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Did I make some mistakes?
Yes.

Did I only make mistakes?
Yes.

Bur did it all work out?

Kind of

— Samuel Barnett as Dirk Gcntly
Dirk Gently’s Holistic Detective Agency (Season 1,
Episode 6), Max Landis
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AVANT-PROPOS

Cette these se compose de deux parties, pensées pour pouvoir étre lues indépendem-
ment. Elles sont précédées d’une courte introduction rappelant le contexte général. Sila
deuxi¢me partie expose les résultats de travaux en cours, la premiére partie correspond
elle 2 un article intitul¢ « Rigidit¢ Local-Globale des réseaux de SLn (K) » [Esczo] (a pa-
raitre dans Annales de UInstitut Fourier). En dehors de I'introduction pour laquelle il y a
deux versions (frangaise et anglaise), le reste du manuscrit est rédigé en 1angue anglaise.
Signalons enfin qu'un index des notations se trouve en fin de manuscrit a toutes fins

uciles.

FOREWORD

This thesis is composed of two parts, thought and written to be read independently. A
short introduction recalling the general context precedes them. The second part exposes
results of ongoing work while the first corresponds to an article entitled “Local-to-Global
Rigidity of lattices in SL,(K)” [Esc20] (to appear in Annales de U'Institur Fourier). The
manuscript is written in english but the introduction has a french and an english version.
Finally let us mention the presence of a notations index at the end of this manuscript
for all practical purposes.
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RESUME

Ce manuscrit présente les travaux de recherche effectués durant ma these sur les ques-
tions de rigidit¢ Locale-Globale et les problemes d’¢quivalence mesurcée.

Apres une courte introduction, nous présentons dans la premicre partie les résuleacs
obtenus sur la LG-rigidit¢ et correspondant a I'article [Esc20].
Un graphe transitif § est dit Locale-Globale rigide §'il existe R > 0 tel que tout autre graphe
dont les boules de rayon R sont isométriques aux boules de rayon R de § est revétu
par §. Un example de tel graphe est donné par 'immeuble de Bruhat-Tits de PSL,, (K)
lorsque n > 4 ct Kest un corps local non-archimédien de caractéristique nulle. Dans
cette premicre partie nous ¢tendons cette proprice¢ de rigidité a une nouvelle classe de
graphes quasi—isométriques a I'immeuble parmi 1esquels ﬁgurent les réseaux sans-torsion
de SL,, (K).
La preuve est Poccasion de démontrer un résultat sur la structure locale des immeubles.
Nous montrons que si I'on y considere une PSL, (K)-orbite donnée, alors un sommet est
uniquement déterminé par les sommets voisins contenus dans cette orbite.

Dans notre deuxieme partie nous exposons les travaux (en cours) portant sur les ¢qui-
valences orbitales et mesurées.
On dit que deux groupes sont orbite equivalents si tous deux admettent une action sur
un méme espace de probabilité qui partagent les mémes orbites (2 ensemble de mesure
nulle pres). Notamment, le théoreme d’Ornstein et Weiss stipule que tout groupe infini
moyennable est orbite ¢quivalent au groups des entiers. Delabie, Koivisto, Le Maitre et
Tessera ont introduit une version quantitative de 1’équivalence orbitale et de son pen-
dant mesur¢ afin d’affiner cette relation au sein des groupes moyennables infinis. Ils
obtiennent en outre des obstructions a l'existence de telles équivnlences a I'aide du proﬁl
isopérimétrique.
Dans cette partic nous proposons de répondre au probleme inverse de la quantification
(trouver un groupe qui est orbite ou mesure ¢quivalent a un groupe prescrit avec quantifi-
cation prescrite) dans le cas du groupe des entiers ou du groupe d’allumeur de réverbere.
Pour ce faire nous nous basons sur les produits diagonaux introduits par Brieussel et
Zheng fournissant des groupes a profil isopériméerique preserit.

MOTS-CLES :  graphe, rigidit¢, immeubles, corps local, LG-rigidite, ¢quivalence or-
bitale, équivalence mesurée, couplage, produit diagonaux, profil isopérimétrique, pavage,
suite de Folner, approximations Sofiques.
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ABSTRACT

This manuscript presents the research work carried out during my thesis concerning
LG-rigidity problems and orbit equivalence questions.

After a short gcncral introduction, we expose in the first part of this manuscript
the results obtained on LG-rigidity and corresponding to the article [Esc2o]. A vertex-
transitive graph § is called Local-to-Global rigid if there exists R > 0 such that every other
graph whose balls of radius R are isometric to the balls of radius R in § is covered by §.
An example of such a graph is given by the Bruhat-Tits building of PSL.(K) withn >4
and K a non-Archimedean local field of characteristic zero. In this part we extend this
rigidity property to a class of graphs quasi-isometric to the building including torsion-
free lattices of SL,, (K).

The proof is the occasion to prove a result on the local structure of the building. We
show that if we fix a PSL,,(K)-orbit in it, then a vertex is unique]y determined by the
neighbouring vertices in this orbit.

The second part presents (ongoing) work on orbit and measure equivalence.

We say that two groups are orbit equivalent if they both admit an action on a same prob-
ability space that share the same orbits (up to a set of measure zero). In particu]ar the
Ornstein-Weiss theorem implies that all infinite amenable groups are orbit equivalent to
the group of integers. Delabie, Koivisto, Le Maitre and Tessera introduced a quantitative
version of orbit equivalence and its measured couterpart to refine this notion between
infinite amenable groups. They furthermore obtain obstructions to the existence of such
equivalences using the isoperimetric proﬁle.

In this part we offer to answer the inverse problem (find a group being orbit or mea-
sure equivnlent to a prescribed group with prescribed quantification) in the case of the
group of integers or of the lamplighter group. To do so we use the diagonal products
introduced by Brieussel and thng giving groups with prescribcd isoperimetric proﬁlc.

KEYWORDS: graph, rigidity, buiiding, local field, LG—rigidity, orbit cquivalence7 mea-
sure equivalence, couplings, diagonal products, isoperimetric profile, tiling, Folner se-

quence, Sofic approximation.
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INTRODUCTION (VERSION FRANCAISE)

Une des causes principales de la misére dans les
sciences est qu'elles se croient riches, le plus souvent
présomptueusement. Leur but nest pas d'ouvrir une
porte a la sagesse infinie mais de poser une limite a
lerreur infinie.

— Bertolt Brecht
La vie de Galilée

Si Pon vous donne un objet, ou disons plutdt un sujet, quel qu'il soit —une petite
cuillere, un ficus, un chaton— et que I'on vous demande d’¢cudier sa structure, plusicurs
manieres de procéder s'offrent a vous. Une premiere possibilite est Papproche macro-
scopique du sujet : on peut chercher a comprendre sa forme, sa couleur, son volume...
On considere Pobjet dans sa globalite. Un autre moyen de procéder serait d’¢tudier la
structure microscopique du sujet, en déterminant par exemple sa composition chimique,
sa structure moléculaire, son organisation cellulaire... On considere alors le sujet A une
¢chelle beaucoup plus locale. Bien que basces sur deux points de vues différents, ces deux
méthodes sont non-seulement Complémentaires, mais peuvent aussi s'entrecroiser : si l'on
sait que la forme d’un objet est bien définie, on peut en déduire que sa structure molé-
culaire est plus proche de celle d'un solide que d'un liquide; si I'on sait que les cellules du
sujet comportent une paroi cellulaire, on peut en déduire qu'il s'agit d’une plante verte
plucde que d’'un mammifere.

Entrecroiser ces approches est ce que nous proposons de faire dans cette these en
prenant des groupes pour sujets d'observation. A I'échelle macroscopique, nous cherchons
a décrire les groupes a travers leur géométrie « asymptotique » ou « a grande ¢chelle »;
a Iéchelle microscopique nous verrons que la donnée de Porganisation moléculaire sur
quelques millimetres cubes du groupe peut nous permettre de deéduire des informations
sur la forme de celui-ci. Ces deux points de vue et les outils auxquels nous faisons appel
inscrivent ainsi cette these a Iinterface des théories géométrique, ergodique et mesurce des
groupes.

La premiére de ces trois théories a pour objet I'étude des groupes via leurs actions
sur des espaces géométriques ou topologiques. En observant la maniere qu'a un groupe
d’agir sur les éléments de Pespace, de préserver ou non les distances, nous pouvons en
déduire des informations sur la structure algebrique du groupe. Dans le cas fort amene
des groupes de type fini on peut de plus voir le groupe lui-méme comme espace géomé-
trique en considérant son graphe de Cayley. Rappelons que si Sg est une partie génératrice
finie (symétrique) de G, le graphe de Cayley (G, Sg) est le graphe dont les sommets sont
les ¢léments de G et dont I'ensemble des arctes est donné par {(g,sg) | g € G,s € Sg}.



