
M1 – Advanced Geometry 2021-2022:TD 5

Vector fields, derivations

Exercise 1.

Lemma. Let M be a a smooth manifold. Then there exists a smooth proper function
g : M → R.

Proof. Let (Ui, ϕi)i∈N ba a partition of unity subordinate to a locally finite open cover
(Ui)i∈N. Then g =

∑
i∈N iϕi is a solution.

Let X be a vector field on M and g ∈ C∞(M ;R) be a smooth and proper function. Define

f : M −→ R
x 7−→ e−(dg(x)·X(x))2

or, in short, f = exp(−(X · g)2). It is a positive function. Let Y = fX. Then

Y · g = (fX) · g = f(X · g) = e−(X·g)
2
(X · g)

so that |(Y · g)(x)| = |e−(X·g)2(x)(X · g)(x)| 6 1 (since y 7→ ye−y
2 is bounded by 1). Let γ

be an integral curve of Y , defined on a bounded interval (a, b) containing 0. Then g ◦ γ is
smooth on (a, b) and

∀t ∈ (a, b),
d

dt
(g ◦ γ)(t) = dg(γ(t)) · γ′(t) = dg(γ(t)) · Y (γ(t)) = (Y · g)(γ(t))

and it follows that | ddt(g ◦γ)| 6 1 on (a, b). Integrating this last inequality shows that g ◦γ
is bounded on (a, b), and since g is proper, so is γ

(
(a, b)

)
is relatively compact in M .

From TD4, exercise 3, (which is also a Lemma taught in the lectures) (a, b) cannot be the
maximal interval of definition of γ. It follows that Y is complete.

Remark. The integral curves of Y and X have the same image in M . The only difference
is that Y has been reduced small enough so that it takes an infinite time for its integral
curves to achieve points that are achieved in finite time by the integral curves of X.

Exercise 2.

1. (a) The map
f : R× R −→ M ×M

(s, t) 7−→ (ϕ−1(s), ψ−1(t))

is continuous, and ∆ = {(x, x) ∈ M × M | x ∈ M} is closed sinde M is
Hausdorff. It follows that Γ = f−1(∆) is closed in R2.

(b) Let (s, t) ∈ R2. Then

(s, t) ∈ Γ ⇐⇒ ϕ−1(s) = ψ−1(t) ⇐⇒ t = (ψ ◦ ϕ−1)(s)

so that Γ is the graph of ψ ◦ ϕ−1.
(c) Since ψ ◦ ϕ−1|I is a diffeomorphism onto its image and since I is an interval,

ψ ◦ ϕ−1 is monotonous. It follows that it has a limit when s → a. If this limit
were a real number, then its graph Γ would not be closed, in contradiction with
1.(b). It follows that lims→a ψ ◦ ϕ−1(s) = ±∞.
Suppose by contradiction that ϕ(U ∩ V ) has at least three connected compo-
nents. Then one of them is of the form (a, b) with a, b ∈ R. It follows that
ψ ◦ ϕ−1|(a,b) diverges to infinity at the limit points a and b, and it realizes a
homeomorphism from (a, b) onto R. But as ψ◦ϕ−1 is injective, ϕ(U∩V ) cannot
take any value on the other connected components, which is a contradiction.
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(d) If ϕ(U ∩V ) has one connected components, then ψ ◦ϕ−1 is monotonous so that
its derivative has constant sign.
If ϕ(U ∩ V ) has two connected components, then ϕ(U ∩ V ) = I1 ∪ I2 with I1
and I2 intervals and −∞ < sup I1 = a 6 b = inf I2 < +∞, and ψ ◦ ϕ−1 is
monotonous on both intervals. Since it has infinite limits at a and b and since
it is injective, they cannot be equal. It follows that ψ ◦ ϕ−1 is either increasing
on I1 and I2, or decreasing on I1 and I2 (sketch the situation), and (ψ ◦ ϕ−1)′
has constant sign.

2. Define by induction σ(0) = 0 and

σ(n+ 1) = min{k ∈ N \ {σ(0), . . . , σ(n)} | Uk ∩ (
n⋃

j=0

Uj)}

It is well defined since M is connected, so that {k ∈ N \ {σ(0), . . . , σ(n)} | Uk ∩
(
⋃n

j=0 Uj)} is non-empty. By construction, σ is injective. The surjectivity is again a
consequence of the connectedness of M (exercise).

3. Let (Ui, ψi) be a countable locally finite atlas, with Ui connected, and up to reordering
as in 2., assume that

∀n ∈ N, Un+1 ∩ (
n⋃

j=0

Uj) 6= ∅

By induction, define ϕ0 = ψ0 and

ϕn+1 =

{
ψn+1 if (ψn+1 ◦ ϕ−1j )′ > 0 for j ∈ {0, . . . , n} s.t Uj ∩ Un+1 6= ∅,
−ψn+1 otherwise

Show that the two considered cases are the only one possible (exefcise). Then (Ui, ϕi)
satisfies the condition.

