Differential forms, orientability, integration on manifolds

Exercise 1.

- 1. Show that a parallelizable manifold is orientable.
- 2. Show that the product of two orientable manifolds is orientable.
- 3. Show that the tangent bundle TM of a manifold M is an orientable manifold.

Exercise 2.

Let $n \in \mathbb{N}$.

- 1. Show that the sphere \mathbb{S}^n is orientable. Is the diffeomorphism $x \mapsto -x$ orientation preserving?
- 2. Is the projective space $\mathbb{R}P^n$ orientable?

Exercise 3.

Let $X = x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z}$ and $\omega = dx \wedge dy \wedge dz$ on \mathbb{R}^3 . Define α by

$$\forall Y, Z \in \Gamma(\mathbb{R}^3), \quad \alpha(Y, Z) = \frac{1}{3}\omega(X, Y, Z)$$

- 1. Show that α is a differential form of degree 2. Give an expression of α in the basis $\{dx \wedge dy, dy \wedge dz, dz \wedge dx\}.$
- 2. Does there exist $\beta \in \Omega^1(\mathbb{R}^3)$ such that $\alpha = d\beta$?
- 3. Let B be the open unit ball of \mathbb{R}^3 . Compute $\int_B d\alpha$.
- 4. Let $i: \mathbb{S}^2 \to \mathbb{R}^3$ be the inclusion of the unit sphere. Compute $\int_{\mathbb{S}^2} i^* \alpha$.

Exercise 4.

- 1. Let $f: \mathbb{R} \to \mathbb{R}^*_+$ be defined as $f(t) = e^t$. Compute $f^*(\frac{\mathrm{d}x}{r})$.
- 2. Let $f: (0, +\infty) \times (0, 2\pi) \to \mathbb{R}^2 \setminus \{0\}$ be defined as $f(r, \theta) = (r \cos \theta, r \sin \theta)$. Compute $f^*(\mathrm{d}x \wedge \mathrm{d}y)$.

Exercise 5.

Let $M = \mathbb{R}^2 \setminus \{0\}$. Consider the differential form of degree 1 $\alpha = -\frac{y}{x^2+y^2} dx + \frac{x}{x^2+y^2} dy$.

- 1. Compute $d\alpha$.
- 2. Let C_0 be the circle centered at the origin of radius 1 and C_1 be the circle centered at (3,0) of radius 2. Let i_0 and i_1 be the respective inclusion maps. Compute $\int_{C_0} i_0^* \alpha$ and $\int_{C_1} i_1^* \alpha$.