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Quotient topology & some classic manifolds
Correction

Let us recall a few definitions.

Definitions.

Let X be a topological space.

• X is compact if any open cover has a finite subcover, that is:

∀ {Ui}i∈I open subsets such that X =
⋃
i∈I

Ui,∃i1, . . . , in ∈ I such that X =
n⋃
k=1

Uik .

• Y ⊂ X is compact if it is compact for the induced topology.

• X is Hausdorff if any two distinct points have disjoint neighbourhoods:

∀x, y ∈ X,x 6= y,∃Ux, Uy open such that x ∈ Ux, y ∈ Uy and Ux ∩ Uy = ∅.

• X is locally compact if for any point x ∈ X and any open neighbourhood V of x, there
exists a smaller neighbourhood of x whose closure is compact and contained in Ux :

∀x ∈ X,∀V open neighb. of x,∃U ⊂ V open with U compact, x ∈ U ⊂ U ⊂ V.

If X is in addition Hausdorff, the following is equivalent: any point has a compact
neighbourhood.

Let us also recall a few properties of topological spaces and continuous maps.

Lemma 1. Let f : K → Y be a continuous map with K compact. Then f(K) is compact.

Proof. Suppose f(K) ⊂
⋃
i∈I is an open cover. Then K ⊂ f−1 (f(K)) ⊂

⋃
i∈I f

−1(Ui) is an
open cover (because f is continuous) of K, which is compact. Therefore, there exists i1, . . . , in
with K =

⋃n
j=1 f

−1 (Uij). It follows that f(K) ⊂
⋃n
j=1 Uij is a finite subcover, and that f(K)

is compact.

Lemma 2. Let X be Hausdorff and K ⊂ X be compact. Then K is closed.

Proof. Let us show that the complement X \K is open. Let x ∈ X \K. As X is Hausdorff,
for any y ∈ K, one can find open neighbourhoods Uy 3 x and Vy 3 y such that Uy ∩ Vy = ∅.
As K ⊂

⋃
y∈K Vy and K is compact, there exists a finitly many points y1, . . . , yn with K ⊂⋃n

j=1 Vyj . It follows that U =
⋂n
j=1 Uyj is an open neighbourhood of x with U ⊂ X \K, and

X \K is open.

Lemma 3. Suppose X is compact and F ⊂ X is closed, then F is compact.

Proof. Suppose F ⊂
⋃
i∈I Ui is an open cover. Then X = F ∪ (X \ F ) =

(⋃
i∈I Ui

)
∪ (X \ F )

is an open cover of X. By compactness, there exists i1, . . . , in such that we have a finite
subcover X =

(⋃n
i=1 Uij

)
∪ (X \ F ). It follows that F ⊂

⋃n
j=1 Uij is a finite subcover, and F

is compact.
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Exercise 1 (Quotient topology).

1. U ⊂ X/ ∼ is open ⇐⇒ p−1(U) ⊂ X is open.

2. Let f : X/ ∼ −→ Y . Then:

f is continuous ⇐⇒ ∀U ⊂ Y open , f−1(U) ⊂ X/ ∼ is open

⇐⇒ ∀U ⊂ Y open, p−1
(
f−1(U)

)
⊂ X is open

⇐⇒ ∀U ⊂ Y open, (f ◦ p)−1 (U) ⊂ X is open
⇐⇒ f ◦ p is continuous.

3. Consider x 6= y ∈ X/G and fix x ∈ p−1({x}), y ∈ p−1({y}). Note that for all g ∈ X,
x 6= g · y.
First, X is locally compact, so that there exists x ∈ Ux ⊂ Kx and y ∈ Uy ⊂ Ky with Ux
and Uy open and Kx and Ky compact. Define K = Kx ∪Ky. As G y X is properly
discontinuous, the set

{g ∈ G | K ∩ gK 6= ∅}

is finite, and so is the set
{g ∈ G | Ux ∩ gUy 6= ∅} .

Call its elements g1, . . . , gn. The two G-invariant open sets⋃
g∈G

gUx and
⋃
g∈G

gUy

may overlaps precisely because of the elements finitely many elements g1, . . . , gn: indeed,
if g, h ∈ G are such that gUx ∩ hUy 6= ∅, then Ux ∩

(
g−1h

)
Uy 6= ∅. It follows that

K ∩
(
g−1h

)
K 6= ∅ and thus, g−1h ∈ {g1, . . . , gn}. Let us correct these overlaps.

