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Introduction

In the field of decision problems, the theory of linear arithmetic is composed by
linear inequialities. Algorithms to solve linear arithmetic problems over rational
numbers have been proposed [4], and formalized in Isabelle – a proof assistant
– in order to have a verified implementation [9, 1, 10]. When some variables of
the problem are required to be integral, we talk about integer or mixed-integer
linear problems. The goal of this internship is to extend a verified solver for
linear arithmetic to mixed-integer linear arithmetic.

In section 1, I will introduce the background for this work. In section 2, I
will present an algorithm to solve mixed-integer linear problems and the math-
ematics required to proved its correctness. In section 3, I will describe the
formalization of this algorithm in Isabelle. Finally, I will describe what remains
to be done to complete this work4.

1 Background

1.1 The Isabelle Proof Assistant

Isabelle [7] is a generic proof assistant, and Isabelle/HOL (HOL is an abbrevi-
ation for Higher Order Logic) is a specialization that is generally used.

The features of Isabelle include to use of mathematical symbols to make
the proof more readable and the use of automatic provers. Finally, Isabelle
is generally used with the language Isar that allow us to conduct proofs in a
structured way.

For example, here is a proof 1 of the Cantor Theorem – the fact that there
is no surjection from a set A to its powerset – with Isabelle and Isar:

lemma "¬ surj (f :: ’a ⇒ ’a set)"

proof
assume "surj f"

hence "∃ a. {x. x /∈ f x} = f a" by blast

thus False by auto

qed

The outline of the proof is the following:

• We assume that there exists a surjective function f from A to its powerset.

• We deduce that there exists an element a of A such that

f(a) = {x | x /∈ f(x)}

• But from the previous fact we can deduce that both a ∈ f(a) and a /∈ f(a)
which is a contradiction (represented by the proposition False).

1adapted from [6, Section 5.1]
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The tactics blast and auto are used to prove each of these facts. These two
tactics rely upon automatic provers.

It is also possible to define objects in the functional programming way in
Isabelle/HOL and to export code. This way, it is possible to have a certified
implementation of an algorithm by writing it in Isabelle/HOL, proving its cor-
rectness and exporting its code.

1.2 Linear Arithmetic

Let a0, ..., an−1, b be real constants, x0, ..., xn−1 be variables and ./ ∈ {6,>, <
,>} be a comparison operator. With these parameters, we can define a linear
constraint (or atom) c: ∑

i<n

aixi ./ b

An assignment v is a function that maps variables to real numbers. We say
that the assignment v satisfies the constraint c (or v � c) if∑

i<n

aiv(xi) ./ b

These formulas define a theory that we will call linear arithmetic. If C is a
finite set of linear constraints, we will use the notation v � C for ∀c ∈ C. v � c,
and say that the assignment c satisfies the set of constraints C. The problem
of finding such an assignment is called a linear problem.

Note that we are only interested in the decision problem – checking that a
set of constraints admits a satisfying assignment – not the optimization problem
– maximizing an objective function while satisfying the constraints –.

The other theory we will study is the theory of mixed-integer linear arith-
metic. A mixed-integer linear problem (MILP) consists of a linear problem
where some variables are required to be integral. We will only consider MILPs
with only rational coefficients (or equivalently with integral coefficients). Fur-
thermore, if all the variables are required to be integer, the problem is called an
integer linear problem (ILP).

For example, here is a MILP:{
3x+ y > 3
4y − x < 2

∣∣∣∣x ∈ Z

More formally, if S in a set of linear constraints, I is the set of variables that
are required to be integral and v is a valuation, I will use the notation

v �I S

for v � S and ∀xi ∈ I. v(xi) ∈ Z. We will say that the assignment v is a
solution to the MILP characterized by the set of constraints C and the set of
integral variables I.
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Remark: Linear problems with rational coefficients are polynomial [8, Sec-
tion 13, 18], while ILPs are NP-complete. The NP-hardness of ILPs (and there-
fore MILPs) can be shown by reduction from SAT to 0-1 ILPs. The inclusion in
the class NP is more involved to prove, but a sketch of proof will be given later.
Intuitively, it suggests that it is harder to solve MILPs efficiently than linear
problems. Nevertheless, we will use simplex-based algorithms (which are not
known to be polynomial in the worst case) to solve linear problems. More gen-
erally, we are more interested by algorithms efficient in practice than algorithms
optimal in the worst-case.

