Calcul différentiel, rappels sur les sous-variétés de \mathbb{R}^n Correction

Exercice 1 (Définitions).

1. If $U \subset \mathbb{R}^p$ is an open subset and if $f: U \to \mathbb{R}^q$ is a function, then f is differentiable at $x \in U$ if there exists a linear map $df(x) \in \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$ such that

$$f(x+h) = f(x) + df(x)h + o(h)$$

for h small enough. In this case, df(x) is unique and is called the differential of f at x. Note that there is a unique normed vector space topology on \mathbb{R}^p and \mathbb{R}^q , so that the notation o(h) refers to $o_{\parallel \cdot \parallel'}(\parallel h \parallel)$ for any norms $\parallel \cdot \parallel$ and $\parallel \cdot \parallel'$ on \mathbb{R}^p and \mathbb{R}^q .

2. f is said to be of class \mathcal{C}^1 if f is differentiable at every $x \in U$ and if moreover, the function

$$\mathrm{d}f\colon x\in U\mapsto \mathrm{d}f(x)\in\mathcal{L}(\mathbb{R}^p,\mathbb{R}^q)\simeq\mathbb{R}^{p\times q}$$

is continuous.

By induction, f is said to be of class \mathcal{C}^{k+1} if f is of class \mathcal{C}^1 and of df is of class \mathcal{C}^k . It is said to be smooth (or of class \mathcal{C}^{∞}) if it is of class \mathbb{C}^k for all $k \in \mathbb{N}$.

- 3. $f: U \to V$ is said to be a \mathcal{C}^k diffeomorphism if
 - f is of class \mathcal{C}^k ,
 - f is bijective,
 - its inverse f^{-1} is of class \mathcal{C}^k .

It is said to be a local \mathcal{C}^k diffeomorphism if for all $x \in U$, there exists an open neighbourhood of x in U, say U_x , and an open neighbourhood of f(x) in V, say V_x , such that $f: U_x \to V_x$ is a \mathcal{C}^k diffeomorphism.

- 4. Three equivalent definitions of a submanifold of \mathbb{R}^n . $M \subset \mathbb{R}^n$ is a \mathcal{C}^k submanifold of \mathbb{R}^n of dimension p if:
- (submersion) $\forall x \in M, \exists U \subset \mathbb{R}^n$ an open neighbourhood of x in $\mathbb{R}^n, \exists f \colon U \to \mathbb{R}^{n-p}$ a \mathcal{C}^k -submersion (*i.e* $\forall y \in U, df(y)$ is surjective), such that $M \cap U = f^{-1}(\{0\})$.
- (immersion) $\forall x \in M, \exists U \subset \mathbb{R}^n$ open neighbourhood of $x, \exists V \subset \mathbb{R}^p$ open neighbourhood of 0 and $\exists f \colon V \to \mathbb{R}^n$ a \mathcal{C}^k -immersion (*i.e* $\forall y \in V, df(y)$ is injective) such that f(0) = xand f is an homeomorphism from V to $U \cap M$.
- (diffeomorphism) $\forall x \in M, \exists U \subset \mathbb{R}^n$ open neighbourhood of $x, \exists V \subset \mathbb{R}^n$ open neighbourhood of 0 and $\exists f \colon U \to V$ a \mathcal{C}^k -diffeomorphism with f(x) = 0 such that $f(U \cap M) = V \cap (\mathbb{R}^p \times \{0\}^{n-p}).$

Note that, thanks to the following Theorems, these two definitions are equivalent.

Exercice 2 (Théorèmes importants).

