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Sard’s Theorem and vector bundles

Exercise 1.

Let M be a submanifold of Rn of dimension m with 2m < n.

1. Define
f : M ×M −→ Rn

(x, y) 7−→ x− y

f is smooth, and since dim(M×M) = 2m < n, all points are critical. By Sard’s Lemma,
f(M ×M) has measure zero in Rn, and is therefore nowhere dense. But we have

f (M ×M) = {v ∈ Rn | ∃(x, y) ∈M ×M,v = x− y} = {v ∈ Rn | (M + v) ∩M 6= ∅}

It follows that ∀ε > 0, there exists v ∈ B(0; ε) such that v /∈ f(M ×M), and (M + v)∩
M = ∅.

2. Consider S1 ⊂ R2. If ‖v‖ < 1, then S1 ∩ (S1 + v) 6= ∅ and the result is false in that case.

S1 S1 + v

v

Figure 1: S1 ∩ (S1 + v) 6= ∅

Exercise 2.

1. The smooth map
F : V ×M −→ R

(f, x) 7−→ f(x)

has differential

∀(f, x) ∈ V ×M,∀(h, v) ∈ T(f,x)(V ×M) = V ×TxM, dF (f, x)·(h, v) = df(x)·v+h(x)

Since V contains the constant functions, then dF (f, x) · (c, 0) = c for all constant c ∈ R,
and there is no critical point. It follows that 0 is a regular value and Σ = F−1({0}) is a
smooth hypersurface.

Moreover, T(f,x)Σ = ker dF (f, x) = {(h, v) ∈ V × TxM | h(x) = −df(x) · v}.

2. In this question, M = R.

(a) The map G = (f, x) ∈ V ×M 7→ f(x) ∈ R is smooth. Its partial differential with
respect to the second variable is given by D2G(f, x) = (t 7→ f ′(x)t). If f ′(x) 6= 0,
D2G is an isomorphism, and the implicit function Theorem provides the existence
the desired map.
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(b) Rd[X] is a finite dimensional vector space containing the constant functions. Apply
2.(a).

(c) The map t ∈ (−ε, ε) 7→ Pt = X2 − t is a smooth path in R2[X] but there is no
smooth function t 7→ ϕ(t) such that ϕ(t) is a root of Pt.

3. Let pV and pM be the projections from Σ to V and M .

(a) Let γ(t) = (γV (t), γM (t)) be a smooth path in Σ with γ(0) = (f, x), γ′(0) = (h, v) ∈
T(f,v)Σ. Then pM (γ(t)) = γM (t), and therefore,

dpM (f, x) · (g, v) =
d

dt
pM (γ(t))|t=0 =

d

dt
γM (t)|t=0 = v

Since V contains constant functions, for all v ∈ TxM , the constant function h ∈ V
with ∀y ∈ X, h(y) = −df(x) · v is in V , thus (h, v) ∈ T(f,x)Σ, and dpM (f, x) ·
(h, v) = v . It follows that dpM (f, g) is surjective and pM is a submersion.

(b) Similarly, we have

∀(h, v) ∈ T(f,x)Σ, dpV (f, x) · (h, v) = h

A function h ∈ V is in the image of dpV is and only if there exists v ∈ TxM such
that h(x) = −df(x) · v:

• If x is a critical point of f , then df(x) = 0 and the only functions in the image
of dpV (f, x) are those vanishing at x. Thus, dpV (f, x) is not surjective.

• If x is not a critical point of f , then df(x) is surjective. For any h ∈ V ,
there exists a vector v ∈ TxM such that h(x) = −df(x) · v. It follows that
(h, v) ∈ T(f,x)Σ with dpV (f, x) · (h, v) = h, and dpV (f, x) is surjective.

Finally, (f, x) is a critical point of pV if and only if x is a critical point of f in
f−1({0}).

(c) From Sard’s Theorem, pM (CritpM ) is of measure zero in V . But pM (CritpM ) is
the set of functions f ∈ V such that there exists x ∈ f−1({0}) which is a critical
point of f . Hence, it is the set of functions f in V such that 0 is a critical value.
The result follows.

Exercise 3.

1. Let us show that f∗E is a submanifold of M × E. Consider the map

F : M × E → N ×N

defined by F (x, e) = (f(x), π(e)), which is smooth. Consider the diagonal of N × N
defined by ∆ = {(y, y) ∈ N ×N | y ∈ N}. Let us show that F is transverse to ∆, so
that f∗E = F−1(∆) is a submanifold. If (x, e) ∈M × E, we have

dF (x, e) : T(x,e)M × E ' TxM × TeE −→ TF (x,e)(N ×N) ' Tf(x)N × Tπ(e)N
(u, v) 7−→ (df(x)u,dπ(e)v)

and
T(y,y)∆ = {(w,w) | w ∈ TyN}
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so that the transversality condition

∀(x, e) ∈ F−1(∆), dF (x, e)T(x,e)(M × E) + TF (x,e)∆ = TF (x,e)(N ×N)

reads

∀(x, e) ∈ f∗E,∀(w1, w2) ∈ Tf(x)N × Tπ(e)N, ∃(u, v) ∈ TxM × TeE,∃w ∈ Tf(x)N
(df(x)u+ w,dπ(e)v + w) = (w1, w2)

We use without proof that a vector bundle projection is a submersion (show it in local
trivialization!). Choose u = 0, w = w1 and v such that dπ(e)v = w2 − w1, which does
exist because dπ(e) is surjective. Then the transversality condition is satisfied.