1.3 SMT Solving

Let T be a quantifier-free theory. A T -solver is an algorithm that checks if
a finite set of atoms of T can be satisfied. For linear or mixed-integer linear
arithmetic, atoms are linear constraints and the work of a T -solver consists in
deciding whether there exists an assignment that satisfies a set of constraints.

Let Φ be a boolean formula of atoms of the theory T . We may want to find
an assignment v that satisfies Φ, or to know if no such assignment exists. This
problem is called Satisfiability Modulo Theory (SMT).

For example, an SMT instance based on linear arithmetic would be:

(2x+ y > 0 ∨ z 6 1) ∧ ¬(x > 0)

An efficient procedure to solve SMT problems is DPLL(T ) [5, Section 3.2],
which works as a combination of a SAT-solver and a T -solver. Here is a quick
description of the procedure 2:

• Replace every atom by a SAT variable to obtain a SAT formula Φ. Run a
SAT-solver to find a valuation of each variable to 0 or 1 that satisfies this
SAT-formula.

• From this affectation, derive a conjunction of atoms. Run a T -solver to
find an assignment that satisfies this conjunction.

• If an assignment v is found, return v

• If no assignment is found, from this conjunction find a contradicting subset
of atoms. From this subset, derive a new constraint, add it to the SAT-
formula Φ, and go to the first step.

To work efficiently in combination with the SAT-solver, we may assume that
the T -solver implements the following interface:

• Assert(α): Asserts the atom α. It is added to the set of T -atoms that
should be satisfied.

2An example of an execution of DPLL(T ) with an incremental interface is given in appendix
A
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• Check(): Runs a T -solver to find an assignment to the set of asserted
atoms. If such an assignment is found, returns it. Otherwise, returns a
subset of inconsistent asserted atoms.

• Checkpoint(): Returns a checkpoint c that contains all the necessary
information to backtrack to the current state.

• Backtrack(c): Backtracks to the state represented by the checkpoint c.

We will call such an interface an incremental interface as it allows us to
add or remove constraints without having to do all the computation from the
beginning. A similar description can be found in [4] and [10, 1].

Dutertre and de Moura have proposed a Simplex-based solver with an incre-
mental interface to solve linear arithmetic problems [4]. A partial version of this
algorithm has been formalized in Isabelle by Spasić and Marić [9] and extended
to use the incremental interface by Ralph Bottesch, Max Haslbeck and René
Thiemann [10, 1]. The ultimate goal of this internship is to extend the previous
work to mixed-integer linear arithmetic.

2 Resolution of Mixed-Integer Linear Problems

2.1 The Branch-and-Bound Algorithm

To solve ILPs and MILPs, we can use the branch-and-bound algorithm. [5,
Section 5.3]. Though it is generally stated as be stated as an optimization
algorithm, we will focus on its formulation for decision problems.

Let S and I be respectively the set of linear constraints and the set of integral
variables of our problem. The principle of the algorithm is the following:

• Search a valuation v such that v � S. If no solution exists, return
Unsatisfiable.

• If for all xi ∈ I, v(xi) ∈ Z, return v.

• If there exists a variable xi ∈ I such that v(xi) /∈ Z, we can remark that
for all solutions of this MILP, either the constraint xi 6 bv(xi)c or the
constraint xi > dv(xi)e is satisfied.

We can then try to split our initial problem into two subproblems (this is
the branching step):

– Recursively call branch-and-bound on the constraints set

S ∪ {xi 6 bv(xi)c}

If a solution v′ is found, return it.

– Recursively call branch-and-bound on the constraints set

S ∪ {xi > dv(xi)e}

If a solution v′ is found, return it.
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• If after the branching step no solution is found, return Unsatisfiable.

