Vector fields, derivations, tangent distributions, Frobenius Theorem

Exercise 1.

Fix $f \in \mathcal{C}^{\infty}(M)$. Then

$$Yf = \sum_{i=1}^{n} Y^{i} \frac{\partial f}{\partial x^{i}}$$

It follows from Leibniz rule that

$$X(Yf) = \sum_{j=1}^{n} X^{j} \left(\sum_{i=1}^{n} \frac{\partial Y^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}} + Y^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} \right)$$

and similarly,

$$Y(Xf) = \sum_{j=1}^{n} Y^{j} \left(\sum_{i=1}^{n} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}} + X^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} \right)$$

Since [X, Y]f = X(Yf) - Y(Xf), it follows that

$$[X,Y]f = \sum_{j=1}^{n} \left(\sum_{i=1}^{n} X^{j} \frac{\partial Y^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \frac{\partial f}{\partial x^{i}} \right)$$
$$+ \sum_{j=1}^{n} \left(\sum_{i=1}^{n} X^{j} Y^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} - Y^{j} X^{i} \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} \right)$$

Reordering the sum now yields

$$[X,Y] \cdot f = \sum_{i=1}^{n} \left(\sum_{j=1}^{n} X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}} \right) \frac{\partial f}{\partial x^{i}} + \sum_{i,j=1}^{n} X^{i} Y^{j} \left(\frac{\partial^{2} f}{\partial x^{i} \partial x^{j}} - \frac{\partial^{2} f}{\partial x^{j} \partial x^{i}} \right)$$

By Schwarz's Theorem, $\frac{\partial^2 f}{\partial x^i \partial x^j} = \frac{\partial^2 f}{\partial x^j \partial x^i}$, and the last term is zero. Hence

$$[X,Y] \cdot f = \left(\sum_{i=1}^{n} \left(\sum_{j=1}^{n} X^{j} \frac{\partial Y^{i}}{\partial x^{j}} - Y^{j} \frac{\partial X^{i}}{\partial x^{j}}\right) \frac{\partial}{\partial x^{i}}\right) f$$

The result follows.

Exercise 2.

1. Let $f \in \mathcal{C}^{\infty}(M)$. Then for any vector field Y, [X, fY] = 0. Developping this last equality, it follows that

$$\forall Y \in \Gamma(TM), \quad (X \cdot f)Y + f[X, Y] = 0$$

Since [X, Y] = 0, it follows that

$$\forall Y \in \Gamma(TM), \quad (X \cdot f)Y = 0$$

Fix $p \in M$ and let Y be a vector field such that $Y(p) \neq 0$. It follows that $((X \cdot f)Y)(p) = (X \cdot f)(p) \times Y(p) = 0$, and thus, $(X \cdot f)(p) = 0$. Therefore, $X \cdot f$ identically vanishes.

2. From 1., X acts on $\mathcal{C}^{\infty}(M)$ as the zero derivation. From the identification between vector fields and derivations, it follows that X = 0.

Exercise 3.

Watch out: in the papersheet, "Xf = 0" has to be understood as $\forall p \in M, X(p) \in \ker df(p)$. Of course, since f has range in N, Xf is not a function with range in \mathbb{R} but in TN.

1. Let X and Y be vector fields in $\mathcal{K}(f)$. Then Xf = Yf = 0, and it follows that X(Yf) = 0 and Y(Xf) = 0. Therefore

$$[X, Y]f = X(Yf) - Y(Xf) = 0 - 0 = 0$$

and $[X, Y] \in \mathcal{K}(f)$.

2. For $q \in M$, consider

$$\mathcal{K}_q(f) = \{X(q) \mid X \in \mathcal{K}(f)\} \subset T_q M$$

which is clearly a vector subspace of $T_q M$. Let $S_p = f^{-1}(\{f(p)\})$ be a level set of f. Since f is a submersion, S_p is a $(\dim M - \dim N) = (m - n)$ dimensional submanifold of M and moreover, for all $q \in S_p, T_q(S_p) = \ker df(q)$. It follows that

$$\forall q \in S_p, \quad \mathcal{K}_q(f) \subset T_q(S_p)$$

Let us show the converse inclusion. From the constant rank Theorem, there exists charts φ and ψ around p and f(p) respectively such that