1. The implicit function Theorem. Let $f: U \subset \mathbb{R}^p \times \mathbb{R}^q \to \mathbb{R}^q$ be a \mathcal{C}^k map and $(x_0, y_0) \in U$ such that $f(x_0, y_0) = 0$. Suppose that the partial differential $\partial_y f(x_0, y_0) \in \mathcal{L}(\mathbb{R}^q)$ is invertible, $(\partial_y f(x_0, y_0)$ is the differential at y_0 of the map $y \mapsto f(x_0, y)$. Then there exist $V \subset \mathbb{R}^p$ open neighbourhood of $x_0, W \subset \mathbb{R}^p \times \mathbb{R}^q$ open neighbourhood of (x_0, y_0) , and $\varphi: V \to \mathbb{R}^p$ a \mathcal{C}^k map such that

$$\forall (x,y) \in W, f(x,y) = 0 \iff x \in V \text{ and } y = \varphi(x).$$

Moreover, we have $\forall x \in V$, $d\varphi(x) = -(\partial_y f(x,\varphi(x)))^{-1} \circ \partial_x f(x,\varphi(x)).$

2. The constant rank Theorem. Let $f: U \subset \mathbb{R}^p \to \mathbb{R}^q$ be a \mathcal{C}^k map such that the rank of its differential is a constant map:

$$\exists r \in \mathbb{N}, \forall x \in U, \operatorname{rank} (\mathrm{d}f(x)) = r.$$

Then there exists $\varphi \colon V_0 \to V_x$ and $\psi \colon W_{f(x)} \to W_0$ two \mathcal{C}^k -diffeomorphisms, where V_x and V_0 are open neighbourhood of x and 0 in \mathbb{R}^p , and $W_{f(x)}$ and W_0 are open neighbourhood of f(x) and 0 in \mathbb{R}^q , such that the map $\tilde{f} := \psi \circ f \circ \varphi^{-1} \colon V_0 \to W_0$ is given by the map

$$f(x_1, \ldots, x_p) = (x_1, \ldots, x_r, 0 \ldots, 0).$$

In other words, f is conjugate (by two C^k diffeomorphisms) to the restriction of the projection onto the *r*-first coordinates.

3. The inverse function Theorem. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^n$ be a \mathcal{C}^k map. Suppose $df(x) \in \mathcal{L}(\mathbb{R}^n)$ is invertible. Then there exists $U_x \subset U$ an open neighbourhood of x in U and $V_{f(x)} \subset \mathbb{R}^n$ an open neighbourhood of f(x) such that the restriction

$$f: U_x \to V_{f(x)}$$

is a \mathcal{C}^k diffeomorphism. Moreover, we have $\forall y \in U_x$, $df^{-1}(f(y)) = (df(y))^{-1}$.

In other words, f is a local \mathcal{C}^k -diffeomorphism at x.

Exercice 3 (Inversion par rapport à une sphère).

- 1. Note that $f \circ f = \operatorname{id}_{\mathbb{R}^n \setminus \{0\}}$ and thus, f is invertible with $f^{-1} = f$. Moreover, f is \mathcal{C}^1 as a product of two \mathcal{C}^1 maps. It is then a bijective \mathcal{C}^1 function with \mathcal{C}^1 inverse: it is by definition a \mathcal{C}^1 -diffeomorphism.
- 2. Let us compute the differential of f: fix $x \in \mathbb{R}^n \setminus \{0\}$ and h small enough. We have

$$f(x+h) = \frac{x+h}{\|x+h\|^2}$$

= $\frac{x+h}{\|x\|^2 + 2\langle x,h\rangle + \|h\|^2}$
= $\frac{x+h}{\|x\|^2} \frac{1}{1 + 2\langle \frac{x}{\|x\|^2},h\rangle + o(h)}$
= $\frac{x+h}{\|x\|^2} \left(1 - 2\left\langle \frac{x}{\|x\|^2},h\right\rangle + o(h)\right)$
= $f(x) + \frac{1}{\|x\|^2} \left(h - 2\left\langle \frac{x}{\|x\|},h\right\rangle \frac{x}{\|x\|}\right) + o(h).$

We thus have

$$\forall x \in \mathbb{R}^n \setminus \{0\}, \forall h \in \mathbb{R}^n, \mathrm{d}f(x)h = \frac{1}{\|x\|^2} \left(h - 2\left\langle \frac{x}{\|x\|}, h \right\rangle \frac{x}{\|x\|}\right).$$