The problem with this formulation is that the algorithm may loop. For
example, let us examine the following ILP:{

3x− 3y > 1
3x− 3y 6 2

∣∣∣∣x, y ∈ Z (1)

This problem has no solution, and its relaxation – that is the problem com-
posed by the linear inequalities, without the integrality constraints – is un-
bounded, as shown in figure 2.1. Here is a possible execution of the branch-and-
bound algorithm on this problem:

• Obtain the solution ( 1
3 , 0). The variable x is not integral. Try to solve the

problem with the extra constaint x > 1.

• Obtain the solution (1, 13 ). The variable y is not integral. Try to solve the
new problem with the extra constraint y > 1.

• Obtain the solution (1 + 1
3 , 1). The variable x is not integral. Try to solve

the problem with the extra constaint x > 2.

• Obtain the solution (2, 1 + 1
3 ). The variable y is not integral. Try to solve

the new problem with the extra constraint y > 2.

• etc...

x

y

Figure 1: Solutions of the problem 1. The solutions of the relaxation lie in the
red area.
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In this case, the problem is unbounded and makes the branch-and-bound
algorithm loop. This is why we will try to add to the original problem S
constraints of the form

−B 6 xi 6 B
for all variables xi to obtain a bounded problem S′. Moreover, we want to

choose the bound B such that the bounded problem S′ is satisfiable if and only
if the problem S is satisfiable 3. This is what we are going to see in the next
section.

2.2 Obtaining Bounds for ILPs and MILPs

First of all, let us remark that if a linear problem contains only large inequalities,
it could be put in the form:

a11x1 + ... + a1nxn 6 b1
. . .

ap1x1 + ... + apnxn 6 bp

or in the matrix form Ax 6 b with

A = (aij)16i6n
16j6p

and b = (bj)16j6p. We identify a valuation of n variables to a vector of
dimension n.

Now, we are going to give the outline of a proof that MILPs admit a solution
if and only if they admit a solution of small size. In what follows, we will focus
on ILPs, but the result can be easily extended to MILPs. Most of the definitions
and results can be found in Schrijver’s book [8, Sections 7 and 16].

Definition 1 (Finitely Generated Cone). A set of points C is a finitely gener-
ated cone if and only if C = cone {x0, ..., xn−1} where

cone {x0, ..., xn−1} =

{
n−1∑
i=0

λixi | λ0, ..., λn−1 > 0

}
for some x0, ..., xn−1.

Definition 2 (Polyhedral Cone). A set of points C is a polyhedral cone if and
only if C = {x | Ax 6 0} for some matrix A.

Theorem 1 (Farkas-Minkowsky-Weyl Theorem). A set C is a finitely generated
cone if and only if it is a polyhedral cone.

Definition 3 (Polyhedron). A set of points P is a convex polyhedron if and
only if

P = {x | Ax 6 b}
for some matrix A and vector b.

3We will call solutions of such a bounded problem solutions of small size.
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Note that a polyhedron could be interpreted as the set of solutions of a linear
problem with only non-strict inequalities.

Definition 4 (Polytope). A set of points P is a polytope if and only if it is
the convex hull of a finite set C = {x0, ..., xm−1}, i.e

P =

{
m−1∑
i=0

λixi | λ0, ..., λm−1 > 0 ∧
m−1∑
i=0

λi = 1

}

We will also use the following notation: P = hull C.

Corollary 1 (Decomposition Theorem for Polyhedra). A set of points P is a
polyhedron if and only if there exists a polytope Q and a finitely generated cone
C such that P = Q+ C.

To illustrate this theorem, let us take the following problem:
−6x + 2y 6 1

3x + 2y > 11
2y > 1

2x − 4y 6 5

(2)

According to the theorems, the set of the solutions of this problem is a
polyhedron. The decomposition of this polyhedron is represented in figure 2.2.

x

y

u

v
u

v

Figure 2: Decomposition of the polyhedron defined by the problem 2. The
polyhedron is represented by the red and blue areas. As we can see, it is the
sum of a polytope (the red triangle) and a cone (cone {u, v}).
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Corollary 2. P is a polytope if and only if P is a bounded polyhedron.