$$\psi \circ f \circ \varphi^{-1}(x^1, \dots, x^m) = (x^1, \dots, x^n)$$

and the level sets of f are locally given in these coordinates by $(x^1, \ldots, x^n) = (c_1, \ldots, c_n)$. The vectors fields $(\frac{\partial}{\partial x^j})_{j \in \{n+1,\ldots,m\}}$ are thus in the kernel of df at each point of the coordinate patch. Multiplying them by a suitable bump function leads to m-n vector fields of $\mathcal{K}_q(f)$ that are linearly independent at q, and hence $\mathcal{K}_q(f)$ has dimension $\geq m-n$. It follows that $\mathcal{K}_q(f) = T_q(S_p)$. Finally, S_q are m-n dimensional submanifolds tangent to $\mathcal{K}(f)$, a m-n dimensional distribution. They are thus integral submanifold of that distribution.

Exercise 4.

1. In the canonical basis can = $\{e_1, e_2\}$ of $T_p \mathbb{R}^2 = \mathbb{R}^2$, the matrix $\operatorname{mat}_{\operatorname{can}}\{X(p), Y(p)\} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -y(p) & 0 \end{pmatrix}$ has rank two. The result follows.

2. Recall that $\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right] = \left[\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right] = 0$ and that the Lie bracket is alternating. Therefore,

$$[X,Y] = -[Y,X] = -\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial x} - y\frac{\partial}{\partial z}\right] = -\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial x}\right] + \left[\frac{\partial}{\partial y}, y\frac{\partial}{\partial z}\right]$$
$$= 0 + \left(\frac{\partial}{\partial y} \cdot y\right)\frac{\partial}{\partial z} + y\left[\frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right] = \frac{\partial}{\partial z}$$

It follows that $[X, Y] \notin \text{Span}\{X, Y\}$, and the distribution $\text{Span}\{X, Y\}$ is not stable under the Lie bracket. It is then non-integrable by Frobenius Theorem. 3. Let (φ_s) and (ψ_t) be the flows of X and Y respectively. By straightforward computations, we have

$$\varphi_s(x, y, z) = (x + s, y, -ys)$$

$$\psi_t(x, y, z) = (x, y + s, z)$$

Write $\mathcal{D} = \text{Span}\{X, Y\}$ be the distribution spanned by X and Y. Suppose by contradiction that \mathcal{D} is integrable and let S_0 be the integral submanifold of \mathcal{D} passing through (0, 0, 0). Then $T_0S_0 = \mathcal{D}_0 = \text{Span}\{X(0), Y(0)\} = \text{Span}\{(1, 0, 0); (0, 1, 0)\}.$

Since X and Y lie in \mathcal{D} , the integral curves of X and Y that crosses S_0 stay in S_0 , and thus, for any $a, b, c, d \in \mathbb{R}$,

$$\psi_a \circ \varphi_b \circ \psi_c \circ \varphi_d(0,0,0) \in S_0$$

By 2., we have

$$\psi_a \circ \varphi_b \circ \psi_c \circ \varphi_d(0, 0, 0) = \psi_a \circ \varphi_b \circ \psi_c(d, 0, 0)$$
$$= \psi_a \circ \varphi_b(d, c, 0)$$
$$= \psi_a(d + b, c, -cb)$$
$$= (d + b, a + c, -cb)$$

Therefore, the path

$$\sigma(t) = \psi_{-t} \circ \varphi_{-t} \circ \psi_t \circ \varphi_t(0,0,0) = (0,0,t^2)$$

lies in S_0 . Unluckily, its derivative at zero vanishes and σ does not lead to a contradiction. Here is the trick: consider

$$\forall t \ge 0, \quad \gamma(t) = \sigma(\sqrt{t}) = (0, 0, t)$$

Then γ is smooth on \mathbb{R}_+ and $\gamma'(0) = (0, 0, 1)$, and $\gamma'(0) \notin \text{Span}\{X(0), Y(0)\}$, which is a contradiction.

Remarks. (a) If you don't like considering smooth paths on \mathbb{R}_+ and rather want it to be defined on neighbourhood of the origin, consider

$$\gamma(t) = \begin{cases} \sigma(\sqrt{t}) & \text{if } t \ge 0, \\ \sigma(\sqrt{-t}) & \text{if } t \le 0 \end{cases}$$

which is smooth and does the job.

