Let us recall a few definitions.

Definitions.

Let X be a topological space.

- X is compact if any open cover has a finite subcover, that is:

$$
\forall\left\{U_{i}\right\}_{i \in I} \text { open subsets such that } X=\bigcup_{i \in I} U_{i}, \exists i_{1}, \ldots, i_{n} \in I \text { such that } X=\bigcup_{k=1}^{n} U_{i_{k}} \text {. }
$$

- $Y \subset X$ is compact if it is compact for the induced topology.
- X is Hausdorff if any two distinct points have disjoint neighbourhoods:

$$
\forall x, y \in X, x \neq y, \exists U_{x}, U_{y} \text { open such that } x \in U_{x}, y \in U_{y} \text { and } U_{x} \cap U_{y}=\varnothing .
$$

- X is locally compact if for any point $x \in X$ and any open neighbourhood V of x, there exists a smaller neighbourhood of x whose closure is compact and contained in U_{x} :

$$
\forall x \in X, \forall V \text { open neighb. of } x, \exists U \subset V \text { open with } \bar{U} \text { compact, } x \in U \subset \bar{U} \subset V \text {. }
$$

If X is in addition Hausdorff, the following is equivalent: any point has a compact neighbourhood.

Let us also recall a few properties of topological spaces and continuous maps.
Lemma 1. Let $f: K \rightarrow Y$ be a continuous map with K compact. Then $f(K)$ is compact.
Proof. Suppose $f(K) \subset \bigcup_{i \in I}$ is an open cover. Then $K \subset f^{-1}(f(K)) \subset \bigcup_{i \in I} f^{-1}\left(U_{i}\right)$ is an open cover (because f is continuous) of K, which is compact. Therefore, there exists i_{1}, \ldots, i_{n} with $K=\bigcup_{j=1}^{n} f^{-1}\left(U_{i_{j}}\right)$. It follows that $f(K) \subset \bigcup_{j=1}^{n} U_{i_{j}}$ is a finite subcover, and that $f(K)$ is compact.

Lemma 2. Let X be Hausdorff and $K \subset X$ be compact. Then K is closed.
Proof. Let us show that the complement $X \backslash K$ is open. Let $x \in X \backslash K$. As X is Hausdorff, for any $y \in K$, one can find open neighbourhoods $U_{y} \ni x$ and $V_{y} \ni y$ such that $U_{y} \cap V_{y}=\varnothing$. As $K \subset \bigcup_{y \in K} V_{y}$ and K is compact, there exists a finitly many points y_{1}, \ldots, y_{n} with $K \subset$ $\bigcup_{j=1}^{n} V_{y_{j}}$. It follows that $U=\bigcap_{j=1}^{n} U_{y_{j}}$ is an open neighbourhood of x with $U \subset X \backslash K$, and $X \backslash K$ is open.

Lemma 3. Suppose X is compact and $F \subset X$ is closed, then F is compact.
Proof. Suppose $F \subset \bigcup_{i \in I} U_{i}$ is an open cover. Then $X=F \cup(X \backslash F)=\left(\bigcup_{i \in I} U_{i}\right) \cup(X \backslash F)$ is an open cover of X. By compactness, there exists i_{1}, \ldots, i_{n} such that we have a finite subcover $X=\left(\bigcup_{i=1}^{n} U_{i_{j}}\right) \cup(X \backslash F)$. It follows that $F \subset \bigcup_{j=1}^{n} U_{i_{j}}$ is a finite subcover, and F is compact.

Exercise 1 (Quotient topology).

1. $U \subset X / \sim$ is open $\Longleftrightarrow p^{-1}(U) \subset X$ is open.
2. Let $f: X / \sim \longrightarrow Y$. Then:

$$
\begin{aligned}
f \text { is continuous } & \Longleftrightarrow \forall U \subset Y \text { open }, f^{-1}(U) \subset X / \sim \text { is open } \\
& \Longleftrightarrow \forall U \subset Y \text { open, } p^{-1}\left(f^{-1}(U)\right) \subset X \text { is open } \\
& \Longleftrightarrow \forall U \subset Y \text { open, }(f \circ p)^{-1}(U) \subset X \text { is open } \\
& \Longleftrightarrow f \circ p \text { is continuous. }
\end{aligned}
$$