Let (θi) be a partition of unity subordinate to (Ui, ϕi). Define

∀x ∈ Ui, Xi(x) = dϕi(x)−1 · 1

then X =
∑

i θiXi is a non-zero vector field onM . It follows thatM is parallelizable.

4. Let X be a non-zero vector field on M . By Exercise 1. there exists f > 0 such that
Y = fX is complete, and is non-zero.

Let (φt)t∈R be the flow of Y : since Y is complete, it is a one-parameter subgroup
of Diff(M). It induces a smooth action by diffeomorphisms R y M defined by
t · x = φt(x). For x ∈M , let Ox = {φt(x) | t ∈ R} be the orbit of x. First, note that
y = φt(x) ⇐⇒ x = φ−t(y). In particular, y ∈ Ox ⇐⇒ x ∈ Oy, and it follows that
if x ∈M is fixed,

M = Ox t

 ⋃
z∈M\Ox

Oz

 (1)

Let us show that any orbit is open. For z ∈ M , define f : R → M by f(t) = φt(z).
Then for all t, f ′(t) = d

dtφt(z) = Y (φt(z)) 6= 0, and by the inverse function Theorem
(M is 1-dimensional), its image is open. But f(R) = Oz, which proves that any orbit
is open. By equation (1), any orbit is also closed as the complementary of union of
orbits. By connectedness of M , if x ∈M , M = Ox, and the action is transitive.
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Fix x ∈M and let Gx = {t ∈ R | φt(x) = x} be the isotropy subgroup of x. Gx is a
subgroup of R, and since Gx = h−1({x}) with h : t 7→ φt(x) continuous, Gx is closed.
It follows that either Gx = R, or Gx = αZ for some a > 0. The case Gx = R is
impossible since R yM is transitive. Therefore, we have a surjective smooth map

R −→M

that descends to the quotient as a diffeomorphism

R/αZ ∼−→M

If α = 0, then M ' R. Otherwise, M ' S1.

Remark. For another proof, see Topology from the differentiable viewpoint, Milnor.

Exercise 3.

Let x ∈ U be fixed and ϕ be a cut-off function with compact support in U with ϕ(x) = 1.
Then

∀y ∈M, (f(y)− g(y))ϕ(y) = 0

since either y ∈ U and f(y) = g(y), or y /∈ U and ϕ(y) = 0. Hence, (f − g)ϕ = 0 and since
D0 = 0, it follows that

0 = D((f − g)ϕ) = ϕD(f − g) + (f − g)Dϕ

Evaluating this last equality at x yields

0 = D(f − g)(x)

This being true for all x ∈ U , then (D(f − g))|U = (Df)|U − (Dg)|U = 0, and the proof is
complete.

Exercise 4.

Let f and g be smooth functions on N . Then

(ϕ∗D)(f × g) = D((f × g) ◦ ϕ) ◦ ϕ−1

= D ((f ◦ ϕ)× (g ◦ ϕ)) ◦ ϕ−1

Since D is a derivation of C∞(M ;R) and since f ◦ϕ and g ◦ϕ are smooth on M , it follows
that

D ((f ◦ ϕ)× (g ◦ ϕ)) = (g ◦ ϕ)D(f ◦ ϕ) + (f ◦ ϕ)D(g ◦ ϕ)

Thus

(ϕ∗D)(fg) =
(
(g ◦ ϕ)D(f ◦ ϕ) + (f ◦ ϕ)D(g ◦ ϕ)

)
◦ ϕ−1

= (g ◦ ϕ ◦ ϕ−1)D(f ◦ ϕ) ◦ ϕ−1 + (f ◦ ϕ ◦ ϕ−1)D(g ◦ ϕ) ◦ ϕ−1

= g(D(f ◦ ϕ) ◦ ϕ−1) + f(D(g ◦ ϕ) ◦ ϕ−1)
= g((ϕ∗D)f) + f((ϕ∗D)g)

The result follows.

Exercise 5.
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Let f and g be smooth functions on M . Then

D ◦D′(fg) = D(gD′f + gD′g) by definition of D′

= D(gD′f) +D(fD′g) by linearity of D
= D′fDg + gD(D′f) +D′gDf + fD(D′g) by definition of D
= g(D ◦D′)f + f(D ◦D′)g +D′fDg +DfD′g

It follows thatD◦D′(f, g)(x) 6= [g(D◦D′)f+f(D◦D′)g](x) as long asDf(x), D′f(x), Dg(x)
and D′g(x) are non-zero. But the same computations show that

[D ◦D′ −D′ ◦D](fg) = g[D ◦D′ −D′ ◦D]f + f [D ◦D′ −D′ ◦D]g

so that D ◦D′ −D′ ◦D is a derivation of C∞(M ;R).
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