The set X is Hausdorff, and for all j ∈ {1, . . . , n}, x 6= gj · y; thus, there exists Vj 3 x
and Wj 3 gj · y open neighbourhoods with Vj ∩Wj = ∅. Define

V = Ux ∩

 n⋂
j=1

Vj

 and W = Uy ∩

 n⋂
j=1

gj
−1Wj

 .

By construction, V and W are open neighbourhoods of x and y respectively such that

∀g ∈ G,V ∩ gW = ∅.

Denoting by Ṽ =
⋃
g∈G gV and W̃ =

⋃
g∈G gW , they are disjoint G-invariant open

subsets by construction, with x ∈ Ṽ and y ∈ W̃ , so that p(Ṽ ) ∩ p
(
W̃
)

= ∅. But

p−1
(
p
(
Ṽ
))

= Ṽ , p−1
(
p
(
W̃
))

= W̃ ,

so that p(Ṽ ) and p(W̃ ) are open in X/G. It follows that they are disjoint open neigh-
bourhoods of x and y, and X/G is Hausdorff.
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4. The action Zn y Rn defined by v ·x = x+v is properly discontinuous: indeed, if K ⊂ Rn
is compact with D = diam‖·‖∞K < +∞, and if v ∈ Zn is such that ‖v‖∞ > D+ 1, then
K ∩ (K + v) = ∅. It follows that

{v ∈ Zn | K ∩ (K + v) 6= ∅} ⊂ B(0, D + 1) ∩ Zn

is a discret subset of the compact B(0, D + 1) : it is therefore finite. By 3., Tn is
Hausdorff.

Note that the restriction p|[0,1]n : [0, 1]n → Tn is surjective and continuous. It follows
that Tn is compact as the continuous image of a compact.

Finally, if U is open in Rn, then p−1 (p (U)) = ∪v∈Zn (U + v) is open as a union of open
subsets (U + v is homeomorphic to U). Therefore p is an open map.

5. In order to show that f is an homeomorphism, let us show that g = f−1 is continuous.
We will use the characterisation by closed subsets: g is continuous if and only if ∀F ⊂ K
closed, g−1(F ) ⊂ K is closed.

Fix F ⊂ K a closed subset. Then F is compact as a closed subset of K compact. It
follows that g−1(F ) = f(F ) is compact as the continuous image of F compact by f .
Now, recall that Y is Hausdorff, so that F ⊂ Y is closed. The result follows.

A counterexample is given by id : (X, τ1) → (X, τ2), with X = {0, 1}, τ1 = P(X) and
τ2 = {∅, X}.

6. The map f : t ∈ R 7→ e2iπt ∈ S1 is a surjective group homomorphism. Moreover, its
kernel is Z, which acts properly discontinuously on R. It thus induces a continuous
bijection

f : T1 → S1.

Recall that T1 is compact Hausdorff by 4., and that S1 is Hausdorff as a subspace of C.
Thus, it is a homeomorphism by 5.

More generally, the exact same study with fn : Rn →
(
S1
)n defined by fn(t1, . . . , tn) =(

e2iπt1 , . . . , e2iπtn
)
yields a homeomorphism fn : Tn →

(
S1
)n.

7. Apparently, we do not have any properly discontinuous action of a discrete group. We
have to find one.

Consider the inclusion map i : Sn → Rn+1 \ {0}. It is clearly continuous. Consider now
the composition

q = p ◦ i : Sn −→ Rn+1 \ {0} −→ RPn.

By 1., q is continuous. Moreover, it is surjective as any (linear) line in Rn+1 intersects
Sn. It follows that RPn = q (Sn). The unit sphere being compact (for example, it is
bounded and closed in the finite dimensional linear space Rn+1), so is RPn.
Define the antipodal action {±1}y Sn to be k ·x = kx. As {±1} is finite, it is clearly a
properly discontinuous action, and by 2., the quotient Sn/{±1} is Hausdorff. It is also
compact, being the image of the quotient map π : Sn → Sn/{±1}.
Notice that if x ∈ Sn, then q−1 ({q(x)}) = {±x}, so that q descends as a quotient map

q : Sn/{±1} −→ RPn
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such that q = q ◦ π. By 1., q is continuous. The map q is hence a continuous bijection
between Sn/{±1}, which is compact Hausdorff, and RPn, which is compact. By 5., it is
a homeomorphism, and finally, RPn is compact Hausdorff.

