
M1 – Advanced Geometry 2021-2022 : TD 2’

Submanifolds, Tangent spaces and Differentials
Critical values, Sard’s Theorem

Correction

Exercise 1 (Tangent space of a submanifold).

Let M ⊂ Rm and N ∈ Rn be submanifolds of Rm and Rn respectively.

1. (a) IfM is locally given by a submersion f : U ⊂ Rn → Rn−m, withM ∩U = f−1({0}),
then

TpM = ker (df(p))

(b) If M is locally given by an immersion f : V ⊂ Rm → U ⊂ Rn, with f(0) = p and f
homeomorphism from V to U ∩M , then

TpM = Im (df(0))

(c) If M is locally given by a diffeomorphism f : U ⊂ Rn → V ⊂ Rn, with f(p) = 0
and M ∩ U = f−1 (V ∩ (Rm × {0})), then

TpM = df−1(0) · (Rm × {0})

Note that if M is considered as an abstract manifold in itself, and TpM as an abstract
vector space, then the inclusion map

ι : M → Rn

is a smooth embedding and its differential at p

dι(p) : TpM → Rn

is an injective linear map with image dι(p) (TpM) canonically isomorphic to the extrinsic
definitions of TpM above.

2. Let U ⊂ Rm and V ⊂ Rn be open neighborhoods. Let f̃ : U → V be a smooth map such
that f := f̃ |M∩U : M ∩ U → N ∩ V . Show that f is a smooth map between manifolds
and that

dfp =
(
df̃p

)∣∣∣
TpM

: TpM → Tf(p)N.

Exercise 2 (Veronese embedding).

1. It suffices to show that f is a homeomorphism onto its image. It will then be a smooth
immersion which is an homeomorphism onto its image, that is, an embedding. Notice
that it is sufficient to show that f−1 is continuous. Here are two proofs:

(a) Using that a manifold is metrizable, i.e that its topology is defined thanks to a
metric.
Let {yn}n∈N be a converging sequence in f(M) with limit y ∈ f(M). Let xn and x
be the unique point in M with f(xn) = yn and f(x) = y (which do exist because
f is injective). Then the subset K = (∪n∈N{yn})∪{y} is compact. The function f
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being proper, f−1(K) = (∪n∈N{xn})∪{x} is compact. Hence, {xn}n∈N has a limit
points. Let x̃ be on of them. By continuity of f , we have f(xn) → f(x̃), that is
yn → f(x̃), and f(x) = f(x̃). By injectivity of f , x̃ = x. It follows that (xn) has a
unique limit point x, and thus, xn → x, that is, f−1(yn)→ f−1(y). Finally, f−1 is
continuous.

(b) Using that a manifold is compactly generated, that is a subset is open / closed if
and only if it is open / closed in any compact subset. In particular, it suffices to
show that the restriction of f−1 to any compact subset of f(M) is continuous.
Let K ⊂ f(M) be a compact: f being proper, f−1(K) is compact. Then, the
restriction f |f−1(K) : f

−1(K) → K is continuous between f−1(K), compact Haus-
dorff, and K, compact. Hence, it is a homeomorphism. It follows that f−1|K is
continuous. This concludes the proof.

2. Let us first show that f is well defined. Let (x : y : z) ∈ RP2 be represented by (x, y, z) 6=
(0, 0, 0) and (x′, y′, z′) 6= (0, 0, 0): there exists λ 6= 0 such that (x, y, z) = (λx, λy, λz).
But then, (x2, y2, z2, xy, yz, zx) = λ2(x′2, y′2, z′2, x′y′, y′z′, z′x′) 6= (0, 0, 0, 0, 0, 0) and it
follows that f is well defined.

