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I started my mathematical research under the supervision of Marc Herzlich
and Philippe Castillon at the University of Montpellier. They proposed me to
work on a problem lying at the intersection of Riemannian geometry, complex ge-
ometry and geometric analysis. Precisely, they asked me to identify what can be
said about the asymptotic geometry of a complete non-compact Kähler manifold
whose geometry is asymptotically locally modeled on that of the complex hyper-
bolic space. This naturally led me to familiarize myself with the geometry of non
compact rank one symmetric spaces from the Riemannian point of view as well as
with the extrinsic geometry of submanifolds in these spaces.

Below is a short description of my previous work and a research project as a
natural extension of my doctoral thesis.

Introduction

Asymptotic geometry of hyperbolic and complex hyperbolic spaces.
Negatively curved spaces are in the heart of my mathematical research. The
hyperbolic space is the most simplest smooth example: it is the unique simply
connected Riemannian manifold with constant negative curvature −1. In the unit
ball model, it is endowed with the Riemannian metric

(1) gH =
4

(1− ‖x‖2)2
n∑
i=1

dxi ⊗ dxi =
4

(1− ρ2)2
(
dρ⊗ dρ+ ρ2g̊

)
where the second equality is given by the polar decomposition Rn ' R+ × Sn−1

and the identification ρ = ‖x‖ ∈ [0, 1). The metric g̊ is the round metric of the unit
sphere. The asymptotic geometry of this space can be studied through the extrinsic
geometry of concentric geodesic spheres. The change of variables r = tanh ρ

2
shows

that geodesic spheres of radius r are isometric to the unit sphere Sn−1 endowed with
the metric (sinh2 r)̊g. All these spheres are conformal with each other and share
common geometric properties. Moreover, they are totally umbilical hypersurfaces
with shape operator given by S = (coth r) IdTS, and their extrinsic geometry is
therefore isotropic. The asymptotic geometry of the hyperbolic manifold is closely
related to the conformal properties of the unit sphere Sn−1. Namely, the hyperbolic
spaces admits a conformal compactification, whose boundary at infinity is the
conformal sphere. This remark is at the center of the study of conformal infinity

Date: December 15, 2021.
1



2 ALAN PINOY

of asymptotically hyperbolic manifolds [FG85, Lee06], which is of high interest in
the so-called AdS/CFT correspondence in theoretical Physics.

The complex counterpart of hyperbolic geometry is the complex hyperbolic space.
Its geometry reflects the additional structure that this space is given, namely, its
complex structure compatible with its metric structure. It is the unique complete
simply connected Kähler manifold with constant holomorphic sectional curvature1

-1. However, its full sectional curvature is not constant, and is pinched between
−1 and −1/4. In the spirit of the decomposition of the hyperbolic metric (1), the
complex hyperbolic space of dimension n can be thought of as the unit ball of Cn

endowed with the following Riemannian metric, in polar exponential coordinates

(2) gCH = dr ⊗ dr + 4 sinh2 r θ ⊗ θ + 2 sinh2 r

2
γ

where θ is the standard contact form of the unit sphere S2n−1 ⊂ Cn and γ =
dθ(·, J ·) is the Levi form defined on the contact structure H = ker θ = TS2n−1 ∩
iTS2n−1 with J the multiplication by i in H. This expression reveals the main
difference with the real case: the geometry is anisotropic. Concentric geodesic
spheres are no longer conformal with each other. Instead, they are Berger spheres,
and the metric explodes or implodes in the direction of the Reeb vector field
X of the contact form θ, depending on whether r → +∞ or 0. Their tangent
spaces split as TS = RX ⊕ H and their shape operator splits diagonally as
S = (coth r) IdRX +(1

2
coth r

2
) IdH . It is worth noting that they are still of constant

mean curvature. The sphere at infinity (S2n−1, H, J) is no longer the conformal
sphere, but instead is endowed with a richer geometry, namely, a strictly pseudo-
convex CR structure.