3. Consider $\bar{x} \neq \bar{y} \in X / G$ and fix $x \in p^{-1}(\{\bar{x}\}), y \in p^{-1}(\{\bar{y}\})$. Note that for all $g \in X$, $x \neq g \cdot y$.
First, X is locally compact, so that there exists $x \in U_{x} \subset K_{x}$ and $y \in U_{y} \subset K_{y}$ with U_{x} and U_{y} open and K_{x} and K_{y} compact. Define $K=K_{x} \cup K_{y}$. As $G \curvearrowright X$ is properly discontinuous, the set

$$
\{g \in G \mid K \cap g K \neq \varnothing\}
$$

is finite, and so is the set

$$
\left\{g \in G \mid U_{x} \cap g U_{y} \neq \varnothing\right\} .
$$

Call its elements g_{1}, \ldots, g_{n}. The two G-invariant open sets

$$
\bigcup_{g \in G} g U_{x} \text { and } \bigcup_{g \in G} g U_{y}
$$

may overlaps precisely because of the elements finitely many elements g_{1}, \ldots, g_{n} : indeed, if $g, h \in G$ are such that $g U_{x} \cap h U_{y} \neq \varnothing$, then $U_{x} \cap\left(g^{-1} h\right) U_{y} \neq \varnothing$. It follows that $K \cap\left(g^{-1} h\right) K \neq \varnothing$ and thus, $g^{-1} h \in\left\{g_{1}, \ldots, g_{n}\right\}$. Let us correct these overlaps.
The set X is Hausdorff, and for all $j \in\{1, \ldots, n\}, x \neq g_{j} \cdot y$; thus, there exists $V_{j} \ni x$ and $W_{j} \ni g_{j} \cdot y$ open neighbourhoods with $V_{j} \cap W_{j}=\varnothing$. Define

$$
V=U_{x} \cap\left(\bigcap_{j=1}^{n} V_{j}\right) \text { and } W=U_{y} \cap\left(\bigcap_{j=1}^{n} g_{j}{ }^{-1} W_{j}\right) .
$$

By construction, V and W are open neighbourhoods of x and y respectively such that

$$
\forall g \in G, V \cap g W=\varnothing
$$

Denoting by $\widetilde{V}=\bigcup_{g \in G} g V$ and $\widetilde{W}=\bigcup_{g \in G} g W$, they are disjoint G-invariant open subsets by construction, with $x \in \widetilde{V}$ and $y \in \widetilde{W}$, so that $p(\widetilde{V}) \cap p(\widetilde{W})=\varnothing$. But

$$
p^{-1}(p(\widetilde{V}))=\widetilde{V}, \quad p^{-1}(p(\widetilde{W}))=\widetilde{W}
$$

so that $p(\widetilde{V})$ and $p(\widetilde{W})$ are open in X / G. It follows that they are disjoint open neighbourhoods of \bar{x} and \bar{y}, and X / G is Hausdorff.
4. The action $\mathbb{Z}^{n} \curvearrowright \mathbb{R}^{n}$ defined by $v \cdot x=x+v$ is properly discontinuous: indeed, if $K \subset \mathbb{R}^{n}$ is compact with $D=\operatorname{diam}_{\|\cdot\|_{\infty}} K<+\infty$, and if $v \in \mathbb{Z}^{n}$ is such that $\|v\|_{\infty} \geqslant D+1$, then $K \cap(K+v)=\varnothing$. It follows that

$$
\left\{v \in \mathbb{Z}^{n} \mid K \cap(K+v) \neq \varnothing\right\} \subset \bar{B}(0, D+1) \cap \mathbb{Z}^{n}
$$