Definition 5 (Integer Hull). Given a polyhedron P , the integer hull PI is the
convex hull of the integral vectors of P , i.e PI = hull(P ∩ Zn}.

Theorem 2 (Meyer, 1974). For any rational polyhedron P , PI is a polyhedron.
Moreover, if P = Q + C with Q a polytope and C a cone, then there exists a
polytope Q′ such that PI = Q′ + C.

Proof. Let us decompose P into P = Q+C where C = cone {y0, ..., ys−1}. All
the yi’s are rational vectors. Without loss of generality we can assume that the
yi’s are integral.

Let us define

D =

{
s−1∑
i=0

µiyi | 0 6 µi 6 1

}
and show that

P = (Q+D)I + C

The easy inclusion is the following:

(Q+D)I + C ⊆ PI + C = PI + CI ⊆ (P + C)I = PI

To prove the other inclusion, let us introduce x ∈ P . There exists q ∈ Q and
λ0, ..., λs−1 6 0 such that:

x = q +
∑
i<s

λiyi

But for every i, bλicyi is an integral vector, so

x−
∑
i<s

bλicyi = q +
∑
i<s

(λi − bλic)yi

is integral, and as
∑

i<s(λi − bλic)yi is contained in D:

x−
∑
i<s

bλicyi ∈ (Q+D)I

Finally:
x ∈ (Q+D)I + C

(Q + D) is bounded, so (Q + D)I is the convex hull of a finite set, it is a
polytope. If we take Q′ = (Q+D)I , we have the result.

A graphical representation of this proof is given in figure 2.2, with again the
polytope defined by the problem 2. As we can see, (Q+D)I +C (the green and
yellow areas) is exactly the integer hull of the polyhedron.
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x

y

Figure 3: Decomposition of the integer hull of the polytope defined by the
problem 2. The boundary of the set (Q+D) is represented in red and (Q+D)I
is represented in green.

Remark: Using the notations of the previous proof:

P ∩ Zn 6= ∅ ⇐⇒ PI 6= ∅ ⇐⇒ (Q+D)I 6= ∅ ⇐⇒ (Q+D) ∩ Zn 6= ∅

Hence, there is an integral point in the polyhedron P if and only if there is
an integral point in the (bounded) polytope (Q + D). What remains to do is
to find a bound B that depends on the parameters of the problem. To do so, a
solution is to generalize the previous theorems to incorporate bounds. We will
use the notation Ja, bK for the set of integers in the interval [a, b].

Theorem 3 (Generalized Farkas-Minkowsky-Weyl Theorem). A set C is a
finitely generated cone if and only if it is a polyhedral cone.

Moreover, if C = {x | Ax 6 0} and A ∈ J−m,mKp×n with m > 1, there
exists a finite set Y such that Y ⊆ J−B,BKn and

C = cone Y

where
B = (n− 1)! ·mn−1

Corollary 3 (Generalized Decomposition Theorem). A set of points P is a
polyhedron if and only if there exists a polytope Q and a finitely generated cone
C such that P = Q+ C.
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Moreover, if P = {x | Ax 6 b} with A ∈ J−m,mKp×n, b ∈ J−m,mKp, and
m > 1, then there exist finite sets Q ⊆ [−B,B] and X ⊆ J−B,BK such that

P = hull Q+ cone X

with
B = n! ·mn

We finally have the desired result:

Corollary 4 (Existence of small solutions for ILPs). If P = {x | Ax 6 b} with
A ∈ J−m,mKp×n, b ∈ J−m,mKp and m > 1, then

P ∩ Zn 6= ∅ ⇐⇒ P ∩ J−B,BKn 6= ∅

where
B = (n+ 1)! ·mn

With the same outline of proof, we can obtain a more general result that
encompasses MILPs and strict inequalities.

