Vector fields, derivations, tangent distributions, Frobenius Theorem

Exercise 1.

Fix $f \in \mathcal{C}^{\infty}(M)$. Then

$$
Y f=\sum_{i=1}^{n} Y^{i} \frac{\partial f}{\partial x^{i}}
$$

It follows from Leibniz rule that

$$
X(Y f)=\sum_{j=1}^{n} X^{j}\left(\sum_{i=1}^{n} \frac{\partial Y^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}}+Y^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}\right)
$$

and similarly,

$$
Y(X f)=\sum_{j=1}^{n} Y^{j}\left(\sum_{i=1}^{n} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}}+X^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}\right)
$$

Since $[X, Y] f=X(Y f)-Y(X f)$, it follows that

$$
\begin{aligned}
{[X, Y] f=} & \sum_{j=1}^{n}\left(\sum_{i=1}^{n} X^{j} \frac{\partial Y^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}}\right) \\
& +\sum_{j=1}^{n}\left(\sum_{i=1}^{n} X^{j} Y^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}-Y^{j} X^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}\right)
\end{aligned}
$$

Reordering the sum now yields

$$
\begin{aligned}
{[X, Y] \cdot f=} & \sum_{i=1}^{n}\left(\sum_{j=1}^{n} X^{j} \frac{\partial Y^{i}}{\partial x^{j}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right) \frac{\partial f}{\partial x^{i}} \\
& +\sum_{i, j=1}^{n} X^{i} Y^{j}\left(\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}-\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}\right)
\end{aligned}
$$

By Schwarz's Theorem, $\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}}=\frac{\partial^{2} f}{\partial x^{j} \partial x^{i}}$, and the last term is zero. Hence

$$
[X, Y] \cdot f=\left(\sum_{i=1}^{n}\left(\sum_{j=1}^{n} X^{j} \frac{\partial Y^{i}}{\partial x^{j}}-Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right) \frac{\partial}{\partial x^{i}}\right) f
$$

The result follows.

Exercise 2.

1. Let $f \in \mathcal{C}^{\infty}(M)$. Then for any vector field $Y,[X, f Y]=0$. Developping this last equality, it follows that

$$
\forall Y \in \Gamma(T M), \quad(X \cdot f) Y+f[X, Y]=0
$$

Since $[X, Y]=0$, it follows that

$$
\forall Y \in \Gamma(T M), \quad(X \cdot f) Y=0
$$

Fix $p \in M$ and let Y be a vector field such that $Y(p) \neq 0$. It follows that $((X \cdot f) Y)(p)=(X \cdot f)(p) \times Y(p)=0$, and thus, $(X \cdot f)(p)=0$. Therefore, $X \cdot f$ identically vanishes.
2. From 1., X acts on $\mathcal{C}^{\infty}(M)$ as the zero derivation. From the identification between vector fields and derivations, it follows that $X=0$.

Exercise 3.

Watch out: in the papersheet, " $X f=0$ " has to be understood as $\forall p \in M, X(p) \in$ ker $\mathrm{d} f(p)$. Of course, since f has range in $N, X f$ is not a function with range in \mathbb{R} but in $T N$.

1. Let X and Y be vector fields in $\mathcal{K}(f)$. Then $X f=Y f=0$, and it follows that $X(Y f)=0$ and $Y(X f)=0$. Therefore

$$
[X, Y] f=X(Y f)-Y(X f)=0-0=0
$$

and $[X, Y] \in \mathcal{K}(f)$.
2. For $q \in M$, consider

$$
\mathcal{K}_{q}(f)=\{X(q) \mid X \in \mathcal{K}(f)\} \subset T_{q} M
$$

which is clearly a vector subspace of $T_{q} M$. Let $S_{p}=f^{-1}(\{f(p)\})$ be a level set of f. Since f is a submersion, S_{p} is a $(\operatorname{dim} M-\operatorname{dim} N)=(m-n)$ dimensional submanifold of M and moreover, for all $q \in S_{p}, T_{q}\left(S_{p}\right)=\operatorname{ker} \mathrm{d} f(q)$. It follows that

$$
\forall q \in S_{p}, \quad \mathcal{K}_{q}(f) \subset T_{q}\left(S_{p}\right)
$$