is a discret subset of the compact $\bar{B}(0, D+1)$: it is therefore finite. By $3 ., \mathbb{T}^{n}$ is Hausdorff.
Note that the restriction $\left.p\right|_{[0,1]^{n}}:[0,1]^{n} \rightarrow \mathbb{T}^{n}$ is surjective and continuous. It follows that \mathbb{T}^{n} is compact as the continuous image of a compact.
Finally, if U is open in \mathbb{R}^{n}, then $p^{-1}(p(U))=\cup_{v \in \mathbb{Z}^{n}}(U+v)$ is open as a union of open subsets $(U+v$ is homeomorphic to $U)$. Therefore p is an open map.
5. In order to show that f is an homeomorphism, let us show that $g=f^{-1}$ is continuous. We will use the characterisation by closed subsets: g is continuous if and only if $\forall F \subset K$ closed, $g^{-1}(F) \subset K$ is closed.
Fix $F \subset K$ a closed subset. Then F is compact as a closed subset of K compact. It follows that $g^{-1}(F)=f(F)$ is compact as the continuous image of F compact by f. Now, recall that Y is Hausdorff, so that $F \subset Y$ is closed. The result follows.
A counterexample is given by id: $\left(X, \tau_{1}\right) \rightarrow\left(X, \tau_{2}\right)$, with $X=\{0,1\}, \tau_{1}=\mathcal{P}(X)$ and $\tau_{2}=\{\varnothing, X\}$.
6. The map $f: t \in \mathbb{R} \mapsto e^{2 i \pi t} \in \mathbb{S}^{1}$ is a surjective group homomorphism. Moreover, its kernel is \mathbb{Z}, which acts properly discontinuously on \mathbb{R}. It thus induces a continuous bijection

$$
\bar{f}: \mathbb{T}^{1} \rightarrow \mathbb{S}^{1}
$$

Recall that \mathbb{T}^{1} is compact Hausdorff by 4 ., and that \mathbb{S}^{1} is Hausdorff as a subspace of \mathbb{C}. Thus, it is a homeomorphism by 5 .
More generally, the exact same study with $f_{n}: \mathbb{R}^{n} \rightarrow\left(\mathbb{S}^{1}\right)^{n}$ defined by $f_{n}\left(t_{1}, \ldots, t_{n}\right)=$ $\left(e^{2 i \pi t_{1}}, \ldots, e^{2 i \pi t_{n}}\right)$ yields a homeomorphism $\overline{f_{n}}: \mathbb{T}^{n} \rightarrow\left(\mathbb{S}^{1}\right)^{n}$.
7. Apparently, we do not have any properly discontinuous action of a discrete group. We have to find one.
Consider the inclusion map $i: \mathbb{S}^{n} \rightarrow \mathbb{R}^{n+1} \backslash\{0\}$. It is clearly continuous. Consider now the composition

$$
q=p \circ i: \mathbb{S}^{n} \longrightarrow \mathbb{R}^{n+1} \backslash\{0\} \longrightarrow \mathbb{R P}^{n}
$$

By 1., q is continuous. Moreover, it is surjective as any (linear) line in \mathbb{R}^{n+1} intersects \mathbb{S}^{n}. It follows that $\mathbb{R} \mathbb{P}^{n}=q\left(\mathbb{S}^{n}\right)$. The unit sphere being compact (for example, it is bounded and closed in the finite dimensional linear space \mathbb{R}^{n+1}), so is $\mathbb{R} \mathbb{P}^{n}$.
Define the antipodal action $\{ \pm 1\} \curvearrowright \mathbb{S}^{n}$ to be $k \cdot x=k x$. As $\{ \pm 1\}$ is finite, it is clearly a properly discontinuous action, and by 2 ., the quotient $\mathbb{S}^{n} /\{ \pm 1\}$ is Hausdorff. It is also compact, being the image of the quotient map $\pi: \mathbb{S}^{n} \rightarrow \mathbb{S}^{n} /\{ \pm 1\}$.
Notice that if $x \in \mathbb{S}^{n}$, then $q^{-1}(\{q(x)\})=\{ \pm x\}$, so that q descends as a quotient map

$$
\bar{q}: \mathbb{S}^{n} /\{ \pm 1\} \longrightarrow \mathbb{R P}^{n}
$$

such that $q=\bar{q} \circ \pi$. By 1., \bar{q} is continuous. The map \bar{q} is hence a continuous bijection between $\mathbb{S}^{n} /\{ \pm 1\}$, which is compact Hausdorff, and $\mathbb{R} \mathbb{P}^{n}$, which is compact. By 5 ., it is a homeomorphism, and finally, $\mathbb{R P}^{n}$ is compact Hausdorff.
Let us show that p is an open map. Let $U \subset \mathbb{R}^{n+1} \backslash\{0\}$ be an open subset. Then

$$
p^{-1}(p(U))=\bigcup_{r \neq 0} r U
$$

where $r U=\{r x \mid x \in U\}$. But $r U$ is the preimage of U by the continuous map $h_{r}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}$ defined by $h_{r}(x)=\frac{x}{r}$. It follows that $r U$ is open and therefore, $p^{-1}(p(U))$ is open as a union of open subsets. Finally, $p(U)$ is open, and p is an open map.

