Submanifolds, Tangent spaces and Differentials
 Critical values, Sard's Theorem
 Correction

Exercise 1 (Tangent space of a submanifold).
Let $M \subset \mathbb{R}^{m}$ and $N \in \mathbb{R}^{n}$ be submanifolds of \mathbb{R}^{m} and \mathbb{R}^{n} respectively.

1. (a) If M is locally given by a submersion $f: U \subset \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-m}$, with $M \cap U=f^{-1}(\{0\})$, then

$$
T_{p} M=\operatorname{ker}(\mathrm{d} f(p))
$$

(b) If M is locally given by an immersion $f: V \subset \mathbb{R}^{m} \rightarrow U \subset \mathbb{R}^{n}$, with $f(0)=p$ and f homeomorphism from V to $U \cap M$, then

$$
T_{p} M=\operatorname{Im}(\mathrm{d} f(0))
$$

(c) If M is locally given by a diffeomorphism $f: U \subset \mathbb{R}^{n} \rightarrow V \subset \mathbb{R}^{n}$, with $f(p)=0$ and $M \cap U=f^{-1}\left(V \cap\left(\mathbb{R}^{m} \times\{0\}\right)\right)$, then

$$
T_{p} M=\mathrm{d} f^{-1}(0) \cdot\left(\mathbb{R}^{m} \times\{0\}\right)
$$

Note that if M is considered as an abstract manifold in itself, and $T_{p} M$ as an abstract vector space, then the inclusion map

$$
\iota: M \rightarrow \mathbb{R}^{n}
$$

is a smooth embedding and its differential at p

$$
\mathrm{d} \iota(p): T_{p} M \rightarrow \mathbb{R}^{n}
$$

is an injective linear map with image $\mathrm{d} \iota(p)\left(T_{p} M\right)$ canonically isomorphic to the extrinsic definitions of $T_{p} M$ above.
2. Let $U \subset \mathbb{R}_{\tilde{f}}^{m}$ and $V \subset \mathbb{R}^{n}$ be open neighborhoods. Let $\widetilde{f}: U \rightarrow V$ be a smooth map such that $f:=\left.\widetilde{f}\right|_{M \cap U}: M \cap U \rightarrow N \cap V$. Show that f is a smooth map between manifolds and that

$$
\mathrm{d} f_{p}=\left.\left(\mathrm{d} \tilde{f}_{p}\right)\right|_{T_{p} M}: T_{p} M \rightarrow T_{f(p)} N
$$

Exercise 2 (Veronese embedding).

1. It suffices to show that f is a homeomorphism onto its image. It will then be a smooth immersion which is an homeomorphism onto its image, that is, an embedding. Notice that it is sufficient to show that f^{-1} is continuous. Here are two proofs:
(a) Using that a manifold is metrizable, i.e that its topology is defined thanks to a metric.
Let $\left\{y_{n}\right\}_{n \in \mathbb{N}}$ be a converging sequence in $f(M)$ with limit $y \in f(M)$. Let x_{n} and x be the unique point in M with $f\left(x_{n}\right)=y_{n}$ and $f(x)=y$ (which do exist because f is injective). Then the subset $K=\left(\cup_{n \in \mathbb{N}}\left\{y_{n}\right\}\right) \cup\{y\}$ is compact. The function f
being proper, $f^{-1}(K)=\left(\cup_{n \in \mathbb{N}}\left\{x_{n}\right\}\right) \cup\{x\}$ is compact. Hence, $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has a limit points. Let \widetilde{x} be on of them. By continuity of f, we have $f\left(x_{n}\right) \rightarrow f(\widetilde{x})$, that is $y_{n} \rightarrow f(\widetilde{x})$, and $f(x)=f(\widetilde{x})$. By injectivity of $f, \widetilde{x}=x$. It follows that $\left(x_{n}\right)$ has a unique limit point x, and thus, $x_{n} \rightarrow x$, that is, $f^{-1}\left(y_{n}\right) \rightarrow f^{-1}(y)$. Finally, f^{-1} is continuous.
(b) Using that a manifold is compactly generated, that is a subset is open / closed if and only if it is open / closed in any compact subset. In particular, it suffices to show that the restriction of f^{-1} to any compact subset of $f(M)$ is continuous.
Let $K \subset f(M)$ be a compact: f being proper, $f^{-1}(K)$ is compact. Then, the restriction $\left.f\right|_{f^{-1}(K)}: f^{-1}(K) \rightarrow K$ is continuous between $f^{-1}(K)$, compact Hausdorff, and K, compact. Hence, it is a homeomorphism. It follows that $\left.f^{-1}\right|_{K}$ is continuous. This concludes the proof.
2. Let us first show that f is well defined. Let $(x: y: z) \in \mathbb{R P}^{2}$ be represented by $(x, y, z) \neq$ $(0,0,0)$ and $\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \neq(0,0,0)$: there exists $\lambda \neq 0$ such that $(x, y, z)=(\lambda x, \lambda y, \lambda z)$. But then, $\left(x^{2}, y^{2}, z^{2}, x y, y z, z x\right)=\lambda^{2}\left(x^{\prime 2}, y^{\prime 2}, z^{\prime 2}, x^{\prime} y^{\prime}, y^{\prime} z^{\prime}, z^{\prime} x^{\prime}\right) \neq(0,0,0,0,0,0)$ and it follows that f is well defined.
Let us show that f is injective. Suppose $f(x: y: z)=f\left(x^{\prime}: y^{\prime}: z^{\prime}\right)$. Then there exists $t \neq 0$ with