Un tel graphe est alors muni d’une distance naturelle fixant a 1 la longueur d’'une aréte.
A Paune de la précédente définition, le graphe de Cayley obtenu et la métrique cor-
14 . . ! ! . . ! !
respondantes dépendent donce fortement du choix de partie génératrice Sg considérce.
Néanmoins deux graphes de Cayley différents partagent certaines caractéristiques géo-
métriques. Plus exactement, deux graphes de Cayley ont méme géométrie a grande échelle;

c’est ce que 'on formalise a aide de la notion de quasi-isométrie.
Définition 1

Soient (X, dx) et (Y, dy) deux espaces métriques. On dit qu'une application f definie
de X vers Y est une quasi-isométrie s'il existe L = 1 et e > 0 tels que pour tout x,x" € X

Lax () — € < dy (), £06)) < Lde(x, ) + &,

ct pour tout y € Y il existe x € X tel que dy(y, f(x)) < L.

Dans l'un de ses travaux fondateurs de la théorie géométrique des groupes, Gromov
[GNR93] souleve le probleme de la classification des groupes selon leur géoméerie a
grande échelle —ou « 2 qunsi—isométrie prés ». La recherche et I'étude d’invariants de
quasi-isométrie tels que le type de croissance d’'un groupe ou le profil isopérimétrique
(voir Definition 6.1.12) ont men¢ a de remarquables résultats tels que le théoreme de Gro-
mov sur les groupes a croissance polynomiale ou la classification des réseaux irréductibles
dans les groupes de Lie scmi—simplcs (voir [Fﬂrc)7]). Mais en plus de poser les fondements
de ce quiest la théorie geometrique des groupes, Gromov, faisant fi des barrieres entre
domaines, ouvre un pont vers une autre branche des mathématiques en présencant la
notion suivante comme le pendant mesuré de la quasi-isométrie.

Définition 2
Deux groupes de type fini G et H sont mesure équivalents s'il existe des actions libres,

préservant la mesure et qui commutent de G et H sur un espace mesuré (X, p) telles
que chaque action admette un domaine fondamental de mesure fini.

Nous développerons plus en déeails cette notion d’équivalence mesurée dans le cha-
pitre 6, mais poursuivons d’abord notre exploration mathématique et cheminons vers les
terres de I'étude dynamique des groupes. Car paralléelement 4 la théorie mesurée de ces
derniers et sous 'impulsion des travaux fondateurs de Dye [Dyes9, Dye63], ces contrées

A 5 . Iy . /
ont vu naitre 'analogue ergodique de 'équivalence mesurce.
Définition 3
Ondit que deux groupes de type fini G et H sont orbite équivalents s'il existe un espace

de probabilite (X, p) et des actions libres de G et H sur X préservant la mesure telles

que pour presque tout x € Xon ait G-x =H-x.

Arrétons-nous quelques instants et tournons-nous a nouveau vers le rivage de la théorie
géométriquc des groupes. Nous avons vu que la relation de quasi—isométric traduisait le
fait d’avoir méme géométrie a grande ¢chelle et que nombre d’invariants existaient. Qu'il
s'agisse du type de croissance ou du proﬁl isopérimétriquc, ces fonctions caractérisent
certaines proprictes du groupe dont elles sont issues et sont preserveées par les quasi-
isométries. Mais sur la berge de la théorie ergodique, l’équiva]cnce orbitale procédc avec
bien moins de délicatesse en ¢crasant des familles entieres de groupes sur une seule et



méme classe d’¢équivalence. Une fulgurante illustration de cette rustrerie nous est donnce
par le théoréme d’Ornstein et Weiss [OW o] qui prouve que tout groupe infini moyen-
nable est orbite ¢quivalent a Z. Des lors s'impose la nécessit¢ d'affiner cette relation
d’équivalence orbitale. Pour ce faire Delabie, Koivisto, Le Maitre et Tessera proposent
dans [DKLMTz0] une dé¢finition quantifice des équivalences orbitale et mesurée, en ¢éva-
luant incégrabilicé des applications distances (voir ci-dessous) définies sur les graphes
de Schreier assocics aux actions. Rappelons que si Sg est une partie génératrice finie
d’un groupe G agissant sur un espace X, le graphe de Schreier associ¢ a cette action est le
graphe dont les sommets sont les ¢léments de X et dont 'ensemble des arétes est donné
par {(x,s-x) [ x € X, s € Sg}. On peut munir ce graphe de la distance usuelle ds,, fixant a
1 la longueur d’unc arcte.

Supposons maintenant pour simplifier que nous sommes dans le cas d’'une ¢quivalence
orbitale entre deux groupes G et H. Afin de mesurer la proximité de ces deux actions,
nous pouvons ¢tudier pour tout g € Sg et tout h € Sy les applications distance associces :

x = dsg(x,h-x) x> ds, (x,9°x).

Plus précisément, Delabie et al. [DKLMT20] proposent de mener cette étude en mesurant
Iincegrabilicé desdites applications distances. Cependant, plutdt que de se contenter
d’intégrnbilités LP ou p € [0, +o0], les quatre auteurs apportent une plus grandc finesse
dans leur quantification en considérant la (@, )-incégrabilite.

Définition 4

Soient G et H deux groupes de types finis orbit ¢quivalents et ¢, : (0,+00) —
(0, +00) deux fonctions croissantes non-bornées. Notons (X, u) un espace sur lequel

G et H partagent les mémes orbites. On dit que 'on a un couplage (¢, V)-intégrable si
pour tout g € Sg (resp. h € Syy) il existe cg (resp. cn) tel que

[ (ldsH (%, g 'xn) du(x) < +oo
X/H c

9

J U <ld5G (x,h-x))) du(x) < +o0.
X/G

Ch

Clest autour de ces notions que s'organise notre Partic ii ot nous cherchons 2 répondre
au probleme dit « inverse » de la quantification : a groupe H et intégrabilité (¢, ) pres-
crits existe-t-il un groupe G admettant un couplagc ((p,lb)—intégrablc avec H? Pour nous
aider dans cette quéte, les produits diagonaux introduits par Brieussel et Zheng dans
[BZ21] Savéreront de précieux alliés et nous permettront de répondre a la précédente
question lorsque H = Z (Théoreme 9) et H = Z/qZ Z (Thé¢oreme 10).

Ainsi ¢tudions nous les groupes a I'échelle macroscopique — pour ne pas dire asymp-
totique — depuis les rives des theories ergodiques et mesurce des groupes, a laide des
versions quantifices des équivalences susmentionnées. Mais nous pouvons aussi nous de-
mander ce qu'il advient lorsque I'on adopte le point de vue oppose. En effet, plutor que
d’¢tudier des objets selon leur géométrie a grande ¢chelle, nous pouvons chercher a sa-
voir si les propriétés locales d'un objet peuvent avoir des conséquences globales sur sa
géométrie. Clest le point de vue adopte dans notre Partie i ot notre ¢tude des graphes et
groupes se rapproche d’une observation au microscope de ces objets. Plus précisément,
nous ¢tudions les graphes en considérant et comparant leurs boules de rayon R, pour un
R fixé.



Définition 5
Soit R > 0. Deux gmphes transitifs sont dits R-localement les mémes si leurs boules
de rayon R sont isométriques.

Il est alors naturel de demander 8l peut y avoir des conséquences a plus large échelle de
cette locale similarité. Autrement dit, la trame locale d’'un graphe peut-elle contraindre
sa structure globale? Parmi les premiers a s'¢tre intéressés a cette question, Benjamini
[Beni3] et Georgakopoulos [Geor7] formalisent cette propri¢ee sous le nom de rigidice
Locale-Globale ou LG-rigidite.

Définition 6

On dit qu'un graphe transitif X est Locale-Globale rigide §'il existe R > 0 tel que tout

graphc R-localement X est revétu par X.

