Vector fields, derivations

Exercise 1.

Lemma. Let M be a a smooth manifold. Then there exists a smooth proper function $g: M \rightarrow \mathbb{R}$.

Proof. Let $\left(U_{i}, \varphi_{i}\right)_{i \in \mathbb{N}}$ ba a partition of unity subordinate to a locally finite open cover $\left(U_{i}\right)_{i \in \mathbb{N}}$. Then $g=\sum_{i \in \mathbb{N}} i \varphi_{i}$ is a solution.

Let X be a vector field on M and $g \in \mathcal{C}^{\infty}(M ; \mathbb{R})$ be a smooth and proper function. Define

$$
\begin{aligned}
f: & M
\end{aligned} \longrightarrow \mathbb{R}, ~=e^{-(\mathrm{d} g(x) \cdot X(x))^{2}}
$$

or, in short, $f=\exp \left(-(X \cdot g)^{2}\right)$. It is a positive function. Let $Y=f X$. Then

$$
Y \cdot g=(f X) \cdot g=f(X \cdot g)=e^{-(X \cdot g)^{2}}(X \cdot g)
$$

so that $|(Y \cdot g)(x)|=\left|e^{-(X \cdot g)^{2}(x)}(X \cdot g)(x)\right| \leqslant 1$ (since $y \mapsto y e^{-y^{2}}$ is bounded by 1). Let γ be an integral curve of Y, defined on a bounded interval (a, b) containing 0 . Then $g \circ \gamma$ is smooth on (a, b) and

$$
\forall t \in(a, b), \quad \frac{\mathrm{d}}{\mathrm{~d} t}(g \circ \gamma)(t)=\mathrm{d} g(\gamma(t)) \cdot \gamma^{\prime}(t)=\mathrm{d} g(\gamma(t)) \cdot Y(\gamma(t))=(Y \cdot g)(\gamma(t))
$$

and it follows that $\left|\frac{\mathrm{d}}{\mathrm{d} t}(g \circ \gamma)\right| \leqslant 1$ on (a, b). Integrating this last inequality shows that $g \circ \gamma$ is bounded on (a, b), and since g is proper, so is $\gamma((a, b))$ is relatively compact in M.

From TD4, exercise 3, (which is also a Lemma taught in the lectures) (a, b) cannot be the maximal interval of definition of γ. It follows that Y is complete.

Remark. The integral curves of Y and X have the same image in M. The only difference is that Y has been reduced small enough so that it takes an infinite time for its integral curves to achieve points that are achieved in finite time by the integral curves of X.

Exercise 2.

1. (a) The map

$$
\begin{array}{r|rll}
f: & \mathbb{R} \times \mathbb{R} & \longrightarrow & M \times M \\
& (s, t) & \longmapsto & \left(\varphi^{-1}(s), \psi^{-1}(t)\right)
\end{array}
$$

is continuous, and $\Delta=\{(x, x) \in M \times M \mid x \in M\}$ is closed sinde M is Hausdorff. It follows that $\Gamma=f^{-1}(\Delta)$ is closed in \mathbb{R}^{2}.
(b) Let $(s, t) \in \mathbb{R}^{2}$. Then

$$
(s, t) \in \Gamma \Longleftrightarrow \varphi^{-1}(s)=\psi^{-1}(t) \Longleftrightarrow t=\left(\psi \circ \varphi^{-1}\right)(s)
$$

so that Γ is the graph of $\psi \circ \varphi^{-1}$.
(c) Since $\left.\psi \circ \varphi^{-1}\right|_{I}$ is a diffeomorphism onto its image and since I is an interval, $\psi \circ \varphi^{-1}$ is monotonous. It follows that it has a limit when $s \rightarrow a$. If this limit were a real number, then its graph Γ would not be closed, in contradiction with 1.(b). It follows that $\lim _{s \rightarrow a} \psi \circ \varphi^{-1}(s)= \pm \infty$.

Suppose by contradiction that $\varphi(U \cap V)$ has at least three connected components. Then one of them is of the form (a, b) with $a, b \in \mathbb{R}$. It follows that $\left.\psi \circ \varphi^{-1}\right|_{(a, b)}$ diverges to infinity at the limit points a and b, and it realizes a homeomorphism from (a, b) onto \mathbb{R}. But as $\psi \circ \varphi^{-1}$ is injective, $\varphi(U \cap V)$ cannot take any value on the other connected components, which is a contradiction.
(d) If $\varphi(U \cap V)$ has one connected components, then $\psi \circ \varphi^{-1}$ is monotonous so that its derivative has constant sign.
If $\varphi(U \cap V)$ has two connected components, then $\varphi(U \cap V)=I_{1} \cup I_{2}$ with I_{1} and I_{2} intervals and $-\infty<\sup I_{1}=a \leqslant b=\inf I_{2}<+\infty$, and $\psi \circ \varphi^{-1}$ is monotonous on both intervals. Since it has infinite limits at a and b and since it is injective, they cannot be equal. It follows that $\psi \circ \varphi^{-1}$ is either increasing on I_{1} and I_{2}, or decreasing on I_{1} and I_{2} (sketch the situation), and $\left(\psi \circ \varphi^{-1}\right)^{\prime}$ has constant sign.
2. Define by induction $\sigma(0)=0$ and

