Vector fields, derivations, tangent distributions, Frobenius Theorem

Exercise 1.

Let X and Y be vector fields on a manifold M and write in some local coordinates

$$X = \sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}} \qquad Y = \sum_{j=1}^{n} Y^{j} \frac{\partial}{\partial x^{j}}$$

Show that

$$[X,Y] = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \right) \frac{\partial}{\partial x^{i}}$$

Exercise 2.

Let X be a vector field on the manifold M. Suppose that for all vector fields Y it holds that [X, Y] = 0.

- 1. Show that $\forall f \in \mathcal{C}^{\infty}(M), X \cdot f = 0.$
- 2. Deduce that X = 0.

Exercise 3.

Let $f: M^m \to N^n$ be a smooth submersion. We set $\mathcal{K}(f) = \{X \in \Gamma(TM) \mid X \cdot f = 0\}$

- 1. Show that $\mathcal{K}(f)$ is stable under the Lie bracket.
- 2. Determine the integral submanifolds of $\mathcal{K}(f)$.

Exercise 4.

Let $X = \frac{\partial}{\partial x} - y \frac{\partial}{\partial z}$ and $Y = \frac{\partial}{\partial y}$ be two vector fields on \mathbb{R}^3 .

- 1. Show that at each point $p \in \mathbb{R}^3$, $\{X(p), Y(p)\}$ is linearly independent.
- 2. Compute [X, Y]. Is the spanned distribution integrable?
- 3. Recover the result withouth using of Frobenius Theorem.

Exercise 5.

Consider the two following vector fields $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ and $Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$ on \mathbb{R}^2 .

- 1. Compute [X, Y]. Are there coordinates (s, t) on some neighbourhood of $(1, 0) \in \mathbb{R}^2$ such that $X = \frac{\partial}{\partial s}$ and $Y = \frac{\partial}{\partial t}$?
- 2. Compute the flows of X and Y.
- 3. Build explicit coordinates (s,t) on some neighbourhood of $(1,0) \in \mathbb{R}^2$ such that $X = \frac{\partial}{\partial s}$ and $Y = \frac{\partial}{\partial t}$.

Exercise 6.

Let M be a manifold and let X and Y be two vector fields on M. Let (φ_t) and (ψ_s) be the local 1-parameter groups of diffeomorphisms generated by X and Y respectively.

- 1. Show that $[X, Y] = \lim_{t \to 0} \frac{(\mathrm{d}\varphi_{-t}) \circ Y \circ \varphi_t Y}{t} = \lim_{t \to 0} \frac{Y \mathrm{d}\varphi_t \circ Y \circ \varphi_{-t}}{t}$.
- 2. Show that [X, Y] = 0 if and only if for all (t, s) such that it is defined, $\varphi_t \circ \psi_s = \psi_s \circ \varphi_t$.