$$
\left\{\begin{aligned}
x^{2} & =t x^{\prime 2} \\
y^{2} & =t y^{\prime 2} \\
z^{2} & =t z^{\prime 2} \\
x y & =t x^{\prime} y^{\prime} \\
y z & =t y^{\prime} z^{\prime} \\
y x & =t z^{\prime} x^{\prime}
\end{aligned}\right.
$$

Notice first that $t>0$. The three first equations shows that

$$
\begin{cases}x & = \pm \sqrt{t} x^{\prime} \\ y & = \pm \sqrt{t} y^{\prime} \\ z^{\prime} & = \pm \sqrt{t} z^{\prime}\end{cases}
$$

The fourth equation shows that either $(x, y)=\sqrt{t}\left(x^{\prime}, y^{\prime}\right)$ or $(x, y)=-\sqrt{t}\left(x^{\prime}, y^{\prime}\right)$: that is, the sign is the same for the two first equations. Similarly, the fifth equation shows that the sign before \sqrt{t} is the same for y and z. It follows that $(x: y: z)=\left(x^{\prime}: y^{\prime}: z^{\prime}\right)$, and then, f is injective.
Let us now show that f is an immersion. Consider the affine chart $\left(\varphi_{x}, U_{x}\right)$ of $\mathbb{R P}^{2}$ defined by $U_{x}=\left\{(x: y: z) \in \mathbb{R P}^{2} \mid x \neq 0\right\}$ and $\varphi_{x}^{-1}: \mathbb{R}^{2} \rightarrow U_{x}$ defined by $\varphi_{x}^{-1}(y, z)=(1: y: z)$. Similarly, consider the chart $\left(U_{0}, \varphi_{0}\right)$ of $\mathbb{R P}^{5}$ defined by $U_{a}=\left\{(a: b: c: d: e: f) \in \mathbb{R P}^{5} \mid a \neq 0\right\}$ and $\varphi_{a}(a: b: c: d: e: f)=\frac{1}{a}(b, c, d, e, f)$. Then $f\left(U_{x}\right) \subset U_{a}$ and in these charts, we have

$$
\begin{array}{rccc}
\tilde{f}=\varphi_{a} \circ f \circ \varphi_{x}^{-1}: & \mathbb{R}^{2} & \longrightarrow & \mathbb{R}^{5} \\
(z, y) & \longmapsto\left(y^{2}, z^{2}, y, y z, z\right)
\end{array}
$$