$$
\sigma(n+1)=\min \left\{k \in \mathbb{N} \backslash\{\sigma(0), \ldots, \sigma(n)\} \mid U_{k} \cap\left(\bigcup_{j=0}^{n} U_{j}\right)\right\}
$$

It is well defined since M is connected, so that $\left\{k \in \mathbb{N} \backslash\{\sigma(0), \ldots, \sigma(n)\} \mid U_{k} \cap\right.$ $\left.\left(\bigcup_{j=0}^{n} U_{j}\right)\right\}$ is non-empty. By construction, σ is injective. The surjectivity is again a consequence of the connectedness of M (exercise).
3. Let $\left(U_{i}, \psi_{i}\right)$ be a countable locally finite atlas, with U_{i} connected, and up to reordering as in 2., assume that

$$
\forall n \in \mathbb{N}, \quad U_{n+1} \cap\left(\bigcup_{j=0}^{n} U_{j}\right) \neq \varnothing
$$

By induction, define $\varphi_{0}=\psi_{0}$ and

$$
\varphi_{n+1}= \begin{cases}\psi_{n+1} & \text { if }\left(\psi^{n+1} \circ \varphi_{j}^{-1}\right)^{\prime}>0 \text { for } j \in\{0, \ldots, n\} \text { s.t } U_{j} \cap U_{n+1} \neq \varnothing \\ -\psi_{n+1} & \text { otherwise }\end{cases}
$$

Show that the two considered cases are the only one possible (exefcise). Then $\left(U_{i}, \varphi_{i}\right)$ satisfies the condition.

Let $\left(\theta_{i}\right)$ be a partition of unity subordinate to $\left(U_{i}, \varphi_{i}\right)$. Define

$$
\forall x \in U_{i}, \quad X_{i}(x)=\mathrm{d} \varphi_{i}(x)^{-1} \cdot 1
$$

then $X=\sum_{i} \theta_{i} X_{i}$ is a non-zero vector field on M. It follows that M is parallelizable.
4. Let X be a non-zero vector field on M. By Exercise 1. there exists $f>0$ such that $Y=f X$ is complete, and is non-zero.

Let $\left(\phi_{t}\right)_{t \in \mathbb{R}}$ be the flow of Y : since Y is complete, it is a one-parameter subgroup of $\operatorname{Diff}(M)$. It induces a smooth action by diffeomorphisms $\mathbb{R} \curvearrowright M$ defined by $t \cdot x=\phi_{t}(x)$. For $x \in M$, let $\mathcal{O}_{x}=\left\{\phi_{t}(x) \mid t \in \mathbb{R}\right\}$ be the orbit of x. First, note that $y=\phi_{t}(x) \Longleftrightarrow x=\phi_{-t}(y)$. In particular, $y \in \mathcal{O}_{x} \Longleftrightarrow x \in \mathcal{O}_{y}$, and it follows that if $x \in M$ is fixed,

$$
\begin{equation*}
M=\mathcal{O}_{x} \sqcup\left(\bigcup_{z \in M \backslash \mathcal{O}_{x}} \mathcal{O}_{z}\right) \tag{1}
\end{equation*}
$$

Let us show that any orbit is open. For $z \in M$, define $f: \mathbb{R} \rightarrow M$ by $f(t)=\phi_{t}(z)$. Then for all $t, f^{\prime}(t)=\frac{\mathrm{d}}{\mathrm{d} t} \phi_{t}(z)=Y\left(\phi_{t}(z)\right) \neq 0$, and by the inverse function Theorem (M is 1-dimensional), its image is open. But $f(\mathbb{R})=\mathcal{O}_{z}$, which proves that any orbit is open. By equation (1), any orbit is also closed as the complementary of union of orbits. By connectedness of M, if $x \in M, M=\mathcal{O}_{x}$, and the action is transitive.

