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Virtualized Clouds: Dirty Page
Tracking in Userspace

Purpose
I WSS (working set size) estimation (for memory overcommitment)
I Live migration (for maintenance)
I Checkpointing (for recovery after failure)
I Garbage collection (for better memory management)

Nomenclature
I Tracker: the monitoring thread (e.g., CRIU, Boehm GC)
I Tracked: the thread whose memory is monitored (any application)
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Virtualized Clouds: Dirty Page
Tracking in Userspace

Current approach
I Page write protection
I Two main solutions

I Linux /proc interface
I Linux userfaultfd (ufd) interface
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Problem: Limits of Page Write
Protextion

Overhead
I ufd: Page fault (#PF) handling and context switches

I 15.6× and 14.5× slowdown for 1GB on Tracked and Tracker
respectively

I /proc: #PF handling and page table (PT) walks
I ∼2.234ms: parse PT and flush TLB (in the kernel)
I ∼594.187ms: parse PT in userspace (/proc/PID/pagemap) for 1GB
I 4.3× and 2.5× slowdown for 1GB on Tracked and Tracker

respectively
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Virtualization Technologies

I Goal: reduce overheads of virtualization
I AMD-v (2006) and Intel VT (2005)

I CPU virtualization (e.g., VT-x)
I MMU virtualization (e.g., EPT)
I I/O virtualization (e.g., SRIOV)
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Intel VT Features Categorization
2 main groups:
G1: Multiplexing Features
I Extended Page Table (EPT)
I Single Root I/O Virtualization (SRIOV)
I Advanced Programmable Interrupt Controller virtualization

(APICv)

G2: Management Features
I Page Modification Logging (PML)
I Sub-Page write Permissions (SPP)
I Cache Allocation Technology (CAT)

G2’s features can be exploited in VMs
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OoH Principle

I New research axis
I Objective

I Make some hardware virtualization features usable within the guest
OS

I From conception/design of features

I Methodology
I Kernel module and userspace library
I Hypercalls and event channels between hypervisor and guests
I Leverage existing extensions for direct passthrough
I Hardware changes (e.g., ISA extension)
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PML Functioning
Allows the hypervisor to track guest memory accesses

Intel PML in the OoH Context
I To accelerate CRIU checkpointing and Boehm garbage collection
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PML-based Dirty Page Tracking in
Userspace
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OoH for PML

Challenges
I (C1) PML can only be managed by the hypervisor
I (C2) PML works at coarse-grained, that is it concerns the entire

VM
I (C3) PML only logs GPAs
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OoH for PML

Two Solutions
I Shadow PML (SPML): no hardware modification

2 Its significant overhead justifies EPML
I Extended PML (EPML): modest hardware changes
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Shadow PML (SPML): Design
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Shadow PML (SPML): Limitations
I Costly reverse mapping (∼15.739 s for 1GB working set)
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I Costly hypercalls (4.49µs for empty hypercall)
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Extended PML (EPML): Design
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Extended PML (EPML): Design
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OoH Security and Isolation

Vis-à-vis the Hypervisor
I Small TCB1 (194LOC) - at least safe as existing hypercalls
I Guest does not see nor manipulate host physical memory
I Ring buffer allocated from VM’s memory

Between VMs
I Same isolation level
I Ring buffer allocated per VM’s address space => no possible

inference
I Per process ring buffer and restriction to tracker process only

1Trust Code Base
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Evaluations: Implementation

I We implemented EPML’s hardware changes in BOCHS
I We used Xen as the hypervisor and Linux as the guest OS
I We integrated OoH Lib with:

v CRIU: Checkpoint/Restore in User space
• Integrated in OpenVZ, Docker, etc.
• Based on /proc technique

v Boehm GC: popular C/C++ garbage collector
• Included in Mozilla, GNU Java Compiler, etc.
• Based on /proc technique
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Evaluations: Benchmarks

I Macro-benchmarks: tkrzw applications (key value store) and Phoenix
applications (MapReduce)

I Three working set sizes (Small, Medium, and Large)
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Evaluations: Methodology for
EPML

Approach
I Build a formula f
I Show the accuracy of f on other techniques that are measurable
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Evaluations: Methodology for
EPML

Impact on Tracker
Execution time of Tracker when implementing technique x :
E (Ctker) = E (Cx) + E (Cp) + I(Cx ,Cp)
x : /proc, SPML, EPML - Cx : enable_PML, ring buffer copy, etc.

Impact on Tracked
Time of Tracked when monitored by a Tracker using technique x :
E (Ctked_tker) = E (Ctked) + E (Ctker) + I(Cx ,Ctked)
I(Cx ,Ctked): page faults, vmexits, etc.
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Evaluations: Formulas Validation

Metric Time (ms)
E(Ctker )
measured 5503.79

E(Ctked_tker )
measured 135255.35

E(Cp) 251.35
E(Ccopy_rb) 0.49
E(Cdisable pml ) 2.06
E(Crev. mapping ) 5419
E(Ctker )
estimated 5672.9

E(Cvmexits) 18000
N 39
E(Cvmread,vmwrite) 1.73 × 10−3

E(Ctked_tker )
estimated 136919.85

(a) SPML

Metric Time (ms)
E(Ctker )
measured 1097.99

E(Ctked_tker )
measured 115283.98

E(Cp) 251.35
E(Cclear_refs) 1.409
E(CPTwalk) 0.89
E(Ctker )
estimated 1116.09

E(CPFHuser ) 0.27
E(Ctked_tker )
estimated 114418.58

(b) /proc

Table: An accuracy of 96.34% and 99% respectively
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Evaluations: Formulas Validation

SPML accuracy: 96.34%

/proc accuracy: 99%
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Evaluations: Tracker Results
Boehm CRIU

SPML vs. /proc: 5×
and 3× slowdown resp.
on CRIU and Boehm

EPML: (On CRIU:)
4× and 13× speedup
compared to /proc and
SPML resp.
(On Boehm:) 2× and
6× speedup compared to
/proc and SPML resp.
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Evaluations: Tracked Results
Boehm
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Evaluations: Tracked Results

Impact on Tracked
I /proc:

I Up to 102% overhead on Phoenix-pca with CRIU
I Up to 232% overhead on Phoenix string-match with Boehm

I SPML:
I Up to 114% overhead on Phoenix-pca with CRIU
I Up to 273% overhead on Phoenix string-match with Boehm

I EPML:
I Only 7% with CRIU
I Only 24% with Boehm
I ==> 16× improvement
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Conclusion
Dirty Page Tracking
I For wss estimation, live migration, checkpointing, GC, ...
I Induce high overhead on applications

OoH for Intel PML (https://github.com/bstellaceleste/OoH)
I For improving process/container checkpointing, concurrent GCs
I 4× speedup on Tracker - 16× improvement on Tracked

Take Away
I Existing sofware-based tools can be improved using hardware

virtualization features
I Think of OoH from the conception/design of hardware virtualization

features

https://github.com/bstellaceleste/OoH
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