De nombreux exemples de tels graphes — détaillés au chapitre 1 — existent, parmi
lesquels les fameux et non moins fascinants immeubles de Bruhat-Tits. En effet de la Salle
et Tessera [dIST16] ont montré que pour tout n plus grand que 4 et tout corps local
non-archimédien K de caractéristique nulle, limmeuble de Bruhat-Tits de PSL,, (K) était
LG—rigide (voir Chapitre 2 pour les définitions). Dans ce manuscrit nous montrons que
la rigidit¢ de ces immeubles va encore plus loin, en prouvant qu'une information lo-
cale parridle suffit a reconstruire de tels gmphes. Nous introduisons la notion d’cmpreinte
d’un sommet de 'immeuble qui désigne I'intersection du 1-voisinage du sommet avec une
PSL,. (K)-orbite fixée, et montrons que cette empreinte caractérise le sommet (voir Théo-

\ 1 ./ ! ! . . . I\
reme 8). Nous utilisons alors cette propri¢té pour ¢tendre la LG-rigidité a une nouvelle
.. . \ 1. I .
classe de graphes quasi-isométriques a 'immeuble (Théoreme 7), parmi lesquels figurent
les réseaux sans-torsion de SLy (K).

RESULTATS PRINCIPAUX

Nous regroupons ici les résultats principaux démontrés dans cette these. Leurs ¢noneés
ainsi quune plus compléte mise en contexte peuvent-éere retrouvés dans les chapitres 1
(pour la rigidit¢ Locale-Globale) et 6 (pour les ¢quivalences orbitale et mesurée).

Rigidit¢ Locale-Globale et immeubles

Le résultat principal de la Partie i est le Théoreme 1.2.6 que nous rappelons ci-dessous.
Théoreme 7
Soient n # 3 et K un corps local (non necessairement commutatif) non-archimedien
de caractéristiquc zéro. Soit X 'immeuble de Bruhat-Tits de PSL, (K) et X un graphe
transitif. Si

+ il existe un morphisme injectif p de Isom(X) vers Isom(X) tel que p(Isom(X))

est d’indice fini dans Isom(X);
« il existe une quasi-isométrie injective et Isom(X)-équivariante de X vers X;

alors X est LG—rigide.

Nous en déduisons en particulier que les réseaux sans torsion de SLy, (K) sont LG-rigides
. ! \ ! . 4 \ . !
(voir Théoréme 1.2.5). La démonstration du théoréme ci-dessus repose sur une étude ap-



profondie de la structure locale des immeubles de Bruhat-Tits. Si € est une PSL, (K)-

orbite de I'immeuble X, nous définissons l’empreinte de type C d’'un sommet x comme
Pe(x) :=Bx(x,1)NEC.

Nous montrons alors dans la propricce 2.3.4 (que 'on rappelle ci-dessous), que cette em-
preinte caractérise le sommet.

Propriété 8
Soit X 'immeuble de Bruhat-Tits de PSL,, (K) et € une PSL, (K)-orbite de X. Notons
x et y deux sommets de X. Si Pe(x) = Pe(y) alors x =y.

Equivalences orbitale et mesurée

La deuxi¢me partie de cette these se focalise sur la construction d’équivalcncc mesurée
ou orbitale a l’intégmbilité prescrite et comporte deux résultats principaux. Le premier
(Théoreéme 6.3.1) concerne l'existence d’une équivalence mesurée avec Z.
Théoreme 9
Pour toute fonction croissante p : [1,+o00[— [1,+oo[ telle que p(1) =T et x/p(x) est
croissante, il existe un groupe G tel que

« Ig ~polog

« Il existe une équiva]cncc orbitale de G vers Z qui est (@, exp op)—intégrab]c

pour tout € > 0, ou @, (x) := p o log(x)/(logop o log(x))lﬂ

Le second résultat ¢rablit Pexistence d'un couplage sous-groupe mesure (cf: Définition

6.1.1) 2 intégrabilité prescrite avec le groupe d’allumeur de réverbere Lqy:=2/q9Z.: 2.

Théoréeme 10

Pour tout « > 0 il existe un groupe G tel que
+ Ig(n) = log(n)!/(1+e)
- sie>0ctlon définit @ (x) :== xTr~7e alors il existe un couplage sous-groupe

mesuré de G vers Z qui est (pe—intc’grablc.

ORGANISATION DU MANUSCRIT

Apres cette breve introduction historique, le manuscrit se découpe en deux parties, pré-
vues pour étre lues indépendamment. Chaque partie comporte notamment un introduc-
tion détaillée au sujet quielle traite et se termine par une conclusion sur des problemes
ouverts. La Partie i concerne les immeubles et prob]&mcs de rigidité Locale-Globale. Les
Theoreme 7 et Propricté 8 y sont notamment prouves. Ces résultats ont donné lieu a une
publication [Esc20] a paraftrc dans Annales de UInscitur Fourier. La Partie ii se consacre
aux ¢quivalences orbitales et mesurces. Nous y montrons en particulier les Théoremes 9
ct 10. Cette partie concerne un travail en cours, les suites espérées de ces travaux sont
¢voquées en conclusion. Enfin, une annexe regroupe certains résultats sur les produits

diagonaux et un index des notations.






INTRODUCTION (ENGLISH VERSION)

Once you’ve decided that something’s absolutely true,
you’ve closed your mind on it, and a closed mind
doesn’t go anywhere. Question everything. That’s
what education’s all abour.

— David Eddings

Bdgamth the Sorcerer

Ifyou are given an objcct, or rather a subjcct, whatever it may be —a spoon, a ficus,
a kitten— and you are asked to study its structure, there are several ways to proceed. A
first possibility is to choose the macroscopic approach: you may try to understand the
shape, color or volume of the subject. You consider the object globally. Another way to
proceed would be to study the microscopic structure of the subject by identifying its
chemical composition, its molecular structure or its cellular organisation for example.
You consider then the subject at a far more local scale. Although based on two different
points of view, these two methods are not oniy Compiementary, they also intertwin: if
you know that the shape of an object is well defined you can deduce that its molecular
structure is closer to the one of a solid than the one of a iiquid; ifyou know that the cells
of your subject have a cell wall you can deduce that the subject is a plant racher than a
mammal.

Intertwining these approaches is what we propose to do in this thesis by taking groups
as studied subjccts. At a macroscopic scale we try to describe groups through their
“asymptotic” (or “large scale”) geometry; at a microscopic scale we will see that the data
of the molecular organisation of a few cubic millimetres of the group will allow us to
deduce informations about its shape. These two points of view and the tools we use put
this thesis at the crossroads of geometric, ergodic and measured groups theories.

The first of these three theories is devoted to the study of groups via their actions
on geometric or topological spaces. By observing how a group acts on the elements of
the space or if it preserves or not distances, we can deduce informations on the a]gebric
structure of the group. In the notably friendly framework of finitely generated groups
we can furthermore see the group itself as a geometric space by considcring its Cayley
graph. Recall that if Sg is a finite (symmetric) generating set of G then the Cayley graph
(G,Sg) is the graph whose vertices are the elements of G and whose set ofcdgcs is given
by {(g,s9) | g € G,s € Sg}. Such a graph is endowed with a natural distance fixing to 1
the length of an edge. In the light of the above definition, the obtained Cayley graph and
its corresponding metric thus depend on the choice of generating set Sg. Nonetheless,
two different Cayley graphs share the same large scale geometry; this is what we formalise
with the notion of quasi-isometry.



Definition 1

Let (X, dx) and (Y, dy) be two metric spaces. We say that a map f from X to Yis a
quasi-isometry if there exist L > 1 and e > 0 such that for all x,x" € X

Tax () — € < dy (), F06)) < Lde(x, ) + 5,

and for all y € Y there exists x € X such that dv(y, f(x)) < L.

In one of his seminal works on geometric group theory, Gromov [GNR93] brings the
matter of the classification of groups according to their large scale geometry —or “up
to quasi-isometry”. Research and study of quasi-isometry invariants such as the growth
type of a group or the isoperimetric proﬁle (see Definition 6.1.12) lead to remarkable
results such as the Gromov theorem on groups of polynomial growth or the classification
of irreducible lattices in scmi—simp]e Lie groups [F:11'97]. But in his work Gromov does
not just set the foundations of geometric group theory: ignoring boundaries between
mathematical areas, he also opens a bridge to another field by presenting the following
notion as the measured counterpart of quasi-isometry.

Definition 2

Two ﬁnitely generated groups G and H are measure equivalent if there exist two free
commuting measure preserving actions of G and H on a measured space (X, p) such

that each action admits a fundamental domain of finite measure.

We will give more details about this measure equivalence notion in Chapter 6 but let
us first continue our mathematical explorntion and journey to the territory ofdynnmical
group study. Indeed in parallel with the measure group theory and under the impulsion
of seminal works of Dye [Dyest), Dye()g] these lands saw the emergence of the ergodic
counterpart of measure equivalence.