ALH and ALCH manifolds. A conformally compact manifold (M, g) is a com-
plete Riemannian manifold which is the interior of a compact manifold M en-
dowed with a boundary defining function % : M → R+, and such that the metric
%2g extends smoothly up to the boundary. The conformal manifold (∂M, [%2g]) is
called the conformal infinity of (M, g). Conformal invariants of (∂M, [%2g]) give
automatically rise to geometric invariants of the Riemannian manifold (M, g)2. If
|d%| = 1 on the boundary, the sectional curvature of (M, g) approaches −1 near
the boundary, and (M, g) is called asymptotically hyperbolic. This latter definition
is extrinsic. Anderson and Schoen have shown that Hadamard manifolds with
negatively pinched curvature admit a conformal infinity whose Hölder regularity is
discussed in terms of the pinching [And83, AS85], by solving the Dirichlet problem
at infinity. Later on, Bahuaud, Gicquaud and Marsh have extended this result to
the non simply connected case, provided the existence of a suitable compact con-
vex subset they call an essential subset and an exponential decay of the sectional

1These are sectional curvatures of tangent planes which are stable under the almost complex
structure.

2Remark that the Moebius group Conf(Sn−1, [̊g]) is equal to the isometry group Isom(Hn, gH).
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curvature to -1 near infinity [Bah09, BG11, Gic13]. They call these manifolds
asymptotically locally hyperbolic (ALH). They moreover show that the gluing of
the boundary to the original manifold has regularity which is discussed in terms of
the decay rate. The techniques use therein are mainly ODE’s techniques applied to
a system of coupled differential equations in Fermi coordinates relating the metric
induced on some level hypersurfaces and their shape operator.

The study of the asymptotic geometry of complete non-compact Riemannian
manifolds has proven to be fruitful in the understanding of the geometry of com-
plex domains. By building a complete metric in the interior of such a domain,
which sends the boundary to infinity, one can read much geometric information
in the asymptotic development of the metric [Fef76, FG85, Hir00]. The induced
structure on the boundary at infinity leads to geometric invariants of the domain.
The Bergman metric and the Kähler-Einstein metric are examples of such metrics
and have been at the center of complex geometry for decades. The example of
the unit ball in the standard Hermitian space is particularly interesting and leads
to the complex hyperbolic space. More generally, these metrics are asymptotically
complex hyperbolic, and the boundary of the domains is endowed with a CR struc-
ture, which is generically strictly pseudoconvex. This CR structure is a geometric
invariant of the domain and can be read in the asymptotic development of the met-
ric near infinity. These boundaries are again given as an extrinsic data through
their embedding in the standard Hermitian space. Biquard has constructed many
examples of asymptotically complex hyperbolic Einstein metrics with prescribed
CR infinity [Biq00].

Question 1. Does there exist intrinsic conditions under which a complete non-
compact Kähler manifold admits a boundary at infinity endowed with a (possibly
strictly pseudo convex) structure?

The desired structure at infinity being of contact nature, and the ambient ge-
ometry being highly anisotropic, the techniques used by Marsh, Bahuaud and
Gicquaud do not generalize. In my PhD thesis, I have answered this question the
following way.

Theorem 1. Let (M, g, J) be a complete non-compact Kähler manifold. Assume
there exists K ⊂M an essential subset with sec(M \K) 6 0, and let r = dg(·, K).
Assume further more that ‖R − R0‖g = O(e−ar) with a > 1. Then there ex-
ists a non(vanishing continuous differential form of degree 1 η ∈ C0(M ;T ∗∂K)
and a continuous field of symmetric positive semi-definite bilinear forms γH ∈
C0(M ;S2T ∗∂K) such that the metric reads

(3) dr ⊗ dr + e2rη ⊗ η + erγH + lower order terms

In addition, γH is positive definite on H = ker η.

