LP 36 - Diffraction par des structures periodiques

8 juin 2019

Alexandre Klein & Julien Pollet

Niveau: L3

Commentaires du jury

- 1. 2017 : Il faut traiter la diffraction par des structures périodiques et pas se limiter aux interférences à N ondes.
- 2. 2015 : Il est important de bien mettre en évidence les différentes longueurs caractéristiques en jeu.
- 3. 2013, 2014, 2015 : Cette leçon donne souvent l'occasion de présenter les travaux de Bragg ; malheureusement, les ordres de grandeur dans différents domaines ne sont pas toujours maîtrisés.
- 4. 2004 : Il faut veiller au bon équilibre de l'exposé : il est inutile de faire l'étude de la diffraction de Fraunhofer qui doit être supposée connue et il est souhaitable de consacrer plus de cinq minutes à l'étude de la diffraction des rayons X par les cristaux par exemple.

Bibliographie

Pré-requis

- ➤ Interférence
- ➤ Diffraction de Fraunhofer
- > Notions de cristallographie

Table des matières

1	Introduction	2
2	Réseaux plan unidimensionnels	2
	2.1 Généralités	2
	2.2 Formule des réseaux	2
	2.3 Intensité diffracté	
	2.4 Pouvoir de résolution	
	2.5 Applications spectroscopie	2
3	Diffraction par une structure cristalline	2
	3.1 Rappels	2
	3.2 Formulations de Bragg (von Laue)	2
	3.3 Méthode de Debye-Scherrer	2
4	Conclusion et ouverture	2

1 Introduction

- 2 Réseaux plan unidimensionnels
- 2.1 Généralités
- 2.2 Formule des réseaux
- 2.3 Intensité diffracté

https://physique-chimie.discip.ac-caen.fr/spip.php?article445

- 2.4 Pouvoir de résolution
- 2.5 Applications spectroscopie
- 3 Diffraction par une structure cristalline
- 3.1 Rappels
- 3.2 Formulations de Bragg (von Laue)
- 3.3 Méthode de Debye-Scherrer
- 4 Conclusion et ouverture