Definition 3

We say that two finitely generated groups G and H are orbit equivalent if there exist
aprobability space (X, p) and free, measure preserving actions of G and H on X such
that for almost every x € X we have G-x =H - x.

Let us stop here for a few moments and turn again to the shore of geometric group
theory. We saw that being quasi-isometric could be interpreted as having the same large-
scale geometry. We also mentioned the existence of several invariants. Whether it is
the growth type or the isoperimetric profile, these maps characterize some properties
of the group from which they derive and are both preserved by quasi-isometries. But
on the riverside of ergodic theory, proceeds orbit equivalence with far less delicacy: it
crushes entire families of groups on one same equivalence class. A dazzling illustration
of this ruthlessness is given by the Ornstein-Weiss theorem [OW&o] which proves that
all infinite amenable group is orbit equivalent to Z. From then arises the need of a
refined notion of orbit equivalence. To do so Delabie, Koivisto, Le Maitre and Tessera
offer in [DKLMT20] a quantified version of orbit and measure equivalence. They propose
to estimate the integrability of the distance maps (see below) defined on the Schreier
graphs associated to the actions. Recall that if Sg is a finite generating set of a group G
acting on a space X then the Schreier gmph associated to this action is the graph whose



vertices are the elements of X and whose set of edges is given by {(x, s x) [ x € X, s € Sg}.
Such a graph is endowed with the usual distance ds fixing to 1 the length of an edge.

Assume for simplicity that we are given an orbit equivalence between two finitely
generated groups G and H. In order to measure how close the two actions are, we can
study for all g € Sg and h € Sy, the associated distance maps:

x> dsg(x,h-x) x> ds, (x,9°x).

More precisely, Delabie et al. [DKLMT20] offer to proceed by measuring the integra-
bility of the aforementioned distance maps. However, rather than mcrc]y consider LP-
integrabilities with p € [0, +00], the four authors bring a greater precision in their quan-
tification by Considcring what thcy call (p—inregmbility.

Definition 4

Let G and H be two finitely generated, orbit equivalent groups and ¢, : (0, +00) —
(0, +00) two non—decreasing unbounded maps. Denote by (X, 1) aspace where G and
H share the same orbits. We say that we have a (¢, ¥)-integrable coupling if for all
g€ Sg (rcsp. h € Si) there exists Cq (rcsp. cn) such that

| @(idhw@-ﬂodmw<+w
X/H

Cg

Ch

| w(ld%hJVMOdMﬂ<+w-
X/G

This is around these notions that revolves our Part ii. We LTy YO answer to the “inverse”
quantification problem: to a given group H and prescribed integrability (¢, ), can one
find a group G admitting a (@, )-integrable coupling with H? To help us during this
quest, the diagonal products introduced by Bricussel and Zheng in [BZ21] will be invalu-
able allies and will allow us to answer the preceding question when H = Z (Theorem 9)
and H=7/qZ 7 (Theorem 10).

We thus study groups at the macroscopic scale —or asymprotic scale— from the shore
of‘ergodic and measure group theories using quantiﬁed versions of the above-mentioned
equivalences. But one can also adopt the opposite perspective. Indeed, instead of ask-
ing whether an object is determined by its coarse gecometry, one can ask whether local
properties of an object can have global implications for its geometry. This is the point
of view we adopt in Part i where our study ofgraphs and groups is a kind ofmicroscopc
observation of these objects. To be more precise, we study graphs by considering and
comparing their balls of radius R, with fixed R > 0.

Definition 5

Let R > 0. Two transitive graphs are said to be R-locally the same if their balls of
radius R are isometric.

It is then natural to ask whether there are large scale consequences of this local similarity.
That is to say, can the local weft of a graph constrain its global structure? Among the
first to consider this question, Benjamini [Ben13] and Georgakopoulos [Geo17] formalise
this property under the name of Local-to-Global rigidity also called LG—rigidity.

Definition 6

! A transitive gmph X is said to be Local-to-Global Vigid if there exists R > 0 such that

any graph being R-locally the same as X is covered by X.



There are numerous examples of such graphs (we detail them in Chapter 1) including
the famous and uttcrly fascinating Bruhat-Tits buildings. Indeed de la Salle and Tessera
[dIST16] showed that for all n greater than 4 and all non-Archimedean local skew field K
of characteristic zero, the Bruhat-Tits building of PSL,, (K) is LG-rigid (see Chapter 2 for
the definitions). In this manuscript we show that the rigidity of these buildings is even
stronger by proving that only a partial local information is enough to reconstruct such
graphs. We introduce the notion of print of a vertex in the building which Corresponds
to the intersection of the 1-neighbourhood of the vertex with a given PSL,(K)-orbit
and prove that chis print characterizes the vertex (see Proposition 8). We then use this
property to extend this LG—rigidity property to a new class ofgraphs quasi-isometric to
the building (see Theorem 7) including the torsion free-lattices of SL,, (K).

MAIN RESULTS

We gather here the main results of chis manuscript. Their statements and a more com-
plete contextualisation can be found in Chapter 1 (for the Local-to-Global rigidity) and
Chapter 6 (for orbit and measure equivnlences).

Local-to-Global rigidity and buildings

The main result of Part i is Theorem 1.2.6 which we recall below.

Theorem 7

Let n # 3 and K be a non-Archimedean local skew field of characteristic zero. Let
X be the Bruhat-Tits building of PSL,.(K) and X a transitive graph. If X verifies that
« There is an injective homomorphism p from Isom(X) to Isom(X) such that
p(Isom(X)) is of finite index in Isom(X);
« There is a Isom(X)-equivariant injective quasi-isometry q from X to X;
then X is SLG-rigid.

In particular we deduce from this result the LG-rigidity of torsion free lattices in SLy, (K)
(see Theorem 1.2.5). The proof of the above theorem relies on a detailed study of the local
structure of buildings. If € is a PSL, (K)-orbit in X, we define the print of type € of a
Vertex x as

Pe(x) :=Bx(x,1)NEC.

We show in Proposition 2.3.4 (which we recall below) that chis print characterizes the

vertex.

Proposition 8
Let X be the Bruhat-Tits building of PSL, (K) and € be a PSL,, (K)-orbit of X. Denote
by x and y two vertices of X. If Pe(x) = Pely) then x =y.

10



Orbit and measure equivalences

The second part of this memoir deals with the contruction of orbit or measure equiva-
lences with prescribed integrability and contains two main resules. The first one (Theo-

rem 6.3.1) concerns the existence of a measure equivalence with Z.

Theorem 9
For all non—decreasing function p : [1, +co[— [1, +oo[ such that p(1) =1 and x/p(x)
is non-decreasing, there exists a group G such that

e Ig=po iog ;

« there exists an orbit equivalence coupling from G to Z that is (¢, expop)-

+e

integrable for all € > 0, where @ (x) := p o log(x)/(logop o ]og(x))1

The second result gives the existence of a measure subgroup coupling (see Definition 6.1.1)
with prescribed integrability with the lamplighter group Ly :=2/qZ . Z.

Theorem 10

For all & > 0 there exists a group G such that
1/(1+a)

« Ig(x) = (log(x)) ;
« for all ¢ < 0 if we define @¢(x) := x5 then there exists a @.-integrable

measure subgroup coup]ing from G to Lg.

ORGANISATION OF THE MANUSCRIPT

After this short historical introduction, this manuscript is composed of two parts which
have been thought and written to be read independently. Each part has its own detailed
introduction and ends with a conclusion on open problems. Part i concerns buildings
and probiems of Local-to-Global rigidity: this is where Theorem 7 and Proposition & are
proved. These results lead to an article [Esc20] to appear in Annales de UInstitut Fourier.
Part ii is devoted to orbit and measure Cquivalcnccs. In particuiar we prove Theorems 9
and 10. This second part concerns an ongoing work; the expected outcomes are detailed
in conclusion. Finally an appendice gather some results on diagonal products and a

notations index.
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Parc 1

LOCAL-TO-GLOBAL RIGIDITY AND
BUILDINGS

En essayant continuellement on finit toujours par
réussir. Donc plus ¢a rate, plus on a de chance que ¢a
marche.

— Proverbe Shadock






AN INTRODUCTION TO LOCAL-TO-GLOBAL
RIGIDITY

The door was the way to... to... The Door was The
Way. Good. Capital letters were always the best way
of dealing with things you didn’t have a good answer
to.