It is smooth as a polynomial function, and if $(y, z) \in \mathbb{R}^{2}$, the differential of \tilde{f} at (x, y)
has matrix in the canonical bases

$$
\operatorname{Mat}_{\text {can }}(\mathrm{d} \tilde{f}(x, y))=\left[\begin{array}{cc}
2 y & 0 \\
0 & 2 z \\
1 & 0 \\
z & y \\
0 & 1
\end{array}\right]
$$

and thus, $\mathrm{d} \widetilde{f}(y, z)$ has rank 2. Hence, f is an immersion on U_{x}. Similarly, f is a smooth immersion on $U_{y}=\left\{(x: y: z) \in \mathbb{R P}^{2} \mid y \neq 0\right\}$ and on $U_{z}=\left\{(x: y: z) \in \mathbb{R P}^{2} \mid z \neq 0\right\}$ and finally, f is a smooth immersion on $U_{x} \cup U_{y} \cup U_{z}=\mathbb{R P}^{2}$.
Therefore, f is an injective smooth inmmersion on $\mathbb{R} \mathbb{P}^{2}$. As $\mathbb{R} \mathbb{P}^{2}$ is compact and f continuous, f is obviously proper. By $1 ., f$ is an embedding.

Exercise 3 (Tangent space of the torus).

1. Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ defined by

$$
f\left(t_{1}, t_{2}\right)=\left(\cos 2 \pi t_{1}, \sin 2 \pi t_{1}, \cos 2 \pi t_{2}, \sin 2 \pi t_{2}\right)
$$

It is \mathbb{Z}^{2}-invariant and descends as a smooth map $\bar{f}: \mathbb{T}^{2} \rightarrow \mathbb{R}^{4}$ such that $f=\bar{f} \circ p$. If $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$, then $\mathrm{d} f\left(t_{1}, t_{2}\right)$ has matrix in the canonical bases

$$
\operatorname{Mat}_{\text {can }}\left(\mathrm{d} f\left(t_{1}, t_{2}\right)\right)=2 \pi\left[\begin{array}{cc}
-\sin 2 \pi t_{1} & 0 \\
\cos 2 \pi t_{1} & 0 \\
0 & -\sin 2 \pi t_{2} \\
0 & \cos 2 \pi t_{2}
\end{array}\right]
$$

and $\mathrm{d} f\left(t_{1}, t_{2}\right)$ is of rank 2 . Recall that $p: \mathbb{R}^{2} \rightarrow \mathbb{T}^{2}$ is a local diffeomorphism. Therefore, if $\left(t_{1}, t_{2}\right) \in \mathbb{R}^{2}$, the chain rule yields

$$
\mathrm{d} f\left(t_{1}, t_{2}\right)=\mathrm{d} \bar{f}\left(\overline{t_{1}, t_{2}}\right) \circ \mathrm{d} p\left(t_{1}, t_{2}\right)
$$

from which we deduce, recalling that $\mathrm{d} p\left(t_{1}, t_{2}\right)$ is a linear isomorphism

$$
\mathrm{d} \bar{f}\left(\overline{t_{1}, t_{2}}\right)=\mathrm{d} f\left(t_{1}, t_{2}\right) \circ\left(\mathrm{d} p\left(t_{1}, t_{2}\right)\right)^{-1}
$$

Thus, $\mathrm{d} \bar{f}\left(\overline{t_{1}, t_{2}}\right)$ has rank 2. This being true for all $\overline{\left(t_{1}, t_{2}\right)} \in \mathbb{T}^{2}, \bar{f}$ is an immersion.
One can check that \bar{f} is injective: for example, $f: \mathbb{R}^{2} \rightarrow \mathbb{C}^{*} \times \mathbb{C}^{*}$ is a group homomorphism with kernel \mathbb{Z}^{2}, so that \bar{f} is injective.
Finally, \mathbb{T}^{2} is compact Hausdorff, so that \bar{f} is proper (any continuous function on a compact Haussdorff space is proper). Hence, \bar{f} is an injective proper immersion, and is an embedding.
Let us now consider $\mathbf{T}^{2}=\bar{f}\left(\mathbb{T}^{2}\right) \subset \mathbb{R}^{4}$ the embedded torus in \mathbb{R}^{4} and fix any point $p=$ $\left(\cos 2 \pi t_{1}, \sin 2 \pi t_{1}, \cos 2 \pi t_{2}, \sin 2 \pi t_{2}\right) \in \mathbf{T}_{2}$. Then \mathbf{T}^{2} is locally given by the immersion $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{4}$ defined above, and $T_{p} \mathbf{T}^{2}=\operatorname{Im} \mathrm{d} f\left(t_{1}, t_{2}\right)$, which is then

$$
T_{p} \mathbf{T}_{2}=\left\{\lambda X_{1}(p)+\mu X_{2}(p) \mid(\lambda, \mu) \in \mathbb{R}^{2}\right\}
$$