Exercise 2 (The sphere).

1. The unit sphere is Hausdorff and second-countable as a subspace of \mathbb{R}^{n+1} which is both. Let $N=(0, \ldots, 0,1) \in \mathbb{S}^{n}$ and $S=(0, \ldots, 0,-1) \in \mathbb{S}^{n}$ be the north and south pole of \mathbb{S}^{n} and $U_{N}=\mathbb{S}^{n} \backslash\{N\}, U_{S}=\mathbb{S}^{n} \backslash\{S\} .\left\{U_{N}, U_{S}\right\}$ is an open cover of \mathbb{S}^{n}. Consider the stereographic projections

$$
\begin{aligned}
p_{N}: \mathbb{S}^{n} \backslash\{N\} & \longrightarrow \mathbb{R}^{n}, & p_{S}: \mathbb{S}^{n} \backslash\{S\} & \longrightarrow \mathbb{R}^{n} \\
(X, t) & \longmapsto \frac{X}{1-t} & (X, t) & \longmapsto \frac{X}{1+t}
\end{aligned}
$$

where (X, t) refers to a point of \mathbb{S}^{n} seen as a subset of $\mathbb{R}^{n} \times \mathbb{R}$.

Figure 1: The stereographic projection from the north pole

They are homeomorphisms: indeed, one can check that they are continuous and that they have inverse

$$
\begin{array}{rlrl}
p_{N}{ }^{-1}: \mathbb{R}^{n} & \longrightarrow \mathbb{S}^{n} \backslash\{N\} & , & p_{S}{ }^{-1}: \mathbb{R}^{n} \longrightarrow \mathbb{S}^{n} \backslash\{S\} \\
x & \longmapsto\left(\frac{2 x}{\|x\|^{2}+1}, \frac{\|x\|^{2}-1}{\|x\|^{2}+1}\right) & x \longmapsto\left(\frac{2 x}{\|x\|^{2}+1}, \frac{1-\|x\|^{2}}{\|x\|^{2}+1}\right)
\end{array}
$$

which are continuous.
Moreover, as $U_{N} \cap U_{S}=\mathbb{S}^{n} \backslash\{N, S\}$, it holds that $p_{N}\left(U_{N} \cap U_{S}\right)=p_{S}\left(U_{N} \cap U_{S}\right)=$ $\mathbb{R}^{n} \backslash\{0\}$, and the transition map $p_{N} \circ p_{S}^{-1}$ is given by

$$
p_{N} \circ p_{S}^{-1}(x)=p_{N}\left(\frac{2 x}{\|x\|^{2}+1}, \frac{1-\|x\|^{2}}{\|x\|^{2}+1}\right)=\frac{\frac{2 x}{\|x\|^{2}+1}}{1-\frac{1-\|x\|^{2}}{\|x\|^{2}+1}}=\frac{x}{\|x\|^{2}},
$$

which is indeed smooth. Note that it is involutive so that $p_{S} \circ p_{N}{ }^{-1}$ is also smooth. It follows that $\left\{\left(p_{N}, U_{S}\right),\left(p_{S}, U_{S}\right)\right\}$ is a smooth atlas. Considering the maximal atlas containing it endows \mathbb{S}^{n} with a smooth manifold structure.

2. Here is a slighlty different proof than the one given orally.

Let us show that the two stereographic projections are restrictions of two ambiant charts in \mathbb{R}^{n+1}. Consider the two geometric inversions

$$
\begin{array}{rlrl}
I_{N, \sqrt{2}}: \mathbb{R}^{n+1} \backslash\{N\} & \longrightarrow \mathbb{R}^{n+1} \backslash\{N\}, & I_{S, \sqrt{2}}: \mathbb{R}^{n+1} \backslash\{S\} & \longrightarrow \mathbb{R}^{n+1} \backslash\{S\} \\
x & \longmapsto N+2 \frac{x-N}{\|x-N\|^{2}} & x \longmapsto S+2 \frac{x-S}{\|x-S\|^{2}}
\end{array}
$$

They are the geomoetric inversions in the spheres of radius $\sqrt{2}$ and centers N and S respectively. They are two charts for \mathbb{R}^{n+1} and their restrictions to \mathbb{S}^{n} are p_{N} and p_{S}. It follows that the stereographic projections p_{N} and p_{S} are induced by ambiant charts, and that the differentiable structure of \mathbb{S}^{n} induced from the ambiant space \mathbb{R}^{n+1} is compatible with the atlas $\left\{\left(U_{N}, p_{N}\right),\left(U_{S}, p_{S}\right)\right\}$. They thus define the same differentiable structure on the sphere.