— Douglas Adams
Dirk Gently s Holistic Detective Agency

A recurring theme in geometric group theory is that local properties of an object can
have global implication for its geometry. A classical example is given by Lic groups and
their 10cally defined Lie algebras. Another striking illustration is provided by the work
of Tits [Tit&81] who gave a local characterization of a particular family of graphs called
“buildings oftypc Ad_1” (see Section 2.1 for a definition). The cxamp]c that inspires our
work here is given by Riemannian geometry. Indeed, a well known fact in this field stip-
ulates that a Complctc Riemannian manifold which is locally isometric to a symmetric
space is covered by a symmetric space. In this Part i we focus on a discrete version of
that property. Precisely, graphs and their local-to-global properties are the objects we
focus on. All gmphs will be equipped with the usual metric, ﬂxing the length of an edge

to one.

A natural local condition to impose on a graph is to be d-regular for some d € N,
which means that all the vertices must have degree d. A well-known result about such
a graph is that the d-regular tree is its universal convering. This is a first example of a
global information deduced only by a local knowledge of the graph.

One can now ask what happens if we impose a local condition which is stronger than

d—rcgu]arity. We formalize this in the next definition.

Definition 1.0.1

Let R > 0 and let X and Y be two graphs.

We say that Y is R—locally X if every ball of radius R in Y is isometric to a ball of
radius R in X.

IfYis R—locally X and X is R—locally Y then we say that thcy are R—locally the same.

We will say that Y locally the same as X (resp. Y and X are locally the same) if there

exists R such that Y is R—locally X (rcsp. Y and X are R—locally the same).

Example 1.o.2. In Figure 1.1 Bx(xo0,2) is isometric to By(yo,2).

15



1.1

X0

Figure 1.1.: Two graphs 2-locally the same.

Since being d—rcgular means bcing 1—10cnlly the same as the d—regulnr tree, we can thus
say that every graph that is 1-locally the same as a regular tree is covered by it. Hence
we only need information on a very small scale to know if we can cover a gmph with a
regular tree: it reflects a form of rigidity, something we formalize in the next paragraph.

RIGIDITIES

111 Local-to-Global rigidity

We saw that for a graph, being 1-locally the same as the d-regular tree is enough to be
covered by it. Now if we are allowed to draw information from a lnl'gcr scale —that is to
say from balls of radius R > 1— can we have a smilar covering result? In other words: are
there graphs that cover all graph R-locally the same as them? We formalise that property
by defining Local-to-Gobal rigidity, also named LG-rigidity.
Definition 1.1.1

Let R > 0.We say that X is Local—to—Global—rigid at scale R (or R—LG—rigid for short)

if every graph Y which is R-locally X is covered by X.

We say that a graph Xis LG—rigid if there exists R > 0 such that X is R—LG—rigid.

Example 1.1.2. Benjamini and Ellis [BE16] showed that for any d > 2 the Cayley graph
of 74 endowed with its usual generating set is 3—LG—rigid. Thcy also provcd that 3 was
optimal showing that Z3 is not LG-rigid at scale 2.

Example 1.1.3. De la Salle et Tessera [d]S'IHC), Theorem C] proved that every gmph quasi-

isometric to a tree is LG-rigid.

Benjamini [Beni3] and Georgakopoulos [Geo17] conjectured that any Cayley graph of
a finitely presented group is LG-rigid at some scale R > 0. That conjecture was proven to
be false in [dIST19, Theorem B, where the authors built counter-examples using groups

with corsion elements.

Counter—cxample 1.1.4. The groups Fa x Fa x 2/27 and SL4(Z) admit Cayley graphs that
are not LG-rigid.

Remark here that we do not state that every Cayley graph of these groups is non-
LG—rigid, but that each group admits a non—LG—rigid C:Lylcy graph. Indeed, in [dIST19,

16



Theorem ]| the authors also showed that every finitely presented group with an element
of infinite order has a Cayley graph which is LG-rigid. Hence, LG-rigidity for a Cayley
graph depends on the generating set. In particular LG-rigidity is not invariant under
quasi-isometries.

With a little bit more of material, we will be able to give a topological interpretation
of Local-to-Global rigidity. To do so we need to define the notion of large scale simple
connectedness.

112 Large scale simple connectedness

For a graph § and k € N we define a 2-complex noted Py (§) such that:
« Its T-skeleton is given by § ;
« Its 2-skeleton is composed of m-gons (for m € [0,k]) defined by the simple loops
oflength min§ (up to Cyclic permutations).

Example 1.1.5. Figure 1.2 represents a complex Py (§) for a graph § composed of a hexagon
and six triangles. On the left P3(9) is represented: only the triangles are filled. On the
right triangles and hexagons are filled. Remark that in that case P3(9) is the same as
P4(S) and P5(§) since the graph has no squares or pentagons.

(a) P3(9) (b) Ps(9)

Figure 1.2.: Examples of P (§) fork=3and k=6

Definition 1.1.6

We say that § is k-simply connected or simply connected at scale kif Py (§) is simply
connected.

Example 1.1.7. The graph represented in Figure 1.2 is 6-simply connected, since the com-
plex Ps(S) (on the right of the ﬁgure) 18 simply connected. However, it is not k—simply
connected for k < 6, since G is composed of an hexagon.

Example 1.1.8. Let G be a finitely generated group and T a finite symmetric generating set.
The C:Lylcy graph (G, T)is simp]y connected at scale k if and only if Ghasa presentation
(T,R) with relations of length at most k.

Example 1.1.9. Let K be a non-Archimedean local skew field. The one skeleton of the
Bruhat-Tits building of PSL,,(K) is simply connected at scale 3.

Remark 1.1.10. If k < K, then every k—simply connected graph is k’—simply connected.
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The following proposition allows us to restrict the study of the LG-rigidity of a graph

9 o some smnl]cr ClQSS ofgraphs.

Proposition 1.1.11 (de la Salle, Tessera, [dIST16, Proposition 1.5)
Let k € N and § be a k-simply connected graph, with cocompact isometry group.
Then G is LG—rigid if and only if there exists R such that every k—simply connected
graph which is R-locally § is isometric to §.

To apply this result to our proof we will need to show that the studied graph X is simply
connected. The following proposition shows that being simply connected is invariant
under quasi-isometry.

Proposition 1.1.12 (de la Salle, Tessera, [dIST16, Theorem 2.2])

Let k € N* and lec G be a k—simply connected graph. If 3 is quasi-isometric to G,
then there exists k" € N* such that 3 is simply connected at scale k.

Before moving to the next section, let us mention a consequence of that last property.
Indeed, this result allows us to look at the LG-rigidity notion with a topological point
of view. Let’s denote &y the set of isometry classes of locally finite k-simply connected
graphs. We can define a distance on this set by:

de, (X,Y) = inf{Z_r : X and Y are r-locally the samc} ,

which endows &y with a topologyA The above proposition implics that a graph is LG-
rigid if and only if its isometry class in &y is isolated for this topology.

113 Strong-Local-to-Global rigidey

Our rigidity notion can be refined in what is called the Strong Local-to-Global rigidity,
also named SLG-rigidity.

Definition 1.1.13

Let v, R > 0. We say that X is SLG-rigid at scale (r,R) if for all Y which is R-locally
X and for all isometry f from Bx(x,R) to By(y,R), the restriction of f to Bx(x,T)
extends to a covering of Y by X.

We say that X is SLG-rigid if there exist two radii r and R such that X is SLG-rigid

at scale (r, R).

Such a refinement is far more than just a subtlety: it actually proves necessary to obtain
our main result (see page 42 for more details).

The following proposition gives us many examples of SLG-rigid graphs.
Proposition 1.1.14 (de la Salle, Tessera [dIST19, Proposition 3.8])

A graph with cocompact isometry group is LG-rigid if and only if it is SLG-rigid.

For example, any LG-rigid Cayley graph is actually SLG-rigid. In the same article,
de la Salle and Tessera provcd a powcrful condition rclating to the isometry group of a
Cayley graph. We will refer to the isometry group of a Cayley graph (T, S) as Isom(T, S).
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1.2

Theorem 1.1.15 (de la Salle, Tessera [dIST19, Theorem EJ)

Let T be a finitely presented group and S be a symmetric generating set and denote
by (T,S) the corresponding Cayley graph. If Isom(T,S) is discrete, then (T,S) is
SLG—rigid.
As stated in [dlSTiu), Corollary F], we can deduce two new classes ofexamples from
the above theorem. But before, let us introduce what we call LG-rigid groups.
Definition 1.1.16

We say that a finitely presented group is LG—rigid (resp. SLG—rigid) if all ics Cayley
graphs are LG-rigid (resp. SLG-rigid).

