Submanifolds, Tangent spaces and Differentials Critical values, Sard's Theorem

Definitions (Tangent bundle of a submanifold, vector fields, parallelizability).
Let $M^{m} \subset \mathbb{R}^{n}$ be a submanifold. Recall that in that case, $T_{p} M \subset \mathbb{R}^{n}$ is a linear subspace of dimension m. We define

$$
T M=\bigcup_{p \in M}\{p\} \times T_{p} M \subset \mathbb{R}^{n} \times \mathbb{R}^{n}
$$

and we call $T M$ the tangent bundle of M. It is a submanifold of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ (admitted).
A vector field on $M^{m} \subset \mathbb{R}^{n}$ is a smooth function $X: M^{n} \rightarrow \mathbb{R}^{n}$ such that for all $p \in M$, $X(p) \in T_{p} M$.
$M^{m} \subset \mathbb{R}^{n}$ is said to be parallelizable if there exists m vector fields X_{1}, \ldots, X_{m} on M such that for all $p \in M,\left\{X_{1}(p), \ldots, X_{m}(p)\right\}$ is a linearly independant family (i.e a basis of $T_{p} M$).

Exercise 1 (Tangent space of a submanifold).
Let $M \subset \mathbb{R}^{m}$ and $N \in \mathbb{R}^{n}$ be submanifolds of \mathbb{R}^{m} and \mathbb{R}^{n} respectively.

1. Describe the tangent space $T_{p} M \subset \mathbb{R}^{m}$ of the submanifold M of \mathbb{R}^{m} at a point p, for each of the four characterizations of a submanifold. Why is there no ambiguity in identifying the tangent space $\subset \mathbb{R}^{m}$ at a point p of M seen as a submanifold with its tangent space at p where M is seen as a manifold (endowed with the differentiable structure naturally induced)?
2. Let $U \subset \mathbb{R}_{\sim}^{m}$ and $V \subset \mathbb{R}^{n}$ be open neighborhoods. Let $\tilde{f}: U \rightarrow V$ be a smooth map such that $f:=\left.\widetilde{f}\right|_{M \cap U}: M \cap U \rightarrow N \cap V$. Show that f is a smooth map between manifolds and that

$$
\mathrm{d} f_{p}=\left.\left(\mathrm{d} \tilde{f}_{p}\right)\right|_{T_{p} M}: T_{p} M \rightarrow T_{f(p)} N
$$

Exercise 2 (Veronese embedding).

1. Let $f: M \rightarrow N$ be a proper injective immersion between two manifolds. Show that f is an embedding. Is it a necessary condition?
2. Consider the map $f: \mathbb{R P}^{2} \rightarrow \mathbb{R} \mathbb{P}^{5}$ defined in homogeneous coordinates by the relation $f(x: y: z)=\left(x^{2}: y^{2}: z^{2}: x y: y z: z x\right)$. Show that f is well defined and that it is an embedding.

Exercise 3 (Tangent space of the torus).

1. Find an embedding $\mathbb{T}^{2} \rightarrow \mathbb{R}^{4}$ and show that \mathbb{T}^{2} is parallelizable.
2. Show that \mathbb{T}^{2} can be embedded in \mathbb{R}^{3}. "Draw" a parallelization of $\mathbb{T}^{2} \subset \mathbb{R}^{3}$.
3. Is \mathbb{T}^{n} parallelizable?

Exercise 4 (Tangent space of spheres).

1. Show that \mathbb{S}^{1} is parallelizable. Is \mathbb{S}^{2} parallelizable?
2. A Lie group is smooth manifold G endow withed a group structure such that the multiplication $\mu: G \times G \longrightarrow G$ and the inversion $\eta: G \longrightarrow G$ are smooth maps. In this exercise, we consider Lie group that are submanifolds of \mathbb{R}^{n} for some n.
(a) Show that if $G \subset \mathbb{R}^{n}$ is a Lie group, then G parallelizable.
(b) Show that $S U(2)$ is a Lie group diffeomorphic to \mathbb{S}^{3}.
(c) Deduce that \mathbb{S}^{3} is parallelizable.
(d) (bonus) Looking at \mathbb{S}^{3} as the unit sphere of \mathbb{C}^{2}, find 3 linearly independant vector fields on \mathbb{S}^{3}.

Exercise 5 (Computation of a differential).
Compute the differential of $\bar{F}: \mathbb{T}^{2} \rightarrow \mathbb{S}^{2}$ defined as the quotient of the map from \mathbb{R}^{2} to \mathbb{S}^{2} :

$$
F:(x, y) \mapsto(\cos (2 \pi x) \cos (2 \pi y), \cos (2 \pi x) \sin (2 \pi y), \sin (2 \pi x)) .
$$

On which set is \bar{F} a local diffeomorphism? Is \bar{F} restricted to this domain a global diffeomorphism?

Exercise 6 (Extending smooth function).
Let $M \subset \mathbb{R}^{p}$ and $N \subset \mathbb{R}^{q}$ be two submanifolds and $f: M \rightarrow N$ a smooth function. Show that there exists an open neighbourhood of M in \mathbb{R}^{p} and a smooth function $g: U \rightarrow \mathbb{R}^{q}$ such that $\left.g\right|_{M}=f$. Hint: use a partition of unity.

Exercise 7 (Critical points VS critical values).

1. Let $F \subset \mathbb{R}$ be a closed subset. Show that there exists a smooth function $f: M \rightarrow \mathbb{R}_{+}$ such that $f(x)=0 \Longleftrightarrow x \in K$.
2. Let $K \subset[0,1]$ be a fat Cantor set ${ }^{1}$, of measure $\lambda(K) \in(0,1)$. Show that there exists a smooth homeomorphism $f: \mathbb{R} \rightarrow \mathbb{R}$ whose critial set is exactly K. What is the Lebesgue measure of $f(K)$?

Exercise 8 (Change of variable).
The change of variable Theorem says that if you have a (at least) \mathcal{C}^{1} diffeomorphism φ between two open sets of \mathbb{R}^{n}, you have a relation between the measure of a borelian set B, and that of $\varphi(B)$. Using Sard's Theorem, show that the result is still valid if φ is an homeomorphism of class \mathcal{C}^{1}.

Exercise 9 (Introduction to Morse Theory).
Using some nice embeddings of \mathbb{S}^{2} and \mathbb{T}^{2}, show that there exists smooth real functions on these manifolds with a very few critical points. Hint: consider projections onto some axis.

Draw what happens when you "go through" a critical value.

[^0]
[^0]: ${ }^{1}$ The important fact is that K is closed, with emply interior