Exercise 3 (Product manifolds).
First, a product of two Hausdorff (resp. second-countable) spaces is Hausdorff (resp. secondcountable), so $M \times N$ is Hausdorff (resp. second-countable). Let us find a smooth atlas on $M \times N$.
Let $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in A}$ (respectively $\left.\left\{\left(V_{\beta}, \psi_{\beta}\right)\right\}_{\beta \in B}\right)$ be the maximal smooth atlas of M^{m} (respectively of $\left.N^{n}\right)$. Let us show that $\left\{\left(U_{\alpha} \times V_{\beta}, \varphi_{\alpha} \times \psi_{\beta}\right)\right\}_{(\alpha, \beta) \in A \times B}$ is a smooth atlas of $M \times N$. First, for all $(\alpha, \beta) \in A \times B, U_{\alpha} \times V_{\beta}$ is open in $M \times N$ by definition of the product topology, and moreover:

$$
\begin{aligned}
\bigcup_{(\alpha, \beta) \in A \times B} U_{\alpha} \times V_{\beta} & =\bigcup_{\alpha \in A} \bigcup_{\beta \in B} U_{\alpha} \times V_{\beta} \\
& =\bigcup_{\alpha \in A}\left(U_{\alpha} \times\left(\bigcup_{\beta \in B} V_{\beta}\right)\right) \\
& =\bigcup_{\alpha \in A} U_{\alpha} \times N \\
& =\left(\bigcup_{\alpha \in A} U_{\alpha}\right) \times N \\
& =M \times N
\end{aligned}
$$

so that it is indeed an open cover.
In addition, if $(\alpha, \beta) \in A \times B$, then

$$
\begin{aligned}
\varphi_{\alpha} \times \psi_{\beta}: U_{\alpha} \times V_{\beta} & \longrightarrow \varphi_{\alpha}\left(U_{\alpha}\right) \times \psi_{\beta}\left(V_{\beta}\right) \subset \mathbb{R}^{m} \times \mathbb{R}^{n} \\
(x, y) & \longmapsto\left(\varphi_{\alpha}(x), \psi_{\beta}(y)\right)
\end{aligned}
$$

is continuous by definition of the product topology, bijective with inverse $\varphi_{\alpha}^{-1} \times \psi_{\beta}^{-1}$, which is also continuous. It is thus a homeomorphism.
Finally, if $\left(\alpha_{1}, \beta_{1}\right)$ and $\left(\alpha_{2}, \beta_{2}\right)$ are elements of $A \times B$, then

$$
\left(\varphi_{\alpha_{1}} \times \psi_{\beta_{1}}\right) \circ\left(\varphi_{\alpha_{2}}, \psi_{\beta_{2}}\right)^{-1}=\left(\varphi_{\alpha_{1}} \circ \varphi_{\alpha_{2}}^{-1}\right) \times\left(\psi_{\beta_{1}} \circ \psi_{\beta_{2}}^{-1}\right)
$$

is defined from $\varphi_{\alpha_{2}}\left(U_{\alpha_{1}} \cap U_{\alpha_{2}}\right) \times \psi_{\beta_{2}}\left(V_{\beta_{1}} \cap V_{\beta_{2}}\right)$ to $\varphi_{\alpha_{1}}\left(U_{\alpha_{1}} \cap U_{\alpha_{2}}\right) \times \psi_{\beta_{1}}\left(V_{\beta_{1}} \cap V_{\beta_{2}}\right)$, is also smooth.

Hence, $M^{m} \times N^{n}$ is a smooth manifold of dimension $m+n$.
Exercise 4 (The torus).
Recall that we have shown in Exercise 1.4. that $p: \mathbb{R}^{n} \rightarrow \mathbb{T}^{n}$ is an open map.