with $X_{1}(p)=\left[\begin{array}{c}-\sin 2 \pi t_{1} \\ \cos 2 \pi t_{1} \\ 0 \\ 0\end{array}\right]$ and $X_{2}(p)=\left[\begin{array}{c}0 \\ 0 \\ -\sin 2 \pi t_{2} \\ \cos 2 \pi t_{2}\end{array}\right]$, which are linearly independant.
It follows that X_{1} and X_{2} are smooth vector fields on \mathbf{T}_{2} which are everuwhere linearly independant, so that \mathbf{T}_{2} is trivializable.
2. If $R>r$, the map

$$
\begin{array}{rccc}
g_{R, r}: & \mathbb{R}^{2} & \longrightarrow & \mathbb{R}^{3} \\
\left(t_{1}, t_{2}\right) & \longmapsto & \left(\begin{array}{c}
\left(R+r \cos 2 \pi t_{1}\right) \cos 2 \pi t_{2} \\
\left(R+r \cos 2 \pi t_{1}\right) \sin 2 \pi t_{2} \\
r \sin 2 \pi t_{1}
\end{array}\right)
\end{array}
$$

is \mathbb{Z}^{2} invariant and descends to the quotient as $\bar{g}_{R, r}: \mathbb{T}^{2} \rightarrow \mathbb{R}^{3}$ which is an embedding: this can be derived from the exact same study as in 1 .

Figure 1: A torus embedded in \mathbb{R}^{3}
3. An exact same study as in 1 . shows that one can embed \mathbb{T}^{n} in $\mathbb{R}^{2 n}$ and that the vector fields

$$
X_{i}\left(\begin{array}{c}
\cos 2 \pi t_{1} \\
\cos 2 \pi t_{2} \\
\vdots \\
\cos 2 \pi t_{n} \\
\sin 2 \pi t_{n}
\end{array}\right)=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
-\sin 2 \pi t_{i} \\
\cos 2 \pi t_{i} \\
0 \\
\vdots \\
0
\end{array}\right]
$$

give a parallelization of $\mathbb{T}^{n} \subset \mathbb{R}^{2 n}$.
Remark: we have shown that these particular embedded tori in \mathbb{R}^{4} or \mathbb{R}^{3} are parallelizable. In fact, this notion is intrinsic and does not depends on the embedding in \mathbb{R}^{N}, but it requires the definition of vector bundle isomorphism, which has not been seen yet.

Exercise 4 (Tangent space of spheres).

1. Let $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbb{R}^{2}$ be a smooth arc. Then for all $t,\|\gamma(t)\|^{2}=1$. Differentiating this shows that $\left\langle\gamma(0), \gamma^{\prime}(0)\right\rangle=0$, so that $\gamma^{\prime}(0) \in \gamma(0)^{\perp}$. We deduce that $T_{\gamma(0)} \mathbb{S}^{1} \subset \gamma(0)^{\perp}$,
and we have in fact an equality because \mathbb{S}^{1} is a one dimensional submanifold of \mathbb{R}^{2}, so that $T_{\gamma(0)} \mathbb{S}^{1}$ is one dimensional.
If follows that $X(x, y)=(-y, x)$ is a smooth vector field on \mathbb{S}^{1}, which does not vanish. Thus, we have found a parallelization of $T \mathbb{S}^{1}$.

The two dimensional sphere is not parallelizable because of the Hairy ball Theorem: any smooth (in fact, continuous) vector field on \mathbb{S}^{2} vanishes somewhere.
2. Let $G \subset \mathbb{R}^{n}$ be a Lie group.
(a) For $g \in G$, consider the left translation by g :

$$
\begin{aligned}
L_{g}: \quad G & \longrightarrow G \\
h & \longmapsto g h
\end{aligned}
$$

which is smooth as the restiction to $\{g\} \times G$ of the multiplication μ. Then $L_{g^{-1}}$ is also smooth and $L_{q} \circ L_{g^{-1}}=L_{g^{-1}} \circ L_{g}=\operatorname{Id}_{G}$, so that L_{g} is a diffeomorphism.
As $L_{g}(e)=g$, the linear map