Let us show that p is an open map. Let U ⊂ Rn+1 \ {0} be an open subset. Then

p−1 (p(U)) =
⋃
r 6=0

rU

where rU = {rx | x ∈ U}. But rU is the preimage of U by the continuous map
hr : Rn \ {0} → Rn \ {0} defined by hr(x) = x

r . It follows that rU is open and therefore,
p−1 (p(U)) is open as a union of open subsets. Finally, p(U) is open, and p is an open
map.

Exercise 2 (The sphere).

1. The unit sphere is Hausdorff and second-countable as a subspace of Rn+1 which is both.
Let N = (0, . . . , 0, 1) ∈ Sn and S = (0, . . . , 0,−1) ∈ Sn be the north and south pole of
Sn and UN = Sn \ {N}, US = Sn \ {S}. {UN , US} is an open cover of Sn. Consider the
stereographic projections

pN : Sn \ {N} −→ Rn , pS : Sn \ {S} −→ Rn

(X, t) 7−→ X

1− t
(X, t) 7−→ X

1 + t

where (X, t) refers to a point of Sn seen as a subset of Rn × R.

Rn × {0}

pN (X, t)

(X, t)

N

0

S

Figure 1: The stereographic projection from the north pole

They are homeomorphisms: indeed, one can check that they are continuous and that
they have inverse

pN
−1 : Rn −→ Sn \ {N} , pS

−1 : Rn −→ Sn \ {S}

x 7−→
(

2x

‖x‖2 + 1
,
‖x‖2 − 1

‖x‖2 + 1

)
x 7−→

(
2x

‖x‖2 + 1
,
1− ‖x‖2

‖x‖2 + 1

)
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which are continuous.

Moreover, as UN ∩ US = Sn \ {N,S}, it holds that pN (UN ∩ US) = pS (UN ∩ US) =
Rn \ {0}, and the transition map pN ◦ p−1S is given by

pN ◦ pS−1(x) = pN

(
2x

‖x‖2 + 1
,
1− ‖x‖2

‖x‖2 + 1

)
=

2x
‖x‖2+1

1− 1−‖x‖2
‖x‖2+1

=
x

‖x‖2
,

which is indeed smooth. Note that it is involutive so that pS ◦ pN−1 is also smooth.
It follows that {(pN , US) , (pS , US)} is a smooth atlas. Considering the maximal atlas
containing it endows Sn with a smooth manifold structure.

2. Here is a slighlty different proof than the one given orally.

Let us show that the two stereographic projections are restrictions of two ambiant charts
in Rn+1. Consider the two geometric inversions

IN,
√
2 : Rn+1 \ {N} −→ Rn+1 \ {N} , IS,

√
2 : Rn+1 \ {S} −→ Rn+1 \ {S}

x 7−→ N + 2
x−N
‖x−N‖2

x 7−→ S + 2
x− S
‖x− S‖2

They are the geomoetric inversions in the spheres of radius
√

2 and centers N and S
respectively. They are two charts for Rn+1 and their restrictions to Sn are pN and pS . It
follows that the stereographic projections pN and pS are induced by ambiant charts, and
that the differentiable structure of Sn induced from the ambiant space Rn+1 is compatible
with the atlas {(UN , pN ) , (US , pS)}. They thus define the same differentiable structure
on the sphere.

Exercise 3 (Product manifolds).

First, a product of two Hausdorff (resp. second-countable) spaces is Hausdorff (resp. second-
countable), so M × N is Hausdorff (resp. second-countable). Let us find a smooth atlas on
M ×N .

Let {(Uα, ϕα)}α∈A (respectively {(Vβ, ψβ)}β∈B) be the maximal smooth atlas of Mm (respec-
tively of Nn). Let us show that {(Uα × Vβ, ϕα × ψβ)}(α,β)∈A×B is a smooth atlas of M ×N .

First, for all (α, β) ∈ A×B, Uα× Vβ is open in M ×N by definition of the product topology,
and moreover: ⋃

(α,β)∈A×B

Uα × Vβ =
⋃
α∈A

⋃
β∈B

Uα × Vβ

=
⋃
α∈A

Uα ×
⋃
β∈B

Vβ


=
⋃
α∈A

Uα ×N

=

(⋃
α∈A

Uα

)
×N

= M ×N
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so that it is indeed an open cover.

In addition, if (α, β) ∈ A×B, then

ϕα × ψβ : Uα × Vβ −→ ϕα (Uα)× ψβ (Vβ) ⊂ Rm × Rn

(x, y) 7−→ (ϕα(x), ψβ(y))

is continuous by definition of the product topology, bijective with inverse ϕ−1α ×ψ−1β , which is
also continuous. It is thus a homeomorphism.