Let us show that f is injective. Suppose f(x : y : z) = f(x′ : y′ : z′). Then there exists
t 6= 0 with 

x2 = tx′2

y2 = ty′2

z2 = tz′2

xy = tx′y′

yz = ty′z′

yx = tz′x′

Notice first that t > 0. The three first equations shows that
x = ±

√
tx′

y = ±
√
ty′

z′ = ±
√
tz′

The fourth equation shows that either (x, y) =
√
t(x′, y′) or (x, y) = −

√
t(x′, y′): that

is, the sign is the same for the two first equations. Similarly, the fifth equation shows
that the sign before

√
t is the same for y and z. It follows that (x : y : z) = (x′ : y′ : z′),

and then, f is injective.

Let us now show that f is an immersion. Consider the affine chart (ϕx, Ux) of RP2

defined by Ux = {(x : y : z) ∈ RP2 | x 6= 0} and ϕ−1x : R2 → Ux defined by
ϕ−1x (y, z) = (1 : y : z). Similarly, consider the chart (U0, ϕ0) of RP5 defined by
Ua =

{
(a : b : c : d : e : f) ∈ RP5 | a 6= 0

}
and ϕa(a : b : c : d : e : f) = 1

a(b, c, d, e, f).
Then f(Ux) ⊂ Ua and in these charts, we have

f̃ = ϕa ◦ f ◦ ϕ−1x : R2 −→ R5

(z, y) 7−→ (y2, z2, y, yz, z)

It is smooth as a polynomial function, and if (y, z) ∈ R2, the differential of f̃ at (x, y)
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has matrix in the canonical bases

Matcan

(
df̃(x, y)

)
=


2y 0
0 2z
1 0
z y
0 1


and thus, df̃(y, z) has rank 2. Hence, f is an immersion on Ux. Similarly, f is a smooth
immersion on Uy = {(x : y : z) ∈ RP2 | y 6= 0} and on Uz = {(x : y : z) ∈ RP2 | z 6= 0}
and finally, f is a smooth immersion on Ux ∪ Uy ∪ Uz = RP2.

Therefore, f is an injective smooth inmmersion on RP2. As RP2 is compact and f
continuous, f is obviously proper. By 1., f is an embedding.

Exercise 3 (Tangent space of the torus).

1. Consider the map f : R2 → R4 defined by

f (t1, t2) = (cos 2πt1, sin 2πt1, cos 2πt2, sin 2πt2)

It is Z2-invariant and descends as a smooth map f : T2 → R4 such that f = f ◦ p. If
(t1, t2) ∈ R2, then df(t1, t2) has matrix in the canonical bases

Matcan (df(t1, t2)) = 2π


− sin 2πt1 0
cos 2πt1 0

0 − sin 2πt2
0 cos 2πt2


and df(t1, t2) is of rank 2. Recall that p : R2 → T2 is a local diffeomorphism. Therefore,
if (t1, t2) ∈ R2, the chain rule yields

df(t1, t2) = df(t1, t2) ◦ dp(t1, t2)

from which we deduce, recalling that dp(t1, t2) is a linear isomorphism

df(t1, t2) = df(t1, t2) ◦ (dp(t1, t2))−1

Thus, df(t1, t2) has rank 2. This being true for all (t1, t2) ∈ T2, f is an immersion.

One can check that f is injective: for example, f : R2 → C∗ × C∗ is a group homomor-
phism with kernel Z2, so that f is injective.

Finally, T2 is compact Hausdorff, so that f is proper (any continuous function on a
compact Haussdorff space is proper). Hence, f is an injective proper immersion, and is
an embedding.

Let us now consider T2 = f(T2) ⊂ R4 the embedded torus in R4 and fix any point p =
(cos 2πt1, sin 2πt1, cos 2πt2, sin 2πt2) ∈ T2. Then T2 is locally given by the immersion
f : R2 → R4 defined above, and TpT2 = Imdf(t1, t2), which is then

TpT2 =
{
λX1(p) + µX2(p) | (λ, µ) ∈ R2

}
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with X1(p) =


− sin 2πt1
cos 2πt1

0
0

 and X2(p) =


0
0

− sin 2πt2
cos 2πt2

, which are linearly independant.