$$
\mathrm{d} L_{g}(e): T_{e} G \rightarrow T_{g} G \subset \mathbb{R}^{n}
$$

is a linear isomorphism. It follows from the smoothness of μ that the map $g \in G \mapsto$ $\mathrm{d} L_{g}(e) \in \mathcal{L}\left(T_{e} G, \mathbb{R}^{n}\right)$ is smooth.
Let $\left(e_{1}, \ldots e_{m}\right)$ be a basis of $T_{e} G$ and consider $X_{i}: G \rightarrow \mathbb{R}^{n}$ defined by

$$
X_{i}(g)=\mathrm{d} L_{g}(e) \cdot e_{i}
$$

By construction, it is a smooth vector field on G, and at each point $g \in G$, $\left(X_{1}(g), \ldots, X_{m}(g)\right)$ is a basis of $T_{g} G$. Thus, G is parallelizable.
(b) It is a well-known fact that $S U(2)$ is a subgroup of $G L_{2}(\mathbb{C})$ with

$$
S U(2)=\left\{\left.\left[\begin{array}{cc}
\alpha & \beta \\
-\bar{\beta} & \bar{\alpha}
\end{array}\right]| | \alpha\right|^{2}+|\beta|^{2}=1\right\} .
$$

Consider the map

$$
\begin{array}{cccc}
f: & \mathbb{R}^{4} & \longrightarrow & M_{2}(\mathbb{C}) \\
(x, y, z, t) & \longmapsto & {\left[\begin{array}{cc}
x+i y & z+i t \\
-z+i t & x-i y
\end{array}\right]}
\end{array}
$$

Then f is an injective linear map, and is thus a smooth embedding. Moreover, \mathbb{S}^{3} is a submanifold of \mathbb{R}^{4} whose image is precisely $S U(2)$: it follows that $S U(2)$ is a submanifold of $M_{2}(\mathbb{C}) \simeq \mathbb{R}^{8}$ diffeomorphic to \mathbb{S}^{3}.
The multiplication in $M_{2}(\mathbb{C})$ is smooth, and so is its restriction to $S U(2)$. Also, the inversion in $G L_{2}(\mathbb{C})$ is given by

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

which is smooth, and its restriction to $S U(2)$ is smooth.
(c) We know that $S U(2)$ is parallelizable as a Lie group. Hence, it has 3 vectors fields Y_{1}, Y_{2} and Y_{3} that are pointwise linearly independant. It follows that $X_{i}(p)=$ $\mathrm{d} f(p)^{-1} Y_{i}(f(p))$ are three vector fields on \mathbb{S}^{3} which are pointwise linearly independant, and then, \mathbb{S}^{3} is parallelizable.
(d) (bonus) In \mathbb{C}^{2}, define

$$
\mathbf{1}=(1,0), \quad \mathbf{i}=(i, 0), \quad \mathbf{j}=(0,1), \quad \mathbf{k}=(0, i),
$$

which form an orthonormal basis if $\mathbb{C}^{2} \simeq \mathbb{R}^{4}$ for the usual inner product. One can show that the multiplication defined by

$$
\mathrm{i}^{2}=\mathrm{j}^{2}=\mathrm{k}^{2}=\mathrm{ijk}=-\mathbf{1}
$$

extended linearly, is associative (in fact, we have constructed the quaternions) and satisfies $\left\|q q^{\prime}\right\|=\|q\|\left\|q^{\prime}\right\|$.
Define on \mathbb{S}^{3} the functions

$$
X_{1}(x)=\mathbf{i} x, \quad X_{2}(x)=\mathbf{j} x, \quad X_{3}(x)=\mathbf{k} x
$$

Show that they are vector fields on \mathbb{S}^{3} and that they parallelize the sphere.
Exercise 5 (Computation of a differential).
Exercise 6 (Extending smooth function).
Sketch of a proof:

1. First, note that if $f: M^{m} \subset \mathbb{R}^{p} \rightarrow N^{n} \subset \mathbb{R}^{q}$ is smooth, then its co-extension $f: M \rightarrow \mathbb{R}^{q}$ is smooth, and "there is nothing to tell on the right". Let us then focus on the left.
2. Second, take a chart on \mathbb{R}^{p} adapted to M, that is, in that chart, M is given by $M \cap U=$ $\left\{\left(x^{1}, \ldots, x^{m}, 0, \ldots, 0\right)\right\}$.
3. In that chart, extend f by $\widetilde{f}\left(x^{1}, \ldots, x^{p}\right)=f\left(x^{1}, \ldots, x^{m}\right)$.
4. Choose a locally finite open covering of M by charts as above and consider a partition of unity subordinate to this cover. Glue the extensions constucted above thanks to this partition of unity: this gives an extension of f on an open subset of \mathbb{R}^{p}.
5. Enjoy.