From the transversality Theorem, F−1(∆) = f∗E is a submanifold of M × E, of codi-
mension codimN×N∆ = dimN .

Let us now show that it is a vector bundle. The projection map πM : M × E → M is
smooth and restricts to a smooth surjective map πM : f∗E → M . Moreover, if x ∈ M ,
then

π−1M ({x}) = Ef(x)

is a vector space. Consider U ⊂ N an open subset containing f(x) such that we have
the local trivialization

χ : π−1(U)
∼−→ U × Rr

If proj2U × Rr → Rr denotes the projection on the second factor, then

χf : π−1M
(
f−1(U)

)
−→ f−1(U)× Rr

(x, e) 7−→
(
x,proj2(χ(e))

)
is a local trivialization for f∗E. It follows that f∗E is a vector bundle over M .

Remark. If the transition functions of E are gU,V : U ∩ V → GLr(R), then tran-
sition functions for E, are given by gf−1(U),f−1(V ) : f−1(U ∩ V ) → GLr(R), where
gf−1(U),f−1(V )(x) = gU,V (f(x)). It follows that in fact, the pullback bundle f∗E is
given by composing with f , which is smooth: it is not surprising that f∗E is a smooth
object.

2. Let us first show that νM is a manifold by finding local charts. To do so, consider an
adapted chart ϕ : V ⊂ Rn → Rn with ϕ(V ∩ (Rm×{0})) = U ∩M (ϕ is an embedding).
If (e1, . . . , en) is the canonical basis of Rn, then (dϕ(x)e1, . . .dϕ(x)en) is a basis of
Tϕ(x)Rn ' Rn with (dϕ(x)e1, . . . ,dϕ(x)em) a basis of Tϕ(x)M .

From the Gram-Schmidt algorithm, one can thus define smooth functions vi : V → Rn
such that (v1(x), . . . , vm(x)) is an orthonormal basis of Tϕ(x)M , and (vm+1(x), . . . , vn(x))

is an orthonormal basis of Tϕ(x)M⊥. Therefore, the map

V × Rm−n −→ νM

(x, λm+1, . . . , λn) 7−→
(
ϕ(x),

∑n
j=m+1 λivi(x)

)
is a smooth local parametrization of νM , and νM is a submanifold of M × Rn, thus a
manifold. It follows that the projection π(x, v) ∈ νM 7→ x is smooth as the restriction
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of a smooth map onto a submanifold, and the fibers are TxM⊥, which are indeed vector
spaces.

We have shown above that locally, we can find m − n smooth maps ui : x ∈ U ⊂
M → νxM = TxM

⊥ such that (um+1(x), . . . , un(x)) is an orthonormal basis of νxM .
Therefore, the maps

π−1(U) −→ U × Rm−n
(x, v) 7−→ (x, (〈v, um+1(x)〉, . . . , 〈v, un(x)〉))

are local trivializations.

Remark. The local trivializations here are the inverse maps of the local parametrizations
we have constructed.

3. The two projections πM : M ×N →M and πN : M ×N → N are smooth. Consider the
map

π̃ : TM × TN −→M ×N

defined by π̃ ((p, v), (q, w)) = (p, q). It is smooth and endows TM × TN with the
structure of a smooth rank dimM + dimN vector bundle over M ×N (easy exercise).

We are in the situation
T (M ×N) TM × TN

↓ ↓
M ×N id−→ M ×N

Let us show that these vector bundles are isomorphic. The map F : T (M × N) →
TM × TN defined by

F
(
(p, q), V

)
=
(
(p,dπM (p, q)V ), (q,dπN (p, q)V

)
is well defined, smooth, linear in the fibers which are of the same finite dimension.
To conclude, it suffices to show that it induces linear isomorphisms in the fibers. The
linearity is clear. If v ∈ TpM and w ∈ TqN , choose two paths γM and γN such that
v and w are their velocity vectors at 0. Define γ = (γM , γN ). Its velocity vector at
zero, say V ∈ T(p,q)(M × N) satisfies F ((p, q), V ) =

(
(p, v), (q, w)

)
. Finally F induces

a surjective linear maps in the fibers which are of the same finite dimension, and thus
induces linear isomorphisms in the fibers. This conclude the proof.
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