Example L117. Torsion-free groups of‘polynomial growtli are SLG—rigid.

Example 1.1.18. Torsion-free, non-virtually free lattices in connected simple real Lie

groups are SLG—rigid.

TOWARDS OUR MAIN RESULTS

Let us now turn to our main results. We state our main theorem and discuss the hypoth-
esis in the second subsection and we detail the structure of the proof in the third one.

But first, let us start by giving more context and motivations.

121 From buildings to quasi-buildings

So far the graphs chosen as examples are mostly Cayley graphs, but these are not the only
LG-rigid ones. Indeed, besides the case of quasi-trees seen above, another interesting
example is given by Bruhat-Tits buildings (see Section 2.1 for a definition).

Theorem 1.2.1 (de la Salle, Tessera, [dIST16, Theorem o.1])

Let K be a non-Archimedean local skew field. If K has positive characteristic and
n > 3, then the Bruhat-Tits building of PSL,, (K) is not LG-rigid.

If K has characteristic zero and n > 4, then the Bruhat-Tits building of PSL,, (K) is
SLG-rigid.

Keeping in mind the above theorem, consider the following question asked in [dlSTi()]i

Question 1.2.2. Among lattices in semi-simple Lie groups, which ones are LG-rigid?

This question concerns real Lie groups but one can also wonder what happens for the
p-adic case. Indeed, by a well known result of Svarc and Milnor, any lattice of SL,, (K) is
quasi-isometric to the associated building (see Lemma 4.1.1 for more details). The fact
that such a lattice is “almost” a building cncouragcd us to study the p-adic version of
Question 1.2.2.

Question 1.2.3. Among lattices in p-adic Lie groups, which ones are LG-rigid?

De la Salle and Tessera showed [dIST16] that if K has positive characteristic, then there
exist p-adic lattices that are torsion-free, cocompact but not LG—rigid.
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Counter-example 1.2.4. Let n > 3. There exists in PGL, (F;,((T))) a torsion-free cocom-
pact lattice that is not LG—rigid.

But when K has characteristic zero, the situation is quite different...

1.2.2  Main results

When K is a non-Archimedean local skew field of characteristic zero, an element of
response to Question 1.2.3 is provided by our first result hereunder.

Theorem 1.2.5

Let n # 3 and K be a non-Archimedean local skew field of characteristic zero.
The torsion-free lattices of SLy (K) are SLG-rigid.

This result is actually a corollary of our main theorem below which goes beyond the
lattices framework and gives a rigidity result in a more general case.

Theorem 1.2.6

Let n # 3 and K be a non-Archimedean local skew field of characteristic zero. Let
X be the Bruhat-Tits building of PSL,(K) and X be a transitive gmph. If X verifies
that

. There is an injective homomorphism p from Isom(X) to Isom(X) such that
p(Isom(X)) is of finite index in Isom(X);
« Thereis a [som(X)-equivariant injective quasi-isometry q from X to X;

then X is SLG-rigid.

Let us discuss the hypothesis, starting with the assumption made on n. If n =2 then
X is the (p + 1)-regular tree, thus by Example 1.1.3 any graph quasi-isometric to X is LG-
rigid which proves the theorem. Now, as we will see in the sketch of the proof7 the main
tool of our demonstration is the LG-rigidity of the building. But if n = 3 the question of
the rigidity of X is still open. Indeed in that case a lot of chibi]ity seems to be allowed
(see [BPo7]). Thus our demonstration deals mainly with the case where n > 4.

Then, let us look at the hypothesis made on the characteristic of K. According to
Theorem 0.4 of [dIST16] and more precisely according to its proof, we get Counter-
example 1.2.4 above. Tt implies in particular that if we omit the characteristic zero hy-
pothesis, then Theorems 1.2.5 and 1.2.6 are not true.

Finally, before moving to the sketch of the proof let us discuss the hypothesis made
on the torsion in Theorem 1.2.5. First, introducing torsion in a group is in some case a
useful way to build non-LG-rigid graphs. Indeed the Counter-example 1.1.4 is built this
way. Second, in order to link (I',S) to X we will need an injection of Tsom(T, S) into
Isom(X). Using a famous result of Kleiner and Leeb we will show that Isom(T, S) acts
on the buildings by isometries. The injection into Isom(X) will then be allowed by the
following proposition.

Proposition 1.2.7 (de la Salle, Tessera [dlS'1‘19, Proposition 6.2])

Let T be an infinite, torsion-free, finitely generated group and let S be a finite sym-
metric generating subset of T. Then the isometry group of (T, S) has no non-trivial
compact normal subgroup.

For more details on how we use this proposition, see the proof of Lemma 4.1.2.
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123 Idea of the proof and structure of Part i

As stated in the discussion below Theorem 1.2.6, the proof deals mainly with the case
wheren > 4. So, Let n > 4 and K be non-Archimedean local skew field of characteristic
zero and denote by X the Bruhat-Tits building of PSL,.(K). Let X be the studied graph
and Y be a graph R-locally the same as X and denote by q a quasi-isometry from X to X.
The main idea of the proofis to use the rigidity of X to build the wanted covering from X
to Y (see Figure 1.3), thus we need to build a graph locally the same as X. We will denote

such a graph Y.
q.i.
X ¢ > X
4 4
| |
| |
R-loc | covering : Ryc-loc
v v
Y Y
Goal:
B PSRRI

induce a conv cring from X to Y
Figure 1.3.: Sketch of the proof

Moreover, for the rigidity of the building to induce a covering between X and Y, we
want Y to contain a copy of the vertices of Y. Hence the goal is to define the vertices
of Y to be composed of the vertices of Y and a copy of each vertex in X\q(X) and define
the edges to correspond to edges in X. With such a description Y is a “hybrid” graph
and to define its edges we might need to understand how to link a vertex coming from
Y to a vertex coming from X. Hence, to avoid such a hybridation we chose to define the
vertices only with informations encoded in Y. That is Why we introduce the notion of
print in the building (see Definition 2.3.1). It allows us to characterize a vertex in X by a
set ofncighbouring vertices in im(q) and, using a well chosen set of isometries from Y to
X, to transfer this print notion to Y. Each print in Y corresponds to a vertex in X\q(X).
The vertices of the wanted graph Y will be composed of the vertices of Y and of prints
in Y. It will now be easier to build edges between these vertices; the key argument to
construct such edges is presented in Section 3.1.1.

Using the rigidity of the buiiding we will obtain an isometry between X and Y. To
conclude the proof we will show that this isometry induces the wanted covering between
Y and X.

ORGANIZATION OF PART 1  After that first introducing chapter, the second one
is devoted to Bruhat-Tits buildings. We recall all the necessary material and study the
aforementioned prints. The third section is devoted to the proof of Theorem 1.2.6. We
develop in it the necessary engineering to build a graph locally the same as the building
and conclude using the rigidity of the building to prove the rigidity of the studied graph.
We prove Theorem 1.2.5 in the fourth chapter where we check that the lattice verifies the
hypothesis of our main theorem.
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2.1

BRUHAT-TITS BUILDINGS

En mathématiques, les noms sont arbicraires. Libre a
chacun d'appeler un opérateur auto-adjoint un

« elephant » et une decomposition spectrale une

« trompe ». On peut alors démontrer un theoréme
suivant lequel « tout e’le’phant a une trompe ». Mais
on na pas le droit de laisser croire que ce resultat a

quelquc chose a voir avec de gros animaux gris.

— Ivar Ekeland
Le Calcul, lImprévu

DEFINITION OF BUILDINGS

Let n > 2. We recall here the description of the Bruhat-Tits building associated to
PSL, (K) for some non-Archimedean local skew field K. See [AB18] for more details.

2.1.1  Non-Archimedean local skew fields

Let K be a field (not necessarily commutative). A discrete valuation on K is a surjective
homomorphism v : K* — Z satisfying v(x +1y) > min{v(x),v(y)} for all x,y € K* such
that x+y # 0. If K is endowed with such a valuation, we can extend v on all K by setting
v(0) = +oo. We say that K is a non-Archimedean local skew field if it is locally compact for
the topology associated to a discrete valuation.

Example 2.1.1. If K = Q and p is a prime, then every x € K can be written as x = p™a/b
where a and b are integers non-divisible by p. The map defined by v(p™a/b) :=nis a
discrete valuation over K. The field Qyp is the complction of Q with respect to the p—adic
absolute value defined by [x|, =p~).

