML accuracy: 96.34%

/proc accuracy: 99%

21 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Tracker Results
Boehm CRIU

SPML vs. /proc: 5×
and 3× slowdown resp.
on CRIU and Boehm

EPML: (On CRIU:)
4× and 13× speedup
compared to /proc and
SPML resp.
(On Boehm:) 2× and
6× speedup compared to
/proc and SPML resp.

22 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Tracked Results
Boehm

 0
 4
 8

 12

gc
be

nc
h

hi
st

km
ea

ns

m
at

rix

str
in

g

w
or

d-
cTi

m
e 

(s
)

Benchmark Config. Large

 0
 1
 2
 3

gc
be

nc
h

hi
st

km
ea

ns

m
at

rix

str
in

g

w
or

d-
cTi

m
e 

(s
)

Benchmark Config. Medium

 0
 0.5

 1
 1.5

 2

gc
be

nc
h

hi
st

km
ea

ns

m
at

rix

str
in

g

w
or

d-
cTi

m
e 

(s
)

Benchmark Config. Small
Baseline
Boehm-EPML

Boehm-/proc
Boehm-SPML

CRIU

 0
 100
 200
 300

baby
cache

stdhash
stdtree tiny

Ti
m

e 
(s

)

tkrzw Config. Large

 0
 20
 40
 60
 80

baby
cache

stdhash
stdtree tiny

Ti
m

e 
(s

)

tkrzw Config. Medium

 0
 10
 20
 30
 40

baby
cache

stdhash
stdtree tiny

Ti
m

e 
(s

)

tkrzw Config. Small

23 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



Evaluations: Tracked Results

Impact on Tracked
I /proc:

I Up to 102% overhead on Phoenix-pca with CRIU
I Up to 232% overhead on Phoenix string-match with Boehm

I SPML:
I Up to 114% overhead on Phoenix-pca with CRIU
I Up to 273% overhead on Phoenix string-match with Boehm

I EPML:
I Only 7% with CRIU
I Only 24% with Boehm
I ==> 16× improvement

24 / 26
Stella Bitchebe & Alain Tchana, SC22, November 17th 2022

N



1 Virtualized Clouds: Dirty Page Tracking in
Guest Userspace

2 Problem: Limits of Existing Solutions

3 Solution: Hardware-Assisted Virtualization
Out of Hypervisor (OoH)

4 OoH for PML

5 Evaluatons

6 Conclusion



Conclusion
Dirty Page Tracking
I For wss estimation, live migration, checkpointing, GC, ...
I Induce high overhead on applications

OoH for Intel PML (https://github.com/bstellaceleste/OoH)
I For improving process/container checkpointing, concurrent GCs
I 4× speedup on Tracker - 16× improvement on Tracked

Take Away
I Existing sofware-based tools can be improved using hardware

virtualization features
I Think of OoH from the conception/design of hardware virtualization

features

https://github.com/bstellaceleste/OoH


Conclusion
Dirty Page Tracking
I For wss estimation, live migration, checkpointing, GC, ...
I Induce high overhead on applications

OoH for Intel PML (https://github.com/bstellaceleste/OoH)
I For improving process/container checkpointing, concurrent GCs
I 4× speedup on Tracker - 16× improvement on Tracked

Take Away
I Existing sofware-based tools can be improved using hardware

virtualization features
I Think of OoH from the conception/design of hardware virtualization

features

https://github.com/bstellaceleste/OoH


Conclusion
Dirty Page Tracking
I For wss estimation, live migration, checkpointing, GC, ...
I Induce high overhead on applications

OoH for Intel PML (https://github.com/bstellaceleste/OoH)
I For improving process/container checkpointing, concurrent GCs
I 4× speedup on Tracker - 16× improvement on Tracked

Take Away
I Existing sofware-based tools can be improved using hardware

virtualization features
I Think of OoH from the conception/design of hardware virtualization

features

https://github.com/bstellaceleste/OoH


Out of Hypervisor (OoH): Efficient Dirty Page Tracking 
In Userspace Using Hardware Virtualization Features

Stella Bitchebe
(bitchebe@i3s.unice.fr)

Alain Tchana
(alain.tchana@grenoble-inp.fr)

November 17th, 2022


	Virtualized Clouds: Dirty Page Tracking in Guest Userspace
	Importance
	State-of-the-art Techniques

	Problem: Limits of Existing Solutions
	Solution: Hardware-Assisted Virtualization Out of Hypervisor (OoH)
	Virtualization Technologies
	Categorization of Virtualization Technologies
	OoH Principle

	OoH for PML
	PML Functioning
	Shadow PML (SPML)
	Extended PML (EPML)
	Security and Isolation

	Evaluatons
	Implementation and Benchmarks
	Tracker Evaluation
	Tracked Evaluation

	Conclusion