Let us show the converse inclusion. From the constant rank Theorem, there exists charts φ and ψ around p and $f(p)$ respectively such that

$$
\psi \circ f \circ \varphi^{-1}\left(x^{1}, \ldots, x^{m}\right)=\left(x^{1}, \ldots, x^{n}\right)
$$

and the level sets of f are locally given in these coordinates by $\left(x^{1}, \ldots, x^{n}\right)=$ $\left(c_{1}, \ldots, c_{n}\right)$. The vectors fields $\left(\frac{\partial}{\partial x^{j}}\right)_{j \in\{n+1, \ldots, m\}}$ are thus in the kernel of $\mathrm{d} f$ at each point of the coordinate patch. Multiplying them by a suitable bump function leads to $m-n$ vector fields of $\mathcal{K}_{q}(f)$ that are linearly independent at q, and hence $\mathcal{K}_{q}(f)$ has dimension $\geqslant m-n$. It follows that $\mathcal{K}_{q}(f)=T_{q}\left(S_{p}\right)$. Finally, S_{q} are $m-n$ dimensional submanifolds tangent to $\mathcal{K}(f)$, a $m-n$ dimensional distribution. They are thus integral submanifold of that distribution.

Exercise 4.

1. In the canonical basis can $=\left\{e_{1}, e_{2}\right\}$ of $T_{p} \mathbb{R}^{2}=\mathbb{R}^{2}$, the matrix matcan $\{X(p), Y(p)\}=$ $\left(\begin{array}{cc}1 & 0 \\ 0 & 1 \\ -y(p) & 0\end{array}\right)$ has rank two. The result follows.
2. Recall that $\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right]=\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]=0$ and that the Lie bracket is alternating. Therefore,

$$
\begin{aligned}
{[X, Y] } & =-[Y, X]=-\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial x}-y \frac{\partial}{\partial z}\right]=-\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right]+\left[\frac{\partial}{\partial y}, y \frac{\partial}{\partial z}\right] \\
& =0+\left(\frac{\partial}{\partial y} \cdot y\right) \frac{\partial}{\partial z}+y\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right]=\frac{\partial}{\partial z}
\end{aligned}
$$

It follows that $[X, Y] \notin \operatorname{Span}\{X, Y\}$, and the distribution $\operatorname{Span}\{X, Y\}$ is not stable under the Lie bracket. It is then non-integrable by Frobenius Theorem.
3. Let $\left(\varphi_{s}\right)$ and $\left(\psi_{t}\right)$ be the flows of X and Y respectively. By straightforward computations, we have

$$
\begin{aligned}
& \varphi_{s}(x, y, z)=(x+s, y,-y s) \\
& \psi_{t}(x, y, z)=(x, y+s, z)
\end{aligned}
$$

Write $\mathcal{D}=\operatorname{Span}\{X, Y\}$ be the distribution spanned by X and Y. Suppose by contradiction that \mathcal{D} is integrable and let S_{0} be the integral submanifold of \mathcal{D} passing through $(0,0,0)$. Then $T_{0} S_{0}=\mathcal{D}_{0}=\operatorname{Span}\{X(0), Y(0)\}=\operatorname{Span}\{(1,0,0) ;(0,1,0)\}$.

Since X and Y lie in \mathcal{D}, the integral curves of X and Y that crosses S_{0} stay in S_{0}, and thus, for any $a, b, c, d \in \mathbb{R}$,

$$
\psi_{a} \circ \varphi_{b} \circ \psi_{c} \circ \varphi_{d}(0,0,0) \in S_{0}
$$

By 2., we have

$$
\begin{aligned}
\psi_{a} \circ \varphi_{b} \circ \psi_{c} \circ \varphi_{d}(0,0,0) & =\psi_{a} \circ \varphi_{b} \circ \psi_{c}(d, 0,0) \\
& =\psi_{a} \circ \varphi_{b}(d, c, 0) \\
& =\psi_{a}(d+b, c,-c b) \\
& =(d+b, a+c,-c b)
\end{aligned}
$$

Therefore, the path

$$
\sigma(t)=\psi_{-t} \circ \varphi_{-t} \circ \psi_{t} \circ \varphi_{t}(0,0,0)=\left(0,0, t^{2}\right)
$$

lies in S_{0}. Unluckily, its derivative at zero vanishes and σ does not lead to a contradiction. Here is the trick: consider

$$
\forall t \geqslant 0, \quad \gamma(t)=\sigma(\sqrt{t})=(0,0, t)
$$

Then γ is smooth on \mathbb{R}_{+}and $\gamma^{\prime}(0)=(0,0,1)$, and $\gamma^{\prime}(0) \notin \operatorname{Span}\{X(0), Y(0)\}$, which is a contradiction.