Example 2.1.2. Let K = Fp,((T)), the field of formal Laurent series over F,,. Denote by
f=3 ez axT¥ an element in F, ((T)) then the map defined by v(f) :== min{k : ax # 0} is

a valuation over K.

Let © denote the ring of integers of K with respect to v, that is to say O :=={x € K :
v(x) > 0}. This ring has a unique prime ideal m := {x € K : v(x) > 0}. Finally, let 7 be a

generator of m as an O-module.
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2.2

Example 2.1.3. If K = Q, then its ring of integers is O = Z,. Morcover m = pZ,, and
m="p.
Example 2.1.4. If K =F,((T)) then O = F,[[T]]. Moreover m = XF,[[T]] and = X.

2.1.2  Buildings

Let K be a non-Archimedean local skew field endowed with a valuation v. An O-lattice
of K™ is an O-submodule which generates K™ as a K vector space. Such a lattice can be
written as Oey + -+ Oey, for a basis (ey, ..., en) of K™. Since for any a € K* and any lactice
L, the module aL is also a lattice, we can define the equivalence relation of lattices modulo
homothety. We denote by [L] the class of a lattice L.

The Bruhat-Tits building of PSL;, (K) is a simplicial complex of dimension n—1 denoted
by % whose 1-skeleton (denoted by X) is described as follows. The vertices are the classes
of O-lattices modulo homothety. Two vertices x; and x5 are linked by an edge if there

exists representatives Ly of x; and L, of x such that:
pL1 c L, CLy.

Example 2.1.5. One can show that the building of PSL;(Q;) is a (p 4 1)-regular tree.
Figure 2.1a gives a representation of the building when p = 2.

(a) The building has two SL;(Q,)-orbits (b) Representation of one apartment

Figure 2.1.: The building of PSL,(Q2)

A representation of the building of PSL3(Q2) can be found in the Building Gallery
developped by Bekker and Solleveld. For details on the employed method see [BS20].

STRUCTURAL PROPERTIES

221  Orbits and types

The building is endowed with a natural action of GL, (K). Indeed let L = @7 ;0e; be a
lattice in K™, the action of g € GL,,(K) on Lis defined by gL := & ;0g(ei). Since GL, (K)
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acts transitively on the bases, the aforedefined action is transitive. Now let x be a vertex
inXand L be a representative of x and define for g € GL,,(K)

g-x:= [gL}.

Since g+ (al) = a(g-L) for all a € K*, the above definition does not depend on the choice
ofrepresentative L. Thus GL, (K) acts transitively onX by isometry. Moreover this action
induces a transitive action of PGL,(K) on X by isometry.

If L = ;0e; is a lattice we define its type to be v (det(ey, ..., en)). Since:
Va e K* v (det(aes,..,ae,)) =v(det(er,..,en)) mod n,

one can define the type of a vertex x in X to be the value modulo n of the type of one of
its representatives. We denote by t(x) the type of x.

If 1’ is a second lattice, we can choose our basis ey, ..., en for L in such a way that I/
admits a basis of the form ajeq, ..., anen for some a; € K*. The scalars a; can be taken to
be powers of 7. The incidence relation defined above implics that if the classes of L and
L’ are linked by an edge in X, then they have different types.

Remark 2.2.1. Remark that if L = @;0e; and
L' =0me; @ - ® Ome; ® ej11 B - P en,
then 7([L']) = *([L]) +j mod n.

The action of SL, (K) on X preserves the determinant and is transitive on the pairs of
vertices of the same type. So there are exactly n orbits under the action of SL, (K) (see
Figure 2.1a and Figure 2.2 for examples).

2.2.2  Apartments

If e is a basis of K™ then the set of vertices {& ;0™ e; | ki € Z} induces a sub-complex
denoted by A, which is isometric to a (n—1)-dimensional Euclidean space tiled by regu-
lar (n—1)-simplices. We call such sub-complexes apartments. For example an apartment
in the building of PSL;(Q,) is isometric to R' tiled with segments of length 1 (see Fig-
ure 2.1b), whereas for PSL3(Q;) the apartment are isSometric to R? and tiled with triangles
(see Figure 2.2).

"VAVAV"‘VAVAVAV
AVAVAVAVAVAVAVA'A
'AVAVAV‘V‘VAV‘VA'
AVAYAVA'A'A'AVAYA

Figure 2.2.: Apartment in the building of PSL3(Q2). Colors correspond to SL3(Q,)-orbits.

. . A . .. A~
For any two points in X there exists an apartment containing them. If x,y € X let

A be an apartment containing x and y and define d4(x,y) to be equal to the cuclidean
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2.3

distance da(x,y). This definition does not depend on the choice of apartment A and

thus endows X with a well defined distance. Moreover, this distance verifies the negative
. . ~ 2\

curvature inequality: for all x,y,z € X and t € [0, 1]

3z, tx+ (1 = t)y) < tdi(z,x) + (1 = t)di(z,y) — t(1 — )3 (x, y). (2.1)

Denote by dx the distance on the 1-skeleton X assigning length 1 to an edge. Then
dx (x,y) is greater than dg(x,y) for all vertices x and y in X.

2.2.3 Contractibility

Using the above inequality one can show that the building is contractible (see [AB18] for

. . & .
more details). We can actunlly show that convex sets in X are themselves contractible.
. . A . .
Claim 2.2.2. Let > 0. Any convex set in X is contractible.

Proof. Let v > 0and € a convex set in X and endow it with the distance induced by ds.
Take xo € € and define,

9 0,11x€ —¢,
| %) ot (1= t)xo.

Since € is convex, the map H is well-defined. Moreover 3(0,-) = ide and H(1,%x) = xo
for all x in €. Let us show that 3 is continuous. Take x,x’ € € and t,t’ € [0,1] and let
z=tx"+ (1 —t")xo. By eq. (2.1)

déc(z, tx + (1 —t)xo) < td%c(z, x) + (1 —t)dé(z, xo) — t(1 —t)dé(x, X0). (2.2)

Butif A is a an apartment containing z and xo, then by property of the Euclidean distance
da
d

#(z,%0) = da(tx + (1 —t')x0,%0) = t'da(x',x0) = t'd4 (X', %0),

which tends to td (x,x0) as (t',x') tends to (t,x). Similarly
dIJAC(Z’ x)<d

§C(Z’ x') + dDAC(Xl, x) = d:)AC(t/X/ + (1 —t)x0,x) + dDAC(X/’ x),

= (1 —=t)dg (X', %0) + dg (x', %),
which converges to (1 —t)dg(x,x0) + dg(x',x) as (t',x') tends to (t,x). Thus the right

term of eq. (2.2) converges to 0 as (t',x’) tends to (t,x). Hence the continuity of 3 and
the contractibility of €. O

PRINTS

In this section we show that a vertex in the building X can be determined by a part of
its 1—ncighb0urhood. More prcciscly, ifi bc]ongs to {0, ...,n} we prove that a vertex in
the building is entirely determined by its type and the vertices in its T-neighbourhood
having type i.
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231 Definition and examples

Recall chat if € is an SL, (K)-orbit in X then € is exactly the set of vertices having type i
for some i € {1,...,n}, viz. there exists i € {0, ... ,n} such that € =171 (i).

Definition 2.3.1

Let x be a vertex of X and € be an SL, (K)-orbit in X. We define the print of type
€ of x, denoted by Pe(x) (or P(x) if there is no ambiguity), to be the intersection of’
the 1-neighbourhood of x with €, viz. P(x) := Bx(x,1) N €.

Example 2.3.2. Figure 2.3 represents a ball of radius 1 in two different cases. The case
whenn =2 and |0/70| = 2 (for example when K = Q) is represented on the left ﬁgure.
The case when K = Q; and n = 3 is represented on the right figure. In cach case, the
print of type 0 of x Corresponds to the set of blue vertices. In the second case, the print
of type 2 of x corresponds to the orange vertices.

Plx) ={x1,%2,%x3}

X1
@ Type 2 vertices
QO Type 1 vertices
pe X3 @ Type 0 vertices
X2
B(x,1) forn=2and K=Q, B(x,1) for K=Q, andn =3

Figure 2.3.: Prints and 1-neighbourhood of a vertice in X

Remark 2.3.3. If x € € then By (x, 1) N € = {x} thus Pe(x) = {x}.

2.3.2  Tracking vertices through their prints

The following result proves that a vertex in X is uniquely determined by its print.
Proposition 2.3.4

Let € be a SL,, (K)-orbit and x and y be two vertices in X.
If Pe(x) = Pely) then x = .