1. Let us first consider the 1 dimensional case. We have an open map

$$
p: \mathbb{R} \rightarrow \mathbb{T}^{1}
$$

so that if $\widetilde{U}_{1}=(0,1)$ and $\widetilde{U}_{2}=\left(-\frac{1}{2}, \frac{1}{2}\right)$, then $U_{1}=p\left(\widetilde{U}_{1}\right)$ and $U_{2}=p\left(\widetilde{U}_{2}\right)$ are open in \mathbb{T}^{1}. Note that

$$
U_{1} \cup U_{2}=p\left(\widetilde{U}_{1}\right) \cup p\left(\widetilde{U}_{2}\right)=p\left(\widetilde{U}_{1} \cup \widetilde{U}_{2}\right)=p\left(\left(-\frac{1}{2}, 1\right)\right)=\mathbb{T}^{1},
$$

so that $\left\{U_{1}, U_{2}\right\}$ is an open cover of \mathbb{T}^{1}. Consider the two maps:

$$
\varphi_{1}: U_{1} \longrightarrow \widetilde{U}_{1}, \quad \varphi_{2}: U_{2} \longrightarrow \widetilde{U}_{2}
$$

defined so that $\varphi_{j}(\bar{x})$ is the only element of $\widetilde{U}_{j} \cap p^{-1}(\{\bar{x}\})$. As p is an open map, φ_{j} are continuous. Being (local) right inverse to p, they are homeomorphisms. Let us show that $\left\{\left(U_{j}, \varphi_{j}\right)\right\}_{j \in\{1,2\}}$ is a smooth atlas.
We have

$$
U_{1} \cap U_{2}=\mathbb{T}^{1} \backslash\left\{\overline{0}, \frac{\overline{1}}{2}\right\}, \quad \varphi_{1}\left(U_{1} \cap U_{2}\right)=(0,1) \backslash\left\{\frac{1}{2}\right\}, \quad \varphi_{2}\left(U_{1} \cap U_{2}\right)=\left(-\frac{1}{2}, \frac{1}{2}\right) \backslash\{0\} .
$$

Therefore, the transition functions are:

$$
\begin{aligned}
\varphi_{1} \circ \varphi_{2}^{-1}:\left(-\frac{1}{2}, \frac{1}{2}\right) \backslash\{0\} & \longrightarrow \begin{cases}(0,1) \backslash\left\{\frac{1}{2}\right\} \\
x+1 & \text { if } x<0 \\
x & \text { if } x>0\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& \varphi_{2} \circ \varphi_{1}^{-1}: \quad(0,1) \backslash\left\{\frac{1}{2}\right\} \quad \longrightarrow \quad\left(-\frac{1}{2}, \frac{1}{2}\right) \backslash\{0\} \\
& x \quad \longmapsto \begin{cases}x & \text { if } x<\frac{1}{2}, \\
x-1 & \text { if } x>\frac{1}{2} .\end{cases}
\end{aligned}
$$

These two transition functions are both smooth. We thus have constructed a smooth atlas on \mathbb{T}^{1}.

Now, for the n-dimensional case, consider the open subsets

$$
\forall\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n}, U_{i_{1} \cdots i_{n}}=U_{i_{1}} \times \cdots \times U_{i_{n}} \text { and } \widetilde{U}_{i_{1} \cdots i_{n}}=\widetilde{U}_{i_{1}} \times \cdots \times \widetilde{U}_{i_{n}}
$$

where \widetilde{U}_{k} and U_{k} are defined in the one dimensional case. Similarly to the one dimensional case, we show that they form an open cover of \mathbb{T}^{n}. Define the functions

$$
\begin{array}{rlc}
\varphi_{i_{1} \cdots i_{n}}: & \frac{U_{i_{1} \cdots i_{n}}}{\left(x_{1}, \ldots, x_{n}\right)} & \longmapsto
\end{array} \widetilde{U}_{i_{1} \cdots i_{n}} \quad\left(\varphi_{i_{1}}\left(\overline{x_{1}}\right), \ldots, \varphi_{i_{n}}\left(\overline{x_{n}}\right)\right) .
$$

Check that $\left\{\left(U_{i_{1} \cdots i_{n}}, \varphi_{i_{1} \cdots i_{n}}\right)\right\}_{\left(i_{1}, \ldots, i_{n}\right) \in\{1,2\}^{n}}$ is a smooth atlas on \mathbb{T}^{n}.
2. Check that the map $\bar{f}: \mathbb{T}^{n} \rightarrow\left(\mathbb{S}^{1}\right)^{n}$ defined in Exercise 1.6 is smooth while seen in the constructed charts. To see that \bar{f}^{-1} is smooth, use the inverse function theorem (in charts).