(b) The trick we used is in fact a particular case of the following general statement: let X and Y be two vector fields on M and φ^X, φ^Y be their flows. Then

$$\frac{\mathrm{d}}{\mathrm{d}t}\bigg|_{t=0} \left(\varphi_{-\sqrt{t}}^{Y} \circ \varphi_{-\sqrt{t}}^{X} \circ \varphi_{\sqrt{t}}^{Y} \circ \varphi_{\sqrt{t}}^{X}\right) = [X, Y]$$

meaning that [X, Y] measures the failure of the path "following X, then Y, then -X, then -Y" to return to its starting point. Choosing t instead of \sqrt{t} in this path forces to differentiate one more time to recover (twice) the Lie bracket:

$$\frac{1}{2} \left. \frac{\mathrm{d}^2}{\mathrm{d}t^2} \right|_{t=0} \left(\varphi_{-t}^Y \circ \varphi_{-t}^X \circ \varphi_t^Y \circ \varphi_t^X \right) = [X, Y]$$

Exercise 5.

Consider the two following vector fields $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y}$ and $Y = x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x}$ on \mathbb{R}^2 .

.....

1. By the formula of Exercise 1. with $X^1 = x$, $X^2 = y$, $Y^1 = -y$ and $Y^2 = x$, we find

$$[X,Y] = \left(x\frac{\partial(-y)}{\partial x} - (-y)\frac{\partial x}{\partial x} + y\frac{\partial(-y)}{\partial y} - x\frac{\partial x}{\partial y}\right)\frac{\partial}{\partial x} + \left(x\frac{\partial x}{\partial x} - (-y)\frac{\partial y}{\partial x} + y\frac{\partial x}{\partial y} - x\frac{\partial y}{\partial y}\right)\frac{\partial}{\partial y} = \left(0 + y - y - 0\right)\frac{\partial}{\partial x} + \left(x + 0 + 0 - x\right)\frac{\partial}{\partial y} = 0$$

Let p = (1,0). Then $\det(X(p), Y(p)) = \det\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) = 1$, and in a neighbourhood of p, $\{X, Y\}$ are pointwisely linearly independent. Since [X, Y] = 0, from Frobenius Theorem, there exists a neighbourhood of p on which X and Y are tangent to coordinates, that is there exists local coordinates (s,t) near p such that $X = \frac{\partial}{\partial s}$ and $Y = \frac{\partial}{\partial t}$.

2. Let $\gamma: 0 \in I \to \mathbb{R}$ be a smooth curve, and write $\gamma = (x, y)$ and $\gamma' = x' \frac{\partial}{\partial x} + y' \frac{\partial}{\partial y}$. Then

$$\begin{split} \gamma' &= X(\gamma) \iff x' \frac{\partial}{\partial x} + y' \frac{\partial}{\partial y} = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \\ \iff \begin{cases} x' &= x, \\ y' &= y \\ \iff \forall s \in I, \quad \gamma(s) = (x(0)e^s, y(0)e^s) \end{split}$$

It follows that the flow of X is given by

$$\forall s \in \mathbb{R}, \forall (x, y) \in \mathbb{R}^2, \quad \varphi_s^X(x, y) = e^s(x, y)$$

Similarly,

$$\gamma' = Y(\gamma) \iff \begin{cases} x' = -y \\ y' = x \end{cases} \iff \begin{pmatrix} x \\ y \end{pmatrix}' = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

Solving this last differential equation shows that the flow of Y is given by

$$\forall t \in \mathbb{R}, \forall (x, y) \in \mathbb{R}^2, \quad \varphi_t^Y(x, y) = ((\cos t)x + (\sin t)y, -(\sin t)x + (\cos t)y)$$

3. Consider the map

$$\Phi \colon (s,t) \in \mathbb{R}^2 \mapsto \varphi_s^X \circ \varphi_t^Y \big((1,0) \big) \in \mathbb{R}^2$$

Explicitly, it is given by

$$\Phi(s,t) = \left(e^s \cos t, -e^s \sin t\right)$$

By the inverse function Theorem, Φ is a local diffeomorphism from a neighbourhood of (0,0) to a neighbourhood of (1,0), and by construction, the tangent vector fields to the coordinates (s,t) are X and Y.