Sard's Theorem and vector bundles

Exercise 1 (Small perturbations of a submanifold).

Let M be a submanifold of \mathbb{R}^n of dimension m with 2m < n.

- 1. Show that for all $\varepsilon > 0$, there exists $v \in \mathbb{R}^n$ with $||v|| < \varepsilon$ such that $(M + v) \cap M = \emptyset$.
- 2. What if $n \leq 2m$?

Exercise 2 (\mathcal{C}^{∞} and regular values).

Let M be a manifold and V be a finite dimensional linear subspace of $\mathcal{C}^{\infty}(M)$ that contains the constant maps.

- 1. Prove that $\Sigma = \{(f, x) \in V \times M \mid f(x) = 0\}$ is a hypersurface of $V \times M$, and describe $T_{(f,x)}\Sigma$.
- 2. In this question, $M = \mathbb{R}$.
 - (a) Let $(f, x) \in \Sigma$ such that $f'(x) \neq 0$. Show that there exists U and V, open neighborhoods of f and x and a smooth map $\varphi : U \to V$ such that $\varphi(f) = x$ and $g(\varphi(g)) = 0$ for all $g \in U$.
 - (b) Deduce that the simple roots of a polynomial map in $\mathbb{R}_d[X]$ are smooth maps of the coefficients.
 - (c) What happens for the multiple roots?
- 3. Let p_V and p_M be the projections from Σ to V and M.
 - (a) Show that p_M is a submersion.
 - (b) Find the critical points of p_V as well as its critical values.
 - (c) Show that the set of $f \in V$ such that $f^{-1}(0)$ is either empty or a hypersurface of M has full measure.

Exercise 3 (Some vector bundles).

- 1. Let $\pi: E \to N$ be a vector bundle and $f: M \to N$ be a smooth function. Define $f^*E = \{(x, e) \in M \times E \mid f(x) = \pi(e)\}$. Show that f^*E is a vector bundle over M.
- 2. If M is a submanifold of \mathbb{R}^n , define its normal bundle by

$$\nu M = \{ (x, v) \in M \times \mathbb{R}^n \mid v \perp T_x M \}$$

Show that νM is a vector bundle over M.

3. Show that if M and N are two manifolds, then $T(M \times N) \simeq TM \times TN$.

Exercise 4 ($\mathbb{S}^n \times \mathbb{S}^1$ is parallelizable).

A manifold M^n is said to be parallelizable if its tangent bundle is isomorphic to the trivial vector bundle $TM \simeq M \times \mathbb{R}^n$.

Let $M \subset \mathbb{R}^n$ be a submanifold and $i \colon M \to \mathbb{R}^n$ be the inclusion.

- 1. Show that $i^*(TM)$ is a trivial vector bundle over M.
- 2. Show that $TM \oplus \nu M$ is a trivial vector bundle.
- 3. Recalling that \mathbb{S}^1 is parallelizable, show that $\mathbb{S}^n \times \mathbb{S}^1$ is parallelizable.