Theorem 4 (Existence of small solutions for MILPs). If I is a subset of J1, nK
and

P = {x | Ax 6 b ∧A′x < b′}

with A ∈ J−m,mKp×n, b ∈ J−m,mKp, A′ ∈ J−m,mKp
′×n, b′ ∈ J−m,mKp

′

and m > 1, then

{x ∈ P | ∀xi ∈ I. xi ∈ Z} 6= ∅ ⇐⇒ {x ∈ P | ∀xi ∈ I. xi ∈ J−B,BK} 6= ∅

where
B = (n+ 1)! ·mn

Remark: If we take the previously defined bound B:

logB ≈ n log n+ n logm

Hence, the number of bits necessary to represent numbers in the interval
J−B,BK is polynomial in the size of the input. Therefore, a small solution v to
an ILP can be used as a certificate of polynomial size, so ILPs are NP.
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3 Formalization in Isabelle

As we have presented a method to solve MILPs, we can focus on its formal-
ization, which has been the main part of the work during this internship. It
consisted in the formalization of Schrijver results concerning linear inequali-
ties as described in section 3.1), then in the implementation and the proof of
correction of the branch-and-bound algorithm as described in section 3.2.

3.1 Formalization of Schrijver’s Results concerning Linear
Inequalities

This part is about the formalization of the results from Schijver’s book described
in section 2.2 in Isabelle. Also, other results including Farkas’ lemma and the
Carathéodory’s theorem have been formalized. In total, 5551 lines of proofs
were written. The work was published in the Archive for Formal Proofs (AFP),
a collection of proof libraries in Isabelle [2]. This was done in collaboration with
René Thiemann and Ralph Bottesch:

• René included bounds for the various operations that are performed when
executing the decomposition theorem. He also verified Theorem 2 of
Meyer.

• Ralph and René formalized the fundamental theorem of linear inequalities.

• I mainly focused on the demonstration of the Farkas-Minkowsky-Weyl and
the decomposition theorem.

The formalization follows the outline given in section 2.2. Several theorems,
for example the Farkas-Minkowsky-Weyl theorem, have a general formulation:

lemma farkas_minkowsky_weyl_theorem:

"(∃ X. X ⊆ carrier_vec n ∧ finite X ∧ P = cone X)

←→ (∃ A nr. A ∈ carrier_mat nr n ∧ P = polyhedral_cone A)"

and particular formulations including bounds:

lemma farkas_minkowsky_weyl_theorem_2:

assumes A: "A ∈ carrier_mat nr n"

shows "∃ X. X ⊆ carrier_vec n ∧ finite X

∧ polyhedral_cone A = cone X

∧ (A ∈ ZZm ∩ Bounded_mat Bnd −→
X ⊆ ZZv ∩ Bounded_vec (det_bound (n-1) (max 1 Bnd)))"

where the following Isabelle notations are used:

• carrier vec n is the set of vectors Kn where K is a field.

• carrier mat nr nc is the set of matrices Knr×nc .

• Zv is the set of integral vectors.
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• Zm is the set of integral matrices.

• Bounded vecB is the set of vectors with coefficients in the interval [−B,B].

• Bounded mat B is the set of matrices with coefficients in the interval
[−B,B].

• det bound n m is n! ·mn.

A difficulty I was confronted with is the variety of definitions for linear
combinations in Isabelle. The standard definition is

lincomb c V =
∑
v∈V

c(v) · v

where V is a set of vectors and c is a map from vectors to scalars.
A problem that can occur is the distributivity when we multiply this sum

by a matrix. Indeed, it is clear that

A
∑
i

λixi =
∑
i

λi ·Axi.

But this equality cannot be simply stated with the operator lincomb Indeed,
it is possible that there exist two vectors x0 and x1 such that Ax0 = Ax1. If we
want to express

∑
i λi ·Axi using lincomb, then the scalar coefficient associated

to Ax0 is neither c(x0) nor c(x1) but
∑

x.Ax=Ax0
c(x), which is more complicated

to work with. More generally, this problem occurs every time we want to prove
the equality

f(
∑
i

λixi) =
∑
i

λif(xi)

where f is a linear map.
A solution to tackle this problem is to use linear combinations over lists,

defined this way:

lincomb list c Vs =

l−1∑
i=0

c(i) · vi

where Vs = [v0, ..., vl−1] is a list of vectors and c is a function mapping
integers to scalars.

