Quotient topology & some classic manifolds

Exercise 1 (Quotient topology).

Let X be a topological space and ~ be an equivalence relation on X. We denote by $p: X \to X/\sim$ the canonical projection.

- 1. Recall the definition of the quotient topology on X/\sim .
- 2. Let $f: X/ \sim \to Y$. Show that f is continuous if and only if $f \circ p$ is.
- 3. Show that if G is a discrete group acting properly discontinuously on a locally compact Hausdorff space X, *i.e.*, for all $g \in G$, $x \mapsto g \cdot x$ is a continuous map and

 $\{g \in G \mid K \cap g \cdot K \neq \emptyset\}$ is finite, $\forall K \subset X$ compact subset,

then the quotient X/G is Hausdorff.

- 4. Let $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ be the *n*-dimensional torus. Show that \mathbb{T}^n is compact and Hausdorff, and that p is an open map.
- 5. Let $f: K \to Y$ be continuous and bijective with K compact Hausdorff and Y Hausdorff. Show that f is a homeomorphism. Give a counter-example if Y is not Hausdorff.
- 6. We define \mathbb{S}^1 as $\{z \in \mathbb{C} \mid |z| = 1\}$. Show that \mathbb{T}^1 is homeomorphic to \mathbb{S}^1 . More generally, show that \mathbb{T}^n is homeomorphic to $(\mathbb{S}^1)^n \subset \mathbb{C}^n$.
- 7. Let \mathbb{RP}^n be the space defined as the quotient of $\mathbb{R}^{n+1} \setminus \{0\}$ by the equivalence relation "belonging to the same vector line". Show that \mathbb{RP}^n is compact Hausdorff and that p is open.

Exercise 2 (The sphere).

- 1. Define a differential structure on $\mathbb{S}^n = \{x \in \mathbb{R}^{n+1} \mid ||x||_2 = 1\}$ by using stereographic projections.
- 2. The Euclidean sphere \mathbb{S}^n is also a manifold as a submanifold of \mathbb{R}^{n+1} . Show that the differentiable structure built in question 1 is the same as the one induced by \mathbb{R}^{n+1} .
- 3. *(bonus)* What happens if the Euclidean norm $\|\cdot\|_2$ is replaced by another norm $\|\cdot\|$?

Exercise 3 (Product manifolds).

Let M and N be smooth manifolds, show that $M \times N$ is a smooth manifold. What is its dimension?

Exercise 4 (The torus).

- 1. Build a differentiable structure on $\mathbb{T}^n = \mathbb{R}^n / \mathbb{Z}^n$ such that $p \colon \mathbb{R}^n \to \mathbb{T}^n$ is a local diffeomorphism.
- 2. Prove that the homeomorphism $\mathbb{T}^n \to (\mathbb{S}^1)^n$ built in Exercise 1.6 is in fact a diffeomorphism.

Exercise 5 (The projective space).

- 1. Let $i \in \{0, ..., n\}$. Show that $U_i = \{[x_0 : ... : x_n] \in \mathbb{RP}^n \mid x_i \neq 0\}$ is open in \mathbb{RP}^n , and construct a homeomorphism $\varphi_i : U_i \to \mathbb{R}^n$.
- 2. Show that \mathbb{RP}^n equipped with the atlas $(\varphi_i)_{i \in \{0,...,n\}}$ is a smooth manifold.

- 3. Show that p is smooth.
- 4. Show that the restriction of p to \mathbb{S}^n is a local diffeomorphism.
- 5. Show that \mathbb{RP}^1 is diffeomorphic to \mathbb{S}^1 .

Exercise 6 (Klein Bottle).

Let G be the group \mathbb{Z}^2 where the group law is defined by $(n,m) \star (p,q) = ((-1)^m p + n, m+q)$. The group (\mathbb{Z}^2, \star) acts on \mathbb{R}^2 by the following formula : $(n,m) \cdot (x,y) = ((-1)^m x + n, y + m)$

- 1. Prove that this action is properly discontinuous (see Exercise 1.3 for the definition).
- 2. Let K be the quotient $[0,1] \times [0,1]/\sim$, where \sim is the equivalence relation defined by $(x,0) \sim (1-x,1)$ and $(0,y) \sim (1,y)$ for all $x, y \in [0,1]$. Show that K is homeomorphic to the quotient \mathbb{R}^2/G . Show that \mathbb{R}^2/G is compact Hausdorff.
- 3. Build a differential structure on \mathbb{R}^2/G such that the canonical projection $p: \mathbb{R}^2 \to \mathbb{R}^2/G$ is a local diffeomorphism.