Finally, if (α1, β1) and (α2, β2) are elements of A×B, then

(ϕα1 × ψβ1) ◦ (ϕα2 , ψβ2)−1 =
(
ϕα1 ◦ ϕ−1α2

)
×
(
ψβ1 ◦ ψ

−1
β2

)
is defined from ϕα2 (Uα1 ∩ Uα2)× ψβ2 (Vβ1 ∩ Vβ2) to ϕα1 (Uα1 ∩ Uα2)× ψβ1 (Vβ1 ∩ Vβ2), is also
smooth.

Hence, Mm ×Nn is a smooth manifold of dimension m+ n.

Exercise 4 (The torus).

Recall that we have shown in Exercise 1.4. that p : Rn → Tn is an open map.

1. Let us first consider the 1 dimensional case. We have an open map

p : R→ T1

so that if Ũ1 = (0, 1) and Ũ2 =
(
−1

2 ,
1
2

)
, then U1 = p

(
Ũ1

)
and U2 = p

(
Ũ2

)
are open in

T1. Note that

U1 ∪ U2 = p
(
Ũ1

)
∪ p
(
Ũ2

)
= p

(
Ũ1 ∪ Ũ2

)
= p

((
−1

2
, 1

))
= T1,

so that {U1, U2} is an open cover of T1. Consider the two maps :

ϕ1 : U1 −→ Ũ1, ϕ2 : U2 −→ Ũ2

defined so that ϕj (x) is the only element of Ũj ∩ p−1 ({x}). As p is an open map, ϕj
are continuous. Being (local) right inverse to p, they are homeomorphisms. Let us show
that {(Uj , ϕj)}j∈{1,2} is a smooth atlas.

We have

U1 ∩ U2 = T1 \
{

0,
1

2

}
, ϕ1 (U1 ∩ U2) = (0, 1) \

{
1

2

}
, ϕ2 (U1 ∩ U2) =

(
−1

2
,
1

2

)
\ {0}.

Therefore, the transition functions are:

ϕ1 ◦ ϕ−12 :
(
−1

2 ,
1
2

)
\ {0} −→ (0, 1) \

{
1
2

}
x 7−→

{
x+ 1 if x < 0,

x if x > 0,

and
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ϕ2 ◦ ϕ−11 : (0, 1) \
{
1
2

}
−→

(
−1

2 ,
1
2

)
\ {0}

x 7−→

{
x if x < 1

2 ,

x− 1 if x > 1
2 .

These two transition functions are both smooth. We thus have constructed a smooth
atlas on T1.

Now, for the n-dimensional case, consider the open subsets

∀ (i1, . . . , in) ∈ {1, 2}n, Ui1···in = Ui1 × · · · × Uin and Ũi1···in = Ũi1 × · · · × Ũin ,

where Ũk and Uk are defined in the one dimensional case. Similarly to the one dimen-
sional case, we show that they form an open cover of Tn. Define the functions

ϕi1···in : Ui1···in −→ Ũi1···in
(x1, . . . , xn) 7−→ (ϕi1(x1) , . . . , ϕin (xn)) .

Check that {(Ui1···in , ϕi1···in)}(i1,...,in)∈{1,2}n is a smooth atlas on Tn.

2. Check that the map f : Tn →
(
S1
)n defined in Exercise 1.6 is smooth while seen in the

constructed charts. To see that f−1 is smooth, use the inverse function theorem (in
charts).

Exercise 5 (The projective space).

This Exercices has not been covered in class (at least for one group). Please try to solve it by
yourself before checking the correction!

1. Recall from Exercise 1.7. that p : Rn+1 \ {0} → RPn is open. Notice that the subset
Vi =

{
(x0, . . . , xn) ∈ Rn+1 \ {0} | xi 6= 0

}
is open in Rn+1 \ {0}. Therefore, Ui = p(Vi)

is open in RPn. Define

Φi : Vi −→ Rn
(x0, . . . , xn) 7−→ 1

xi
(x0, . . . , x̂i, . . . , xn) .

It is clearly continuous and surjective. Moreover, we have

∀t 6= 0, ∀X ∈ Vi,Φi(tX) = Φi(X).

In fact, we have Φi(X) = Φi(Y ) ⇐⇒ ∃t 6= 0, X = tY (check that in that case, t = xi
yi
).