Exercise 5 (The projective space).
This Exercices has not been covered in class (at least for one group). Please try to solve it by yourself before checking the correction!

1. Recall from Exercise 1.7. that $p: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R} \mathbb{P}^{n}$ is open. Notice that the subset $V_{i}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1} \backslash\{0\} \mid x_{i} \neq 0\right\}$ is open in $\mathbb{R}^{n+1} \backslash\{0\}$. Therefore, $U_{i}=p\left(V_{i}\right)$ is open in $\mathbb{R} \mathbb{P}^{n}$. Define

$$
\begin{array}{cccc}
\Phi_{i}: & V_{i} & \longrightarrow & \mathbb{R}^{n} \\
& \left(x_{0}, \ldots, x_{n}\right) & \longmapsto & \frac{1}{x_{i}}\left(x_{0}, \ldots, \widehat{x}_{i}, \ldots, x_{n}\right) .
\end{array}
$$

It is clearly continuous and surjective. Moreover, we have

$$
\forall t \neq 0, \forall X \in V_{i}, \Phi_{i}(t X)=\Phi_{i}(X)
$$

In fact, we have $\Phi_{i}(X)=\Phi_{i}(Y) \Longleftrightarrow \exists t \neq 0, X=t Y$ (check that in that case, $t=\frac{x_{i}}{y_{i}}$). It thus induces a continuous bijective map

$$
\begin{array}{rccc}
\varphi_{i}: & U_{i} & \longrightarrow & \mathbb{R}^{n} \\
{\left[x_{0}: \cdots: x_{n}\right]} & \longmapsto & \frac{1}{x_{i}}\left(x_{0}, \ldots, x_{i}, \ldots, x_{n}\right)
\end{array}
$$

Let us show that φ_{i} is a homeomorphism : to do so, let us find a continuous inverse to ϕ_{i}. Consider

$$
\begin{array}{ccc}
\Psi_{i}: & \mathbb{R}^{n} & \longrightarrow \\
x_{i} \\
\left(x_{0}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right) & \longmapsto & \left(x_{0}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right) .
\end{array}
$$

Then Ψ_{i} is continuous. It follows that $\psi_{i}=p \circ \Psi_{i}$ is continuous. But $\psi_{i} \circ \varphi_{i}=\operatorname{id}_{\mathbb{R}^{n}}$ and $\varphi_{i} \circ \psi_{i}=\mathrm{id}_{U_{i}}$, so that $\varphi_{i}: U_{i} \rightarrow \mathbb{R}^{n}$ is a homeomorphism.
2. First, $\bigcup_{i=0}^{n} V_{i}=\mathbb{R}^{n+1} \backslash\{0\}$ so that $p\left(\bigcup_{i=0}^{n} V_{i}\right)=\bigcup_{i=0}^{n} U_{i}=\mathbb{R} \mathbb{P}^{n}$, and $\left\{U_{i}\right\}_{i \in\{0, \ldots, n\}}$ is an open cover of $\mathbb{R} \mathbb{P}^{n}$. Moreover, if $i \neq j, U_{i} \cap U_{j}=\left\{\left[x_{0}: \cdots: x_{n}\right] \mid x_{i}, x_{j} \neq 0\right\}$ and
$\varphi_{i} \circ \varphi_{j}^{-1}\left(x_{0}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)=\left(\frac{x_{0}}{x_{i}}, \ldots, \frac{x_{i-1}}{x_{i}}, \frac{x_{i+1}}{x_{i}}, \ldots, \frac{x_{j-1}}{x_{i}}, \frac{1}{x_{i}}, \frac{x_{j+1}}{x_{i}}, \ldots, \frac{x_{n}}{x_{i}}\right)$
is a rational function, and hence is smooth. It follows that $\left\{\left(U_{i}, \varphi_{i}\right)\right\}_{i \in\{0, \ldots, n\}}$ is a smooth atlas for $\mathbb{R} \mathbb{P}^{n}$.
We already know that $\mathbb{R} \mathbb{P}^{n}$ is Hausdorff from Exercice 1.7.
Finally, it is second-countable as the image of $\mathbb{R}^{n+1} \backslash\{0\}$, which is second-countable, by p, which is continuous and open.
We thus have shown that \mathbb{R}^{n} is a smooth manifold.
3. Let us show that p is smooth, that is, for all $i \in\{0, \ldots, n\}$, the map