This way, the distributivity of a linear map to a linear combination can be
expressed in a direct manner. To use the advantages of both definitions, we
usually define our concepts in two manners: one using sets and the other using
lists. For example, here is how non-negative linear combinations are defined,
for sets and for lists:

definition "nonneg_lincomb c Vs b =

(lincomb c Vs = b ∧ c ‘ Vs ⊆ {x. x ≥ 0})"

definition "nonneg_lincomb_list c Vs b =

(lincomb_list c Vs = b ∧ (∀ i < length Vs. c i ≥ 0))"
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where c ‘ Vs = {c(x) | x ∈ Vs} is the image of the set Vs under c.
We can then use this definition to define convex combinations:

definition "convex_lincomb c Vs b =

(nonneg_lincomb c Vs b ∧ sum c Vs = 1)"

definition "convex_lincomb_list c Vs b =

(nonneg_lincomb_list c Vs b ∧ sum c {0..<length Vs} = 1)"

and then define convex hulls:

definition "convex_hull Vs =

{x. ∃ Ws c. finite Ws ∧ Ws ⊆ Vs ∧ convex_lincomb c Ws x}"

definition "convex_hull_list Vs =

{x. ∃ c. convex_lincomb_list c Vs x}"

Finally, we can show that these two definitions are equivalent:

lemma finite_convex_hull_iff_convex_hull_list:

assumes Vs: "Vs ⊆ carrier_vec n"

and id’: "Vs = set Vsl’"

shows "convex_hull Vs = convex_hull_list Vsl’"

3.2 Formalization of a Branch-and-Bound Algorithm

The next part is the formalization of a branch-and-bound algorithm, as de-
scribed in the section 2.1. The idea was to state and prove the correctness of a
simple algorithm, without any optimization.

I first developped a function branch and bound core that takes four argu-
ments:

• A list of linear constraints cs.

• A list of variables Is required to be integral.

• A function lb mapping variables of Is to integral lower bounds.

• A function ub mapping variables of Is to integral upper bounds.

It returns either Some v is a solution v within the bounds is found, or None. The
code of this function can be found in appendix B

The goal of the arguments lb and ub is to bound the problem. This way,
I ensure that this function always terminates. To do so, a convenient way in
Isabelle is to use a measure. It is function mapping the arguments of the function
f to natural numbers. If we prove that at each recursive call the measure strictly
decreases, then an infinite sequence of recursive calls cannot happen and the
function always terminates. The measure I used is the following:

max

(
0,
∑
xi∈Is

(ub(xi)− lb(xi))

)
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Indeed, if there is a rational solution v that is not a mixed-integer solution,
then

∑
(ub(xi)−lb(xi)) > 0. Furthermore, if v(xi) /∈ Z, if we do a recursive call

with ub(xi) substituted by bv(xi)c, as v(xi) 6 ub(xi), bv(xi)c < ub(xi) so the
measure strictly decreases at the recursive calls. The same happens if lb(xi) is
substituted by dv(xi)e.

Once the termination proved, I proved correctness properties, the first is
that if a valuation is found, it satisfies the MILP:

lemma branch_and_bound_core_sat:

"branch_and_bound_core cs Is lb ub = Some v =⇒
v |=mcs (set cs, set Is)"

and the other is that if no valuation is found, then there is no valuation v

that satisfies the MILP and such that the valuations of the integral variables
are bounded by lb and ub:

lemma branch_and_bound_core_unsat:

"branch_and_bound_core c Is lb ub = None =⇒
∀ i ∈ set Is. of_int (lb i) ≤ v i ∧ v i ≤ of_int (ub i) =⇒
¬ (v |=mcs (set c, set Is))"

where the Isabelle notation v �mcs (S, I) is equivalent to notation v �I S.
The goal now is to use the theorem 4 to have a formalized complete solver for

MILPs. The problem is that linear constraints are coded with a datastructure
called linear polynomials that should be converted to the form of vectors and
matrices to use the theorem.

To do so, linear constraints are converted to the type Le Constraint that is
more practical to use, as the description of different inequalities uses a sum-type
with only two constructors instead of ten for the type constraint. Indeed, I
first tried to express the conversion using directly the standard type, and when
I switched to Le Constraint’s, I considerably simplified the proofs (around 80
lines of proof were saved).