It follows that X1 and X2 are smooth vector fields on T2 which are everuwhere linearly
independant, so that T2 is trivializable.

2. If R > r, the map

gR,r : R2 −→ R3

(t1, t2) 7−→

(R+ r cos 2πt1) cos 2πt2
(R+ r cos 2πt1) sin 2πt2

r sin 2πt1


is Z2 invariant and descends to the quotient as gR,r : T2 → R3 which is an embedding:
this can be derived from the exact same study as in 1.

Figure 1: A torus embedded in R3

3. An exact same study as in 1. shows that one can embed Tn in R2n and that the vector
fields

Xi


cos 2πt1
cos 2πt2

...
cos 2πtn
sin 2πtn

 =



0
...
0

− sin 2πti
cos 2πti

0
...
0


give a parallelization of Tn ⊂ R2n.

Remark: we have shown that these particular embedded tori in R4 or R3 are parallelizable.
In fact, this notion is intrinsic and does not depends on the embedding in RN , but it requires
the definition of vector bundle isomorphism, which has not been seen yet.

Exercise 4 (Tangent space of spheres).

1. Let γ : (−ε, ε) → R2 be a smooth arc. Then for all t, ‖γ(t)‖2 = 1. Differentiating this
shows that 〈γ(0), γ′(0)〉 = 0, so that γ′(0) ∈ γ(0)⊥. We deduce that Tγ(0)S1 ⊂ γ(0)⊥,
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and we have in fact an equality because S1 is a one dimensional submanifold of R2, so
that Tγ(0)S1 is one dimensional.

If follows that X(x, y) = (−y, x) is a smooth vector field on S1, which does not vanish.
Thus, we have found a parallelization of TS1.
The two dimensional sphere is not parallelizable because of the Hairy ball Theorem: any
smooth (in fact, continuous) vector field on S2 vanishes somewhere.

2. Let G ⊂ Rn be a Lie group.

(a) For g ∈ G, consider the left translation by g:

Lg : G −→ G
h 7−→ gh

which is smooth as the restiction to {g} ×G of the multiplication µ. Then Lg−1 is
also smooth and Lq ◦ Lg−1 = Lg−1 ◦ Lg = IdG, so that Lg is a diffeomorphism.
As Lg(e) = g, the linear map

dLg(e) : TeG→ TgG ⊂ Rn

is a linear isomorphism. It follows from the smoothness of µ that the map g ∈ G 7→
dLg(e) ∈ L(TeG,Rn) is smooth.
Let (e1, . . . em) be a basis of TeG and consider Xi : G→ Rn defined by

Xi(g) = dLg(e) · ei

By construction, it is a smooth vector field on G, and at each point g ∈ G,
(X1(g), . . . , Xm(g)) is a basis of TgG. Thus, G is parallelizable.

(b) It is a well-known fact that SU(2) is a subgroup of GL2(C) with

SU(2) =

{[
α β

−β α

]
| |α|2 + |β|2 = 1

}
.

Consider the map

f : R4 −→ M2(C)

(x, y, z, t) 7−→
[
x+ iy z + it
−z + it x− iy

]
Then f is an injective linear map, and is thus a smooth embedding. Moreover, S3
is a submanifold of R4 whose image is precisely SU(2): it follows that SU(2) is a
submanifold of M2(C) ' R8 diffeomorphic to S3.
The multiplication in M2(C) is smooth, and so is its restriction to SU(2). Also,
the inversion in GL2(C) is given by[

a b
c d

]−1
=

1

ad− bc

[
d −b
−c a

]
which is smooth, and its restriction to SU(2) is smooth.
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(c) We know that SU(2) is parallelizable as a Lie group. Hence, it has 3 vectors fields
Y1, Y2 and Y3 that are pointwise linearly independant. It follows that Xi(p) =
df(p)−1Yi(f(p)) are three vector fields on S3 which are pointwise linearly indepen-
dant, and then, S3 is parallelizable.