I call these manifolds asymptotically locally complex hyperbolic manifolds. The
existence of the essential subset is a geometric condition ruling out the formation
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of cusps and allowing to perform a sort of polar decomposition. The exponential
decay of the curvature tensor to the constant -1 holomorphic sectional curvature
tensor R0 is a necessary condition3. The local assumption on the curvature hence
yields a Taylor expansion near infinity similar to that of 3. The analogy does not
end here.

Theorem 2. If furthermore, there exists b > 1 such that ‖∇R‖ = O(e−br), the
differential form of degree 1 η is of class C1, and is contact.

Theorem 3. If min{a, b} > 3
2
, then γH is also of class C1, and there exists a

C1 integrable almost complex structure JH on H such that γH = dη(·, JH ·). In
particular, (∂K,H, JH) is a strictly pseudoconvex CR manifold of class C1.

The CR structure is canonically associated to the embedding K ⊂M . Moreover,
∂K can be identified with the visual boundary of (M, g), and M admits a compact-
ification M ⊂ M with strictly pseudoconvex CR boundary ∂∞M ' (∂K,H, JH).
It is worth noting that the local assumptions on the curvature and its covariant
derivative surprisingly allow one to recover very strong information on the geom-
etry at infinity of the considered manifolds, a fact that was not expected at first
sight.

Research project

During my previous work, I had to familiarize myself with many different aspects
of the geometry of the complex hyperbolic spaces, their submanifolds and the
Kähler manifolds that are modeled on them. This naturally led me to ask myself
different type of questions, in several directions. Here are set some research projects
I would like to pursue during the following years.

Generalization in other settings. The first project I have in mind is the dif-
ferent types of generalization of my previous work. Although the conditions on
the decay rates a and b seem to be optimal, it is hoped that several assumptions
might be relaxed while still having a similar conclusion. Several directions are
then possible.

Holomorphic bisectional curvature comparison. The holomorphic bisectional cur-
vature have first been introduced explicitly by Goldberg and Kobayashi [GK67].
Given X and Y two unit vectors tangent at the same base point, the holomor-
phic bisectional curvature associated to the two complex lines span{X, JX} and
span{Y, JY } it is defined as the value R(X, JX, Y, JY )4. It is a geometric invari-
ant of the Kähler manifold that contains more information than the holomorphic

3There exist complex domains with asymptotically complex hyperbolic metrics with sub-
exponential decays whose boundaries are not strictly pseudoconvex CR manifolds.

4The convention is the following. If {X,Y } is an orthonormal family, the sectional curvature
of span{X,Y } is R(X,Y,X, Y ). For the sphere, it is positive.
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sectional curvature, and less information than the sectional curvature itself. Sev-
eral Theorems obtained from assumptions on the sign of the sectional curvature
of a Kähler manifold generalize with weaker assumptions on the holomorphic bi-
sectional curvature.

The condition of convergence of the Riemannian curvature tensor R to the con-
stant -1 holomorphic curvature tensor R0 is a condition imposed on all sectional
curvatures at once. It is natural to ask whether or not Theorem 1, 2 and 3
generalize under a weaker assumption on the holomorphic bisectional curvature.
Although comparison geometry with the holomorphic sectional curvature is really
intricate, beautiful results have been obtained when comparing bisectional cur-
vatures [GK67, SY80, Lot21]. However, the proofs obtained during my PhD do
not generalize as they are. Indeed, they all generalize on a sharp estimate of the
growth of some natural Jacobi fields defined along geodesics rays. This growth is
derived from the Jacobi equation, which involves the tensor R(γ′p, ·)γ′p with γp the
above mentioned geodesic rays.

The non-Kähler case. Kähler manifolds live at the intersection of Riemannian
geometry, almost complex geometry and symplectic geometry. Their structure
is defined from a Riemannian metric g, an almost complex structure J and a
symplectic form ω which are all compatible with each other. In particular, this
forces the almost complex structure to be integrable, and the underlying manifold
to carry a complex structure.