To conclude, one can either:

- invoke the fact that $df(x) = \frac{1}{\|x\|^2} s_{x^{\perp}}$, where $s_{x^{\perp}}$ is the reflection across the hyperplane $x^{\perp} = \{y \in \mathbb{R}^n \mid \langle x, y \rangle = 0\},\$
- or do some (easy) computations that yield $\langle df(x)u, df(x)v \rangle = \frac{\langle u,v \rangle}{||x||^4}$.

Exercice 4.

First, f is indeed of class \mathcal{C}^1 . Moreover, if $(x, y, z) \in \mathbb{R}^3$, we have by a direct computation:

$$\operatorname{Mat}_{\operatorname{can}}\left(\mathrm{d}f(x,y,z)\right) = \begin{pmatrix} 0 & 2e^{2y} & 2e^{2z} \\ 2e^{2x} & 0 & -2e^{2z} \\ 1 & -1 & 0 \end{pmatrix}.$$

This yields det $(df(x, y, z)) = -4 (e^{2(x+z)} + e^{2(y+z)}) \neq 0$. It follows that df(x, y, z) is invertible, and the inverse function Theorem provides the existence of an open neighbourhood of (x, y, z) in \mathbb{R}^3 , say $V_{(x,y,z)}$, and of an open neighbourhood of f(x, y, z) in \mathbb{R}^3 , say $W_{(x,y,z)}$, such that the restriction $f: V_{(x,y,z)} \to W_{(x,y,z)}$ is a \mathcal{C}^1 -diffeomorphism. It follows that

$$\operatorname{Im}(f) = \bigcup_{(x,y,z) \in \mathbb{R}^3} W_{(x,y,z)}$$

is open in \mathbb{R}^3 . Note that the equation f(x, y, z) = (-1, 0, 0) has no solution as $2e^{2y} + 2e^{2z} > 0$ for all (x, y, z), so that $\text{Im}(f) \neq \mathbb{R}^3$.

Exercice 5.

We will use the following fact: if $u: U \subset \mathbb{R}^n \to \mathcal{L}(\mathbb{R}^p, \mathbb{R}^q)$ is a continuous family of linear maps, then the function $r \mapsto \operatorname{rank}(u(x))$ is **lower** semi-continuous¹, that is

 $\forall x \in U, \exists V_x \subset U \text{ open neighbourhood of } x, \forall y \in V_x, \operatorname{rank}(u(y)) \ge \operatorname{rank}(u(x)).$

Identifying linear maps in finite dimension with their matrices, this fact follows from a continuity argument about the determinant of some sub-matrix.

Let $A = \{ \operatorname{rank}(\operatorname{d} f(x)) \mid x \in U \} \subset \mathbb{N}$. Then $A \neq \emptyset$ and A is bounded above by $\min\{p, q\}$: it follows that $m = \max A$ exists and that $m \leq \min\{p, q\}$. Consider

$$W = \{x \in U \mid \operatorname{rank}(\mathrm{d}f(x)) = m\}.$$

Then $W \neq \emptyset$ by definition of m. Let us show that W is open. The map f being \mathcal{C}^1 , df is continuous and the map $x \in U \mapsto \operatorname{rank} (df(x))$ is lower semi-continuous. Let $x \in W$. There exists an open neighbourhood $V \subset U$ of x such that

$$\forall y \in V, m = \operatorname{rank}(\mathrm{d}f(x)) \leqslant \operatorname{rank}(\mathrm{d}f(y)) \leqslant \max_{z \in U} \operatorname{rank}(\mathrm{d}f(z)) = m,$$

¹During the class, I made the mistake to say it was **upper** semi-continuous. Apologize!