Fix $x \in M$ and let $G_{x}=\left\{t \in \mathbb{R} \mid \phi_{t}(x)=x\right\}$ be the isotropy subgroup of $x . G_{x}$ is a subgroup of \mathbb{R}, and since $G_{x}=h^{-1}(\{x\})$ with $h: t \mapsto \phi_{t}(x)$ continuous, G_{x} is closed. It follows that either $G_{x}=\mathbb{R}$, or $G_{x}=\alpha \mathbb{Z}$ for some $a \geqslant 0$. The case $G_{x}=\mathbb{R}$ is impossible since $\mathbb{R} \curvearrowright M$ is transitive. Therefore, we have a surjective smooth map

$$
\mathbb{R} \longrightarrow M
$$

that descends to the quotient as a diffeomorphism

$$
\mathbb{R} / \alpha \mathbb{Z} \xrightarrow{\sim} M
$$

If $\alpha=0$, then $M \simeq \mathbb{R}$. Otherwise, $M \simeq \mathbb{S}^{1}$.
Remark. For another proof, see Topology from the differentiable viewpoint, Milnor.

Exercise 3.

Let $x \in U$ be fixed and φ be a cut-off function with compact support in U with $\varphi(x)=1$. Then

$$
\forall y \in M, \quad(f(y)-g(y)) \varphi(y)=0
$$

since either $y \in U$ and $f(y)=g(y)$, or $y \notin U$ and $\varphi(y)=0$. Hence, $(f-g) \varphi=0$ and since $D 0=0$, it follows that

$$
0=D((f-g) \varphi)=\varphi D(f-g)+(f-g) D \varphi
$$

Evaluating this last equality at x yields

$$
0=D(f-g)(x)
$$

This being true for all $x \in U$, then $\left.(D(f-g))\right|_{U}=\left.(D f)\right|_{U}-\left.(D g)\right|_{U}=0$, and the proof is complete.

Exercise 4.

Let f and g be smooth functions on N. Then

$$
\begin{aligned}
\left(\varphi_{*} D\right)(f \times g) & =D((f \times g) \circ \varphi) \circ \varphi^{-1} \\
& =D((f \circ \varphi) \times(g \circ \varphi)) \circ \varphi^{-1}
\end{aligned}
$$

Since D is a derivation of $\mathcal{C}^{\infty}(M ; \mathbb{R})$ and since $f \circ \varphi$ and $g \circ \varphi$ are smooth on M, it follows that

$$
D((f \circ \varphi) \times(g \circ \varphi))=(g \circ \varphi) D(f \circ \varphi)+(f \circ \varphi) D(g \circ \varphi)
$$

Thus

$$
\begin{aligned}
\left(\varphi_{*} D\right)(f g) & =((g \circ \varphi) D(f \circ \varphi)+(f \circ \varphi) D(g \circ \varphi)) \circ \varphi^{-1} \\
& =\left(g \circ \varphi \circ \varphi^{-1}\right) D(f \circ \varphi) \circ \varphi^{-1}+\left(f \circ \varphi \circ \varphi^{-1}\right) D(g \circ \varphi) \circ \varphi^{-1} \\
& =g(D(f \circ \varphi) \circ \varphi-1)+f\left(D(g \circ \varphi) \circ \varphi^{-1}\right) \\
& =g\left(\left(\varphi_{*} D\right) f\right)+f\left(\left(\varphi_{*} D\right) g\right)
\end{aligned}
$$

The result follows.

Exercise 5.

Let f and g be smooth functions on M. Then

$$
\begin{array}{rlrl}
D \circ D^{\prime}(f g) & =D\left(g D^{\prime} f+g D^{\prime} g\right) & \text { by definition of } D^{\prime} \\
& =D\left(g D^{\prime} f\right)+D\left(f D^{\prime} g\right) & & \text { by linearity of } D \\
& =D^{\prime} f D g+g D\left(D^{\prime} f\right)+D^{\prime} g D f+f D\left(D^{\prime} g\right) & & \text { by definition of } D \\
& =g\left(D \circ D^{\prime}\right) f+f\left(D \circ D^{\prime}\right) g+D^{\prime} f D g+D f D^{\prime} g &
\end{array}
$$

It follows that $D \circ D^{\prime}(f, g)(x) \neq\left[g\left(D \circ D^{\prime}\right) f+f\left(D \circ D^{\prime}\right) g\right](x)$ as long as $D f(x), D^{\prime} f(x), D g(x)$ and $D^{\prime} g(x)$ are non-zero. But the same computations show that

$$
\left[D \circ D^{\prime}-D^{\prime} \circ D\right](f g)=g\left[D \circ D^{\prime}-D^{\prime} \circ D\right] f+f\left[D \circ D^{\prime}-D^{\prime} \circ D\right] g
$$

so that $D \circ D^{\prime}-D^{\prime} \circ D$ is a derivation of $\mathcal{C}^{\infty}(M ; \mathbb{R})$.