$$
p_{i}=\varphi_{i} \circ p: p^{-1}\left(U_{i}\right)=\mathbb{R}^{n+1} \backslash\left\{x_{i}=0\right\} \rightarrow \varphi_{i}\left(U_{i}\right)=\mathbb{R}^{n}
$$

is smooth. Its expression is given by

$$
p_{i}\left(x_{0}, \ldots, x_{n}\right)=\frac{1}{x_{i}}\left(x_{0}, \ldots, \widehat{x_{i}}, \ldots, x_{n}\right)
$$

which is indeed smooth as a rational function.
4. Let us show that p is a local diffeomorphism near the north pole N. Let D_{N} be the open upper hemisphere of \mathbb{S}^{n}, that is

$$
D_{N}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{S}^{n} \mid x_{n}>0\right\}
$$

and consider the stereographic projection from the south pole p_{S} (see exercise 2.). Then $p_{S}\left(D_{N}\right)=B_{0}(1) \subset \mathbb{R}^{n}$. Thus, $\left.p_{S}\right|_{D_{N}}$ takes value in U_{n} and we can consider the composition

$$
f=\varphi_{n} \circ p \circ p_{S}^{-1}: B_{0}(1) \longrightarrow \mathbb{R}^{n}
$$

which has the expression, for $x=\left(x_{1}, \ldots, x_{n}\right) \in B_{0}(1)$:

$$
f(x)=\varphi_{n} \circ p\left(\frac{2 x}{\|x\|^{2}+1}, \frac{1-\|x\|^{2}}{\|x\|^{2}+1}\right)=\varphi_{n}\left(\left[\frac{2 x}{\|x\|^{2}+1}: \frac{1-\|x\|^{2}}{\|x\|^{2}+1}\right]\right)=\frac{2 x}{1-\|x\|^{2}} .
$$

Let us compute its differential at 0 . We have, for h small enough:

$$
f(h)=\frac{2 h}{1-\|h\|^{2}}=2 h(1+o(h))=f(0)+2 h+o(h)
$$

So that $\mathrm{d} f(0)=2 \mathrm{id}$ is invertible. The inverse function Theorem then shows that f is a local diffeomorphism near 0 . This means that p is a local diffeomorphism near the north pole N.
The exact same study near any point $P \in \mathbb{S}^{n}$, considering the stereographic projection from $-P$, shows that the projection p is a local diffeomorphism near P, and thus, p is a local diffeomorphism near any point. It is then a local diffeomorphism.
5. We have the stereographic atlas for \mathbb{S}^{1} given by $\left\{\left(p_{N}, \mathbb{S}^{1} \backslash\{N\}\right),\left(p_{S}, \mathbb{S}^{1} \backslash\{S\}\right)\right\}$, with transition function

$$
\begin{array}{rlll}
p_{N} \circ p_{S}^{-1}: \quad \mathbb{R}^{*} & \longrightarrow \mathbb{R}^{*} \\
t & \longmapsto \frac{1}{t}
\end{array}
$$

and the affine atlas for \mathbb{R}^{1} given by $\left\{\left(U_{0}, \varphi_{0}\right),\left(U_{1}, \varphi_{1}\right)\right\}$, with transition function

$$
\begin{aligned}
\varphi_{0} \circ \varphi_{1}^{-1}: \quad \mathbb{R}^{*} & \longrightarrow \mathbb{R}^{*} \\
t & \longmapsto \frac{1}{t}
\end{aligned}
$$

Heuristically, these two manifolds are given by the same construction : they are two disjoint copies of \mathbb{R} where we identify the two disjoint \mathbb{R}^{*} with the inverse map. This allows us to construct a diffeomorphism. Define

$$
\begin{array}{rlrl}
f: & \mathbb{R P}^{1} & \longrightarrow \\
{[x: y]} & \longmapsto \begin{cases}p_{N}^{-1} \circ \varphi_{0}([x: y]) & \text { if }[x: y] \in U_{0} \\
p_{S}^{-1} \circ \varphi_{1}([x: y]) & \text { if }[x: y] \in U_{1}\end{cases}
\end{array}
$$

Check that f is well-defined (that is, its two expressions on $U_{0} \cap U_{1}$ give the same point in \mathbb{S}^{1}) and that f is a diffeomorphism.