Afterwards, some work to convert rational constraints to integral constaints
is needed. I use it to define a function compute bound that maps a list of
constraints to the desired bound. I prove that:

lemma compute_bound:

assumes "v |=mcs (set cs, I)"

shows "∃ v. v |=mcs (set cs, I) ∧
(∀ i ∈ I. |v i | ≤ of_int (compute_bound cs))"

Finally, I am able to state a complete MILP-solver based on the branch-and-
bound algorithm:

definition branch_and_bound :: "constraint list ⇒ var list ⇒ rat

valuation option"

where "branch_and_bound cs Is = (

let Bnd = compute_bound cs in

branch_and_bound_core cs Is (λ _. -Bnd) (λ _. Bnd))"
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and to prove its correction:

lemma branch_and_bound_sat:

"branch_and_bound cs Is = Some v =⇒ v |=mcs (set cs, set Is)"

lemma branch_and_bound_unsat:

assumes "branch_and_bound cs Is = None"

shows "¬ v |=mcs (set cs, set Is)"

In total, the formalization of this algorithm takes 1062 lines of code. It can
be consulted in at: https://github.com/Cemoixerestre/MILP-Isabelle.

4 Future Work

Even if I have written and proved the correctness of a branch-and-bound algo-
rithm, the work is not yet finished. Indeed, some tasks are needed before having
a more effective formalized MILP-solver with an incremental interface. Here is
the prospective work to complete the project.

4.1 Using the Incremental Interface

We can remark that for the branch-and-bound algorithm, at the branching step,
we only try to solve problems with a single constraint added to the original
problem. This is why it should be interesting to use the incremental interface
described in [10, 1]. In the current implementation, the computation (including
the preprocessing steps) is always made from scratch. The difficulty is that in
the current interface, the internal state is initialized with a (finite) list of con-
straints, and only constraints of this list can be asserted. To efficiently use the
incrementality, this interface should be upgraded so that arbitrary constraints
can be asserted.

4.2 Gomory Cuts

Suppose that a valuation v such that v � S has been found but that v 6 �IS. A
cut is a linear constraint c such that v does not satisfy c but for every mixed-
integer solution v′, v′ satisfies c. The goal of a cut is to prune non-integral
solutions of the problems while keeping the same integral solutions.

For example, let us take the following problem:{
2x + 10y > 5
−2x + 10y 6 5

(3)

(0, 12 ) is a non-integral solution. But we can remark that the following con-
straint

x >
5

2
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Figure 4: Solutions of the problem 3. The solutions to the problem satisfying
the cut lie in the dark blue area. The other solutions lie in the light blue area.

is satisfied by all of the solutions of the problem, but not by (0, 12 ). We will
call this constraint the cut. A graphical representation can be found in figure
4.2.

A general method to obtain cuts is described in [4, Section 4]. These cuts
are called Gomory cuts. The combination of the branch-and-bound algorithm
with cut generation is called branch-and-cut and it experimentally outerforms
the branch-and-bound algorithm [3].

We plan to incorporate Gomory cuts in this branch-and-bound algorithm,
and to prove its correction. As in the previous section, it would be useful to
extend the following interface so that arbitrary constraints (such as Gomory
cuts) could be asserted.

4.3 Finalization

As a least contribution, the branch-and-cut function should be extended to an
incremental interface similar to the existing interface for linear problems so that
it could be used efficiently by a SMT-solver.

Also, René has already started to export the code to measure its execution
time. It could be interesting to measure the difference obtained by each of the
previously described optimizations. Finally, it is planned to publish this work
in AFP.
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Conclusion

During this internship, I contributed to formalize in Isabelle results about linear
inequalities with René Thiemann and Ralph Bottesch. I used these results to
prove the termination of a branch-and-bound algorithm to solve MILPs. I also
proved the correctness of this algorithm.