Exercise 7 (Critical points VS critical values).

1. $\mathbb{R} \backslash F$ is an open subset of the real line. If non-empty, it is a countable union of disjoint open intervals: say $\mathbb{R} \backslash F=\cup_{i \in I}\left(a_{i}, b_{i}\right)$ with I finite or countable. It may be possible that one of the a_{i} (and only one) is equal to $-\infty$, and similarly, that one of the b_{i} (and only one) if equal to $+\infty$.
For $i \in I$, construct a smooth nonnegative function $f_{i}: \mathbb{R} \rightarrow \mathbb{R}$ with $f_{i}(x)>0 \Longleftrightarrow x \in$ $\left(a_{i}, b_{i}\right)$. Then the function $f=\sum_{i \in I} f_{i}$ is a solution.
2. As K is closed, there exists by 1 . a smooth nonnegative function $g: \mathbb{R} \rightarrow \mathbb{R}$ with $g(x)=$ $0 \Longleftrightarrow x \in K$. Define

$$
f(x)=\int_{0}^{x} g(t) \mathrm{d} t
$$

Then f is smooth with $f^{\prime}=g \geqslant 0$, and is thus nondecreasing. The function g vanishes exactly on K, which is of empty interior: hence, if $x<y$, then $f(y)-f(x)=\int_{x}^{y} g(t) \mathrm{d} t>$ 0 , and f is strictly increasing. If follows that f is a smooth homeomorphism of \mathbb{R} onto its image. Its set of critical points is K, by definition of g, which has Lebesgue measure $\lambda(K)>0$. But by Sard's Theorem, $f(\operatorname{Crit}(f))$ has measure zero.
Remark: the function f constructed above may not be a homeomorphism from \mathbb{R} onto \mathbb{R}, because its image may not be all of \mathbb{R}. But we can adapt the proof in order to do so: show it!

Exercise 8 (Change of variable).
First, notice that we have the disjoint union $\varphi(U)=(\varphi(U) \backslash \varphi(\operatorname{Crit} \varphi)) \cup \varphi(\operatorname{Crit} \varphi)$. Therefore:

$$
\lambda(\varphi(U))=\int_{\varphi(U)} 1 \mathrm{~d} \lambda=\int_{\varphi(U) \backslash \varphi(\operatorname{Crit} \varphi)} 1 \mathrm{~d} \lambda+\int_{\varphi(\operatorname{Crit} \varphi)} 1 \mathrm{~d} \lambda
$$

From Sard's Theorem, $\varphi(\operatorname{Crit} \varphi)$ has measure zero, and thus, we have

$$
\lambda(\varphi(U))=\int_{\varphi(U) \backslash \varphi(\text { Crit } \varphi)} 1 \mathrm{~d} \lambda
$$

Since φ is an homeomorphism, it is injective and it follows that $\varphi(U) \backslash \varphi(\operatorname{Crit} \varphi)=\varphi(U \backslash \operatorname{Crit} \varphi)$. But by definition of $\operatorname{Crit} \varphi, \mathrm{d} \varphi(x)$ is invertible is $x \in U \backslash \operatorname{Crit} \varphi$, and from the inverse function Theorem, the restriction $\left.\varphi\right|_{U \backslash \text { Crit } \varphi}$ is a diffeomorphism onto its image. The usual change of variable gives

$$
\lambda(\varphi(U))=\int_{U \backslash \operatorname{Crit} \varphi}|\operatorname{det} \mathrm{~d} \varphi| \mathrm{d} \lambda
$$

and to conclude, note that on Crit φ, we have $|\operatorname{det} \mathrm{d} \varphi|=0$, so that we have the formula

$$
\lambda(\varphi(U))=\int_{U}|\operatorname{det} \mathrm{~d} \varphi| \mathrm{d} \lambda .
$$