and df has constant rank m on V. In follows that $V \subset W$, and W is open. We are now able to apply the constant rank Theorem on W: if $x \in W$ is fixed, there exists a diffeomorphism $\varphi: V_x \to V_0$ (resp. $\psi: \widetilde{V}_{f(x)} \to \widetilde{V}_0$) between neighbourhoods of x and 0 in \mathbb{R}^p (resp. of f(x)and 0 in \mathbb{R}^q) such that

$$\widetilde{f} = \psi \circ f \circ \varphi^{-1} \colon V_0 \to \widetilde{V}_0$$

is given by $\tilde{f}(x_1, \ldots, x_p) = (x_1, \ldots, x_m, 0, \ldots, 0)$. As f is supposed injective and φ, ψ are diffeomorphisms, then \tilde{f} is injective. This implies that m = p: if not, we would have, for $\varepsilon > 0$ small enough, $\tilde{f}(0, \ldots, 0, \varepsilon) = \tilde{f}(0, \ldots, 0, -\varepsilon)$, a contradiction. Recall that by definition, $m \leq \min\{p,q\}$, so that $m = p \leq q$.

For now, we know that on the open subset W, f is of rank $p \leq q$, that is, f is an immersion on W. To conclude, we need to show that W is dense in U; in order to do so, let us show that if $V \subset U$ is an open subset, then $V \cap W \neq \emptyset$. Fix $V \subset U$ open and define $m_V =$ max{rank(df(x)) | $x \in V$ } and $W_V = \{x \in V \mid \text{rank}(df(x)) = m_V\}$. The exact same study as above shows that $W_V \neq \emptyset$, that $m_V = p$ and finally, we have $W_V \subset V \cap W \neq \emptyset$. This concludes the proof.

Exercice 6.

Let $U = \{(x_1, \ldots, x_n) \in \mathbb{R}^n \mid x_1 < \cdots < x_n\}$, which is open in \mathbb{R}^n . Consider the map

$$f: \quad \begin{array}{ccc} M_n(\mathbb{R}) \times U & \longrightarrow & \mathbb{R}^n \\ (M, (x_1, \dots, x_n)) & \longmapsto & (\chi_M(x_1), \dots, \chi_M(x_n)) \,, \end{array}$$

where χ_M is the characteristic polynomial of M. It is a smooth map as it is polynomial in every entry. Let M_0 be a matrix with n distincts real eigenvalues $\lambda_1 < \ldots < \lambda_n$: we thus have $f(M_0, (\lambda_1, \ldots, \lambda_n)) = 0$. The matrix (in the canonical basis of \mathbb{R}^n) of $\partial_2 f(M_0, (x_1, \ldots, x_n))$ is given by

$$Mat_{can} \left(\partial_2 f(M_0, (x_1, \dots, x_n)) = \begin{pmatrix} \chi'_{M_0}(x_1) & & \\ & \ddots & \\ & & \chi'_{M_0}(x_n) \end{pmatrix}.$$

Therefore, det $(\partial_2 f(M_0, (\lambda_1, \ldots, \lambda_n)) = \prod_{i=1}^n \chi'_{M_0}(\lambda_i) \neq 0$ (recall that all λ_i are supposed distincts and χ_{M_0} is of degree n, so that χ_{M_0} and χ'_{M_0} do not share any root). The result now follows from a direct application of the implicit function Theorem: there exists $W \subset M_n(\mathbb{R}) \times U$ an open neighbourhood of $(M_0, (\lambda_1, \ldots, \lambda_n)), V \subset M_n(\mathbb{R})$ an open neighbourhood of M_0 and $\varphi \colon V \to U$ a smooth map such that

$$\forall (M, (\lambda_1, \dots, \lambda_n)) \in W, f (M, (\lambda_1, \dots, \lambda_n)) = 0 \iff M \in V \text{ and } (\lambda_1, \dots, \lambda_n) = \varphi(M),$$

that is, all matrices $M \in V$ have *n* distinct eigenvalues $\lambda_1(M) < \cdots < \lambda_n(M)$ which are smooth maps of M.