From the chosen point of view, the Kähler conditions are set as ∇J = 0 and
g(J ·, J ·) = g. Both conditions seem crucial in the proof of Theorems 1, 2 and
3. They imply in particular that Jγ′p is a parallel vector field along the geodesic
ray γp, and the skew-symmetry of J is of constant use. However, it would be of
interest to understand how much relaxing one of the two conditions, for example
by setting ‖∇J‖ = O(e−cr) for some c > 0 and keeping the isometry condition,
leads to similar results. On the contrary, building counter-examples would be
instructive to understand the importance of the Kähler condition.

The Einstein case. Einstein metrics are (semi-)Riemannian metrics satisfying the
equality Ric = λg, where Ric denotes the Ricci tensor and λ ∈ R is a constant.
Einstein metric are nice generalizations of constant curvature metrics and their
Riemann curvature tensor have nice algebraic properties. They are in themselves
a beautiful and fruitful field of research [Bes07]. They are also of high interest for
their physical meaning in general relativity. In [Biq00] are obtained plenty of Ein-
stein metrics in a neighborhood of the conformal infinity of non-compact rank one
symmetric spaces. They are built as deformations of the standard structure, and
are in 1-1 correspondence with some Carnot-Caratéodory metrics on the boundary
at infinity. It follows that they exist in a large amount in the complex hyperbolic
case. Moreover, Einstein metrics satisfy some elliptic regularity, and an appro-
priate bootstrap technique allows one to control the covariant derivatives of the
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Riemann tensor at all orders, see [BG11]. I believe that the Einstein assumption
might lead to nice generalizations.

Other non-compact rank one symmetric spaces. Riemannian non-compact rank
one symmetric spaces are classified in four families: the real hyperbolic spaces
RHn, the complex hyperbolic spaces RCn, the quaternionic hyperbolic spaces
HHn, and finally the Cayley hyperbolic plane OH2. They are all Hadamard man-
ifolds and their sphere at infinity is endowed with a particular geometric structure
reflecting their Riemannian geometry. As mentioned earlier, the sphere at infinity
of the real hyperbolic space is a conformal sphere, while that of the complex hy-
perbolic space is a strictly pseudoconvex CR sphere. In the two other cases, the
sphere at infinity is endowed with a particular distribution of the tangent bundle,
of respective codimension 3 and 7, related to respectively 3 and 7 linearly inde-
pendent contact structures. Biquard has build Einstein metrics asymptotically
modeled on each of that geometries [Biq00] with prescribed contact structures and
distribution at infinity.

Let us focus on the quaternionic hyperbolic case in this explanation. The quater-
nionic hyperbolic space is endowed with three almost complex structures J1, J2 and
J3. They induce on its boundary at infinity a contact-quaternionic structure, once
again related to a Carnot-Carathéodory metric γ, which is however only defined
on a codimension 3 distribution. The difficulty in the generalization relies in the
fact that the almost complex structures are not parallel. They however generate
a parallel bundle, meaning that ∇Ji is a linear combination of the Jk’s. Although
there was a gap to cross to generalize Bahuaud and Gicquaud’s work from the ALH
setting to the ALCH one, due to the anisotropic nature of the latter geometry and
the impossibility to apply the ODE’s techniques of the cited authors, it appears
that the similarity between the complex hyperbolic geometry and the quaternionic
hyperbolic one is strong enough to hope to extend the results obtained to the last
case.

A positive mass Theorem for ACH manifolds. Working on asymptotic ge-
ometry modeled on non-compact rank one symmetric spaces, I have naturally got
interested in the construction of asymptotic invariants, the most renowned being
the mass. I am therefore planning to study this object and focus on the mass in
the complex hyperbolic setting.

The positive mass conjecture is a family of statements of the form

Conjecture. Let M be an asymptotically M0 manifold, with scalar curvature
greater than that of M0. Then there exists a geometric invariant m(M), called
the mass, such that m(M) > m0, where m0 is the mass of M0. Moreover, the
equality case is achieved if and only if M = M0.