This is the first step to extending a verified linear arithmetic solver to mixed-
integer linear arithmetic, with an incremental interface so that it could be
plugged in a SMT-solver.
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A Example: an Execution of DPLL(T )

Let us solve the following SMT-instance (based on linear arithmetic):

Φ ≡ (A ∨B ∨ C) ∧ (¬A ∨B) ∧ (¬A ∨ C ∨D) ∧ (¬C ∨D)

with
A ≡ (x + y > 3)
B ≡ (x 6 1)
C ≡ ( y 6 1)
D ≡ (y − x < 2)

using DPLL(T ). First, let us interpret Φ as a SAT-formula and find an
valuation that satisfies it. For example:

• Arbitrarily affect the variable A to 1. Assert the atom A. Get a checkpoint
c1.

• To solve the clause (¬A ∨ B), we must affect the variable B to 1. Assert
the atom B. Get a checkpoint c2.

• Affect the variable C to 1. Assert the atom C. Get a checkpoint c3.

• To solve the clause (¬C ∨D), we must affect the variable D to 1. Assert
the atom D. Get a checkpoint c4.

Now, we have found an valuation that satisfies Φ interpreted as a SAT-
formula. But we need to check if this valuation is compatible with an assignment
in the theory of linear arithmetic. It means that we need to find an assignment
to the conjunction A ∧B ∧ C ∧D, which is equivalent to the system:

x + y > 3 (A)
x 6 1 (B)

y 6 1 (C)
y − x < 2 (D)

But this system has no solution. The procedure Check() may retun that the
constraints A, B and C are mutually incompatible. As these three constraints
cannot be satisfied simultaneously, any assignment that satisfies Φ must violate
at least one of these constraints, so we can deduce that the clause (¬A∨¬B∨¬C)
is true. Instead of solving Φ, we will try to solve the formula

Φ′ = Φ ∧ (¬A ∨ ¬B ∨ ¬C)

We need to backtrack, but we can notice that we could bactrack just before
the choice to affect C to 1 was made. So let us backtrack to c2, where only the
variables A and B are affected.

• To solve the clause (¬A ∨ ¬B ∨ ¬C), we must affect the variable C to 0.
Assert the atom ¬C. Get a checkpoint c′3.
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• To solve the clause (¬A ∨ C ∨ D), we must affect the variable D to 1.
Assert the atom D. Get a checkpoint c′4.

Again, we have a valuation that satisfies Φ′ interpreted as a SAT-formula.
We have to find an assignment that satisfies the conjunction A ∧ B ∧ ¬C ∧D,
which is equivalent to the system:

x + y > 3 (A)
x 6 1 (B)

y > 1 (¬C)
y − x < 2 (D)

Check() may return the assignment (x = 1, y = 2). Finally, the formula Φ
is satisfiable, and (x = 1, y = 2) � Φ.

B Code of the Core of the Branch-and-Bound
Procedure

function branch_and_bound_core ::

"constraint list ⇒ var list ⇒ (var ⇒ int) ⇒ (var ⇒ int)

⇒ rat valuation option" where
"branch_and_bound_core cs Is lb ub =

(case simplex (cs @ bounds_to_constraints Is lb ub) of

Unsat _ ⇒ None

| Sat r ⇒ (let v = 〈r〉 in

case find (λ x. v x /∈ ZZ) Is of

None ⇒ Some v

| Some x ⇒ (

let lb’ = (λ y. if y = x then dv xe else lb y) in

let ub’ = (λ y. if y = x then bv xc else ub y) in

let sol = branch_and_bound_core cs Is lb ub’ in

if sol 6= None then sol

else branch_and_bound_core cs Is lb’ ub)))"

To understand the code:

• bounds to constraints Is lb ub returns a list containing the constraints
xi > lb xi and xi 6 ub xi for all elements xi of the list Is.

• “ @ ” is the symbol used for list concatenation. In this case,
cs @ bounds to constraints Is lb ub is the list composed by the con-
straints of cs and of bounds to constraints Is lb ub.

• The function simplex takes as arguments a list of constraints and returns
Unsat if there is no rational solution to this combination of constraints,
or Sat v such that 〈v〉 is a rational valuation satisfying these constraints.

• The function find takes as arguments a predicate f and a list Is and
returns Some xi where xi is an element of Is such that f xi is true, or
None if no such element exists.
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