Remarks. (a) If you don't like considering smooth paths on \mathbb{R}_{+}and rather want it to be defined on neighbourhood of the origin, consider

$$
\gamma(t)= \begin{cases}\sigma(\sqrt{t}) & \text { if } t \geqslant 0 \\ \sigma(\sqrt{-t}) & \text { if } t \leqslant 0\end{cases}
$$

which is smooth and does the job.
(b) The trick we used is in fact a particular case of the following general statement: let X and Y be two vector fields on M and φ^{X}, φ^{Y} be their flows. Then

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0}\left(\varphi_{-\sqrt{t}}^{Y} \circ \varphi_{-\sqrt{t}}^{X} \circ \varphi_{\sqrt{t}}^{Y} \circ \varphi_{\sqrt{t}}^{X}\right)=[X, Y]
$$

meaning that $[X, Y]$ measures the failure of the path "following X, then Y, then $-X$, then $-Y^{\prime \prime}$ to return to its starting point. Choosing t instead of \sqrt{t} in this path forces to differentiate one more time to recover (twice) the Lie bracket:

$$
\left.\frac{1}{2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0}\left(\varphi_{-t}^{Y} \circ \varphi_{-t}^{X} \circ \varphi_{t}^{Y} \circ \varphi_{t}^{X}\right)=[X, Y]
$$

Exercise 5.

Consider the two following vector fields $X=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}$ and $Y=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}$ on \mathbb{R}^{2}.

1. By the formula of Exercise 1. with $X^{1}=x, X^{2}=y, Y^{1}=-y$ and $Y^{2}=x$, we find

$$
\begin{aligned}
{[X, Y]=} & \left(x \frac{\partial(-y)}{\partial x}-(-y) \frac{\partial x}{\partial x}+y \frac{\partial(-y)}{\partial y}-x \frac{\partial x}{\partial y}\right) \frac{\partial}{\partial x} \\
& +\left(x \frac{\partial x}{\partial x}-(-y) \frac{\partial y}{\partial x}+y \frac{\partial x}{\partial y}-x \frac{\partial y}{\partial y}\right) \frac{\partial}{\partial y} \\
= & (0+y-y-0) \frac{\partial}{\partial x}+(x+0+0-x) \frac{\partial}{\partial y} \\
= & 0
\end{aligned}
$$

Let $p=(1,0)$. Then $\operatorname{det}(X(p), Y(p))=\operatorname{det}\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=1$, and in a neighbourhood of $p,\{X, Y\}$ are pointwisely linearly independant. Since $[X, Y]=0$, from Frobenius Theorem, there exists a neighbourhood of p on which X and Y are tangent to coordinates, that is there exists local coordinates (s, t) near p such that $X=\frac{\partial}{\partial s}$ and $Y=\frac{\partial}{\partial t}$.
2. Let $\gamma: 0 \in I \rightarrow \mathbb{R}$ be a smooth curve, and write $\gamma=(x, y)$ and $\gamma^{\prime}=x^{\prime} \frac{\partial}{\partial x}+y^{\prime} \frac{\partial}{\partial y}$. Then

$$
\begin{aligned}
\gamma^{\prime}=X(\gamma) & \Longleftrightarrow x^{\prime} \frac{\partial}{\partial x}+y^{\prime} \frac{\partial}{\partial y}=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y} \\
& \Longleftrightarrow\left\{\begin{array}{l}
x^{\prime}=x \\
y^{\prime}=y
\end{array}\right. \\
& \Longleftrightarrow \forall s \in I, \quad \gamma(s)=\left(x(0) e^{s}, y(0) e^{s}\right)
\end{aligned}
$$

It follows that the flow of X is given by

$$
\forall s \in \mathbb{R}, \forall(x, y) \in \mathbb{R}^{2}, \quad \varphi_{s}^{X}(x, y)=e^{s}(x, y)
$$

Similarly,

$$
\gamma^{\prime}=Y(\gamma) \Longleftrightarrow\left\{\begin{array}{ll}
x^{\prime} & =-y \\
y^{\prime} & =x
\end{array} \Longleftrightarrow\binom{x}{y}^{\prime}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\binom{x}{y}\right.
$$

Solving this last differential equation shows that the flow of Y is given by

$$
\forall t \in \mathbb{R}, \forall(x, y) \in \mathbb{R}^{2}, \quad \varphi_{t}^{Y}(x, y)=((\cos t) x+(\sin t) y,-(\sin t) x+(\cos t) y)
$$

3. Consider the map

$$
\Phi:(s, t) \in \mathbb{R}^{2} \mapsto \varphi_{s}^{X} \circ \varphi_{t}^{Y}((1,0)) \in \mathbb{R}^{2}
$$

Explicitly, it is given by

$$
\Phi(s, t)=\left(e^{s} \cos t,-e^{s} \sin t\right)
$$

By the inverse function Theorem, Φ is a local diffeomorphism from a neighbourhood of $(0,0)$ to a neighbourhood of $(1,0)$, and by construction, the tangent vector fields to the coordinates (s, t) are X and Y.