The manifold M0 refers to some model space such as the Euclidean, Minkowski,
Schwarzschild, hyperbolic, as well as a non-compact rank one symmetric space.
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Some integrability condition on the scalar curvature is usually also required. The
inequality has to be understood in a large sense, specific to the situation.

The conjecture is known to be true in several cases. The original proof of the
asymptotically flat setting relies on a variational method using minimal surfaces
[SY79, SY81], which applies in dimension at most 75. If moreover the manifold
is supposed to admit a spin structure, the conjecture is true in all dimensions
[Wit81]. The mass is defined here as a real number, and vanishes exactly in the
Euclidean case.

Much progress has been made in general cases, and the mass is still an active
field of research in itself (see the recent preprint [CG21]). In the hyperbolic case,
the mass is defined as a vector [Wan01, CH03]. The Euclidean and hyperbolic
spaces being of isotropic nature, the story could have ended there, believing that
more complicated symmetric spaces do not share the same properties. Outstand-
ingly, the rigidity part of the conjecture has been shown to be true in the complex
hyperbolic case [Her98, BH02] and in several non-compact rank-one symmetric
spaces, provided some spin conditions are satisfied [Lis09], under strong asymp-
totic conditions on the metric. It is natural to believe that there is a common
background behind these results.

The nature of the mass is in direct relation with the complexity of the geometric
structure of the sphere at infinity of the model, hence the difference of nature
between the flat case (a scalar) and the hyperbolic case (a vector). A definition for
the mass in the complex hyperbolic case has been proposed in [MM12]. However, it
is again of scalar nature, which frustratingly does not reflect the higher complexity
of the strictly pseudo convex CR nature of the sphere at infinity. An interesting
subject of research would be the study of this object. A deep understanding of the
concepts involved may allow a more general definition for the mass, and perhaps
a proof of the positive mass conjecture in the asymptotically complex hyperbolic
case. The above-mentioned preprint [CG21] brings a new perspective on the mass
and deserves to be studied in depth.

Characterizing geodesic spheres of the complex hyperbolic space by
their curvature, isoperimetric inequality. The technique used in my PhD
thesis involves a sharp understanding of the extrinsic geometry of a family of
level hypersurfaces of asymptotically locally hyperbolic manifolds. To that end,
I investigated the extrinsic geometry of hypersurfaces of the complex hyperbolic
manifold.

In the Euclidean and real hyperbolic spaces, geodesic spheres are characterized
among the set of closed hypersurfaces as the unique ones being totally umbilical,
and of constant mean curvature. Concentric spheres of the complex hyperbolic

5The reason is that in higher dimension, there exists singular minimal surfaces, and the original
proof by induction does not apply.
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space CHn are constant mean curvature (CMC) hypersurfaces whose shape op-
erator have two eigenvalues, namely coth r and 1

2
coth r

2
, where r is the radius.

The multiplicities are respectively 1 and n−2
2

. Hence, in that case, they are not
umbilical. Their geometry is well known [KM15], but surprisingly enough, it is
still not known how to characterize them by their curvature. This problem has
been addressed in [FFR93], but the proof is false, as mentioned in the erratum
[FFR95]. The mean curvature flow is a natural approach (cf. the different papers
of M. Ritoré, such as [Rit05, Rit09]) and may lead to progress related to that
question. The inverse mean-curvature flow is also a possible candidate [Pip19].

This question is somehow related to isoperimetric inequalities, whose standard
proofs rely on the characterization of geodesics spheres by their curvature.

Isoperimetric inequality. Let (Mn, g) be a Riemannian manifold. There exists
a constant λ(M, g) > 0 such that if Σ ⊂ M is a domain with smooth boundary,
then:

(4) (Voln−1(∂Σ))n > λ(M, g)(Voln(Σ))n−1

and the equality is achieved if and only if Σ is a geodesic ball.

They are known to be true in many cases, such as the Euclidean, hyperbolic or
Hadamard cases (in dimension 2,3, and 4 in the latter case).
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