It thus induces a continuous bijective map

ϕi : Ui −→ Rn
[x0 : · · · : xn] 7−→ 1

xi
(x0, . . . , x̂i, . . . , xn)

Let us show that ϕi is a homeomorphism : to do so, let us find a continuous inverse to
φi. Consider

Ψi : Rn −→ Vi
(x0, . . . , xi−1, xi+1, . . . , xn) 7−→ (x0, . . . , xi−1, 1, xi+1, . . . , xn).

Then Ψi is continuous. It follows that ψi = p ◦Ψi is continuous. But ψi ◦ϕi = idRn and
ϕi ◦ ψi = idUi , so that ϕi : Ui → Rn is a homeomorphism.
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2. First,
⋃n
i=0 Vi = Rn+1 \ {0} so that p (

⋃n
i=0 Vi) =

⋃n
i=0 Ui = RPn, and {Ui}i∈{0,...,n} is

an open cover of RPn. Moreover, if i 6= j, Ui ∩ Uj = {[x0 : · · · : xn] | xi, xj 6= 0} and

ϕi◦ϕ−1j (x0, . . . , xj−1, xj+1, . . . , xn) =

(
x0
xi
, . . . ,

xi−1
xi

,
xi+1

xi
, . . . ,

xj−1
xi

,
1

xi
,
xj+1

xi
, . . . ,

xn
xi

)
is a rational function, and hence is smooth. It follows that {(Ui, ϕi)}i∈{0,...,n} is a smooth
atlas for RPn.
We already know that RPn is Hausdorff from Exercice 1.7.

Finally, it is second-countable as the image of Rn+1 \ {0}, which is second-countable, by
p, which is continuous and open.

We thus have shown that RPn is a smooth manifold.

3. Let us show that p is smooth, that is, for all i ∈ {0, . . . , n}, the map

pi = ϕi ◦ p : p−1 (Ui) = Rn+1 \ {xi = 0} → ϕi(Ui) = Rn

is smooth. Its expression is given by

pi (x0, . . . , xn) =
1

xi
(x0, . . . , x̂i, . . . , xn)

which is indeed smooth as a rational function.

4. Let us show that p is a local diffeomorphism near the north pole N . Let DN be the open
upper hemisphere of Sn, that is

DN = {(x0, . . . , xn) ∈ Sn | xn > 0}

and consider the stereographic projection from the south pole pS (see exercise 2.). Then
pS(DN ) = B0(1) ⊂ Rn. Thus, pS |DN

takes value in Un and we can consider the compo-
sition

f = ϕn ◦ p ◦ p−1S : B0(1) −→ Rn

which has the expression, for x = (x1, . . . , xn) ∈ B0(1) :

f(x) = ϕn ◦ p
(

2x

‖x‖2 + 1
,
1− ‖x‖2

‖x‖2 + 1

)
= ϕn

([
2x

‖x‖2 + 1
:

1− ‖x‖2

‖x‖2 + 1

])
=

2x

1− ‖x‖2
.

Let us compute its differential at 0. We have, for h small enough:

f(h) =
2h

1− ‖h‖2
= 2h(1 + o(h)) = f(0) + 2h+ o(h)

So that df(0) = 2 id is invertible. The inverse function Theorem then shows that f is a
local diffeomorphism near 0. This means that p is a local diffeomorphism near the north
pole N .

The exact same study near any point P ∈ Sn, considering the stereographic projection
from −P , shows that the projection p is a local diffeomorphism near P , and thus, p is a
local diffeomorphism near any point. It is then a local diffeomorphism.
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5. We have the stereographic atlas for S1 given by
{(
pN , S1 \ {N}

)
,
(
pS , S1 \ {S}

)}
, with

transition function
pN ◦ p−1S : R∗ −→ R∗

t 7−→ 1
t

and the affine atlas for RP1 given by {(U0, ϕ0) , (U1, ϕ1)}, with transition function

ϕ0 ◦ ϕ−11 : R∗ −→ R∗
t 7−→ 1

t .

Heuristically, these two manifolds are given by the same construction : they are two
disjoint copies of R where we identify the two disjoint R∗ with the inverse map. This
allows us to construct a diffeomorphism. Define

f : RP1 −→ S1

[x : y] 7−→

{
p−1N ◦ ϕ0 ([x : y]) if [x : y] ∈ U0

p−1S ◦ ϕ1 ([x : y]) if [x : y] ∈ U1

Check that f is well-defined (that is, its two expressions on U0 ∩U1 give the same point
in S1) and that f is a diffeomorphism.
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