(d) (bonus) In C2, define

1 = (1, 0), i = (i, 0), j = (0, 1), k = (0, i),

which form an orthonormal basis if C2 ' R4 for the usual inner product. One can
show that the multiplication defined by

i2 = j2 = k2 = ijk = −1

extended linearly, is associative (in fact, we have constructed the quaternions) and
satisfies ‖qq′‖ = ‖q‖‖q′‖.
Define on S3 the functions

X1(x) = ix, X2(x) = jx, X3(x) = kx.

Show that they are vector fields on S3 and that they parallelize the sphere.

Exercise 5 (Computation of a differential).

Exercise 6 (Extending smooth function).

Sketch of a proof:

1. First, note that if f : Mm ⊂ Rp → Nn ⊂ Rq is smooth, then its co-extension f : M → Rq
is smooth, and "there is nothing to tell on the right". Let us then focus on the left.

2. Second, take a chart on Rp adapted to M , that is, in that chart, M is given by M ∩U =
{(x1, . . . , xm, 0, . . . , 0)}.

3. In that chart, extend f by f̃(x1, . . . , xp) = f(x1, . . . , xm).

4. Choose a locally finite open covering of M by charts as above and consider a partition
of unity subordinate to this cover. Glue the extensions constucted above thanks to this
partition of unity: this gives an extension of f on an open subset of Rp.

5. Enjoy.

Exercise 7 (Critical points VS critical values).

1. R \ F is an open subset of the real line. If non-empty, it is a countable union of disjoint
open intervals: say R \ F = ∪i∈I(ai, bi) with I finite or countable. It may be possible
that one of the ai (and only one) is equal to −∞, and similarly, that one of the bi (and
only one) if equal to +∞.

For i ∈ I, construct a smooth nonnegative function fi : R→ R with fi(x) > 0 ⇐⇒ x ∈
(ai, bi). Then the function f =

∑
i∈I fi is a solution.
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2. As K is closed, there exists by 1. a smooth nonnegative function g : R→ R with g(x) =
0 ⇐⇒ x ∈ K. Define

f(x) =

∫ x

0
g(t) dt.

Then f is smooth with f ′ = g > 0, and is thus nondecreasing. The function g vanishes
exactly on K, which is of empty interior: hence, if x < y, then f(y)−f(x) =

∫ y
x g(t) dt >

0, and f is strictly increasing. If follows that f is a smooth homeomorphism of R onto
its image. Its set of critical points is K, by definition of g, which has Lebesgue measure
λ(K) > 0. But by Sard’s Theorem, f (Crit(f)) has measure zero.

Remark: the function f constructed above may not be a homeomorphism from R onto
R, because its image may not be all of R. But we can adapt the proof in order to do so:
show it!

Exercise 8 (Change of variable).

First, notice that we have the disjoint union ϕ(U) = (ϕ(U) \ ϕ(Critϕ))∪ϕ(Critϕ). Therefore:

λ(ϕ(U)) =

∫
ϕ(U)

1 dλ =

∫
ϕ(U)\ϕ(Critϕ)

1 dλ+

∫
ϕ(Critϕ)

1 dλ

From Sard’s Theorem, ϕ(Critϕ) has measure zero, and thus, we have

λ(ϕ(U)) =

∫
ϕ(U)\ϕ(Critϕ)

1 dλ

Since ϕ is an homeomorphism, it is injective and it follows that ϕ(U)\ϕ(Critϕ) = ϕ (U \ Critϕ).
But by definition of Critϕ, dϕ(x) is invertible is x ∈ U \Critϕ, and from the inverse function
Theorem, the restriction ϕ|U\Critϕ is a diffeomorphism onto its image. The usual change of
variable gives

λ(ϕ(U)) =

∫
U\Critϕ

|det dϕ| dλ

and to conclude, note that on Critϕ, we have | det dϕ| = 0, so that we have the formula

λ(ϕ(U)) =

∫
U
|det dϕ|dλ.

7