Before showing the above property, let us recall (and prove) a useful fact concerning the
choice of representative of a vertex.

Claim 2.3.5. For any vertex in X, we can always find a representative @;0n*ie; of the
vertex such that

vie{l,.,n} ki >0,
(2.3)

dip € {1 g oe 7T‘L} kio =0.
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Proof of the claim. Indeed, let x € X and let (4, ..., 1n) be a representative of x and let io
be such that li, = min; L, then

i —Lli Li—1i — Li—1i
(oL, 0mtie] = mho [0, 0nt hoe] =[O, 0m Toey] .
Thus (11 — Ligy s L1 — i) is a representative of x and verifies eq. (2.3). O]
Now, let us prove that the print determines the vertex.

Proof of Proposition 2.3.4. Let € be a SL, (K)-orbit and denote by P(z) the print of type €
of a vertex z. Let x and y be two vertices in X such that P(x) = P(y).

First remark that if x € € then P(x) = {x} which implies that P(y) = P(x) = {x}. But
then y has only one neighbour of type €, which is something that is only possible if y
belongs to €. Thus {y} = P(y) = {x} and so x = y.

Now assume that x does not belong to € and take A to be an apartment containing
x and y. Let t € {0,...,n — 1} such that € is exactly the set of vertices of type t. Define
P :=P(x) N A and let e be a basis such that

A={er,0nfe |kie 0} and x=(0,..,0).

By Claim 2.3.5, we can chose a representative (kq, ..., kn) of y such that k; > 0 for all
i and there exists ip such that ki, = 0. Now define the sequence i1, ..., in such that
ki, = - =k, =0and let

L, =~ =1

1

(x)—t =0 Lo o ===k, =1

In other words we want the vertex defined by (14, ..., 1,) to have coordinates zero where
the coordinates of y take their greatest values and have a coordinate 1 where y has a
zero (namely in position in). The number of coordinates equal to 1in (11, ..., 1) is then
determined by the condition that the vertex has to belong to €.

By remark 2.2.1 the vertex z = (1y, ..., 1n) has type t, indeed

T(z) =1(x)+n—(t(x)—t)=n+t=t modn.

That is to say z belongs to €. Moreover it is at distance 1 from x, so z belongs to P. But
if ki, > 0, then d(z,y) > 1 thus z cannot belong to P(y). Hence ki, < 0, that is to say
ki = 0 for all 1 and thus y = x. O

This proves that a vertex in X is uniquely determined by its print. Thus, we can intro-
duce the following definition without ambiguity.

Definition 2.3.6

‘ Let x to be a vertex in X. We say that x is the source of P(x).

To conclude this section, let us look at the behaviour of prints under the action of
PSL,(K). Let x € X and let o € PSL,(K). Since « is an isometry and is type-preserving,
we get

oc(iP@(x)) - oc(B(x, nn e) = «(B(x, 1)) N &(€) = B («(x),1) N EC.
We deduce the following lemma.
Lemma 2.3.7

| Let x € X. If a belongs to PSL,, (K), then o (P(x)) = P (a(x)).
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3.1

QUASI-BUILDINGS

Ma these nest qu'une succession d’erreurs
mathématiques.

— Mario Gongalves

Reinforced with all the knowledge on buildings exposed in the last chapter, we can
now turn to the study of graphs quasi-isometric to a building (or quasi-buildings for short).
Indeed, the aim of this chapter is to prove Theorem 1.2.6 which we recall below.

Theorem 1.2.6

Let n # 3 and K be a non-Archimedean local skew field of characteristic zero. Let
X be the Bruhat-Tits building of PSL,,(K) and X be a transitive graph. If X verifies
thac
« There is an injective homomorphism p from Isom(X) to Isom(X) such that
p(Isom(X)) is of finite index in Isom(X);
« There is a [som(X)-equivariant injective quasi-isometry q from X to X;
then X is SLG—rigid.

As stated in Chapter 1, the proof—and subsequently this chapter— deals mninly with
the case where n > 4. Recall that the main idea of the proofis to define a “hybrid” graph
that will be locally the same as the building X, in order to Cxploit the LG—rigidity of X.
This construction is done in the second section of this chapter and relies on the notion of
print introduced in Chapter 2. We then show in the third section that the covering from
the building to our hybrid graph induces a covering from X to Y. But before entering
the heart of the matter, we show and recall some useful material concerning extension
of isometries and the isometry group of our studied graph Isom(X).

PRELIMINARY RESULTS

Before diving into the core of the proof, let us state some necessary material.

3.1 Isometries extension

To build the “hybrid” gmph mentionned above, we will first define vertices and edges
locally. That is to say we will first define a (finite) graph that will be isometric to a ball
in X and part of which will be Composcd of the vertices of a ball of radius Rin Y. In order
to extend that definition of a graph locally the same as the building to the definition of
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one globally the same as X, we will need to be able to extend local isometries. We recall
here the result of de la Salle and Tessera [dlST19, Lemma 4.1] that will serve our purpose.

Proposition 3.1.1 (de la Salle, Tessera)

Let Sbe a gmph with cocompact discrete isometry group. Given some 11 > 0, there
exists 12 > 1 such that: for every g € G, the restriction to Bg(g,r1) of an isometry f
: Bg(g,12) — § coincides with the restriction of an element of Isom(S).

We illustrate the above proposition in Figure 3.1. The local isometry f is defined on
Bg(g,12) which is represented by the dark blue disc. When restricted to Bg(g, 1) (rep-
resented by the light blue disc), the isometry f coincides with a global isometry of §
denoted by a.

Bg(g,fz)

TBg(g,r1) = ABg(g,m1)

Figure 3.1.: Extension of a local isometry

It is however not ncccssarily true that f coincides on the whole B(g, 2) with an isom-
ctry of §. Indeed, truncating the entire graph to some ball might allow some kind of
ﬂcxibi]ity near the boundary of the ball (see Examplc 3.1.2 and Figure 3.2). Hence, in
order to coincide with a global isometry we need to restrict the local isometry f to a
smaller ball which do not conrtain the flexible area.

Counter-example 3.1.2. Let § be the Cayley graph of Z? endowed with its usual gen-
crating part. We consider in Figure 3.2 an isometry f defined on B((O, 0), 1) such that
f fixes (0,0), (—1,0) and (0,—1) (represented by the blue vertices) and exchange (1,0)
with (0,1) (the orange and brown vertices). Then f is an isometry from B((0,0),1) to
B((0,0), 1), but can not coincide with a global isometry of § on that ball. Indeed, if such
a global isometry existed, then it should send the vertex (—1,1) (represented by the light
brown vertex on the left part of the ﬁgure) at distance 1 from both f(—1,0) = (—1,0) and
(0,1) = (1,0). Which is impossible since the only point at distance 1 from (1,0) and
(—1,0) is (0,0) and it is already the image of (0,0).

3.2 Preliminary results on X

We saw that the building can be partitioned into types (or PSL, (K)-orits). We now prove
that if im(q) intersects with a given PSL,, (K)-orbit then it contains the entire orbit.
Lemma 3.1.3

If X verifies the hypothesis of Theorem 1.2.6, then PSL,, (K) is included in p(Isom(X)).
Moreover, if q(X) contains a vertex of a certain type i, then ¢(X) contains all the
vertices of type i.
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3.2

Figure 3.2.: Local isometry that can not coincide with a global one on its entire domain
of definition

Proof. Since p (Isom(X)) is of finite index in the isometry group of the building X, the
same goes for its normal core Ngersom(x) g (Isom(X)) g~ Then, by simplicity of PSL,, (K),
the normal core of p (Isom(X)) contains PSL,, (K). Hence the result.

Then, the second part of the lemma follows from the equivariance of q and the tran-
sitivity of PSLy(K) on vertices of the same type. O

Without loss of generality, we can assume that im(q) contains type 0 vertices, that is
to say T '(0) C im(q). Moreover, using Proposition 1.1.12 we obtain that X is simply
connected at some scale k > 0.

3..3  Hypothesis

The aim of the next two sections is to prove Theorem 1.2.6 for n > 4. For the sake of
clarity we recapitulate here the needed assumptions for the proof.

Hypothesis (H)

1. Let X be a k-simply-connected transitive graph;

2. Let Y be a graph R-locally X and k-simply connected;

3. Let n >4 and K a non-Archimedean local skew field of characteristic
zero and denote by X the Bruhat-Tits bui]ding of PSL,(K);

4. Let p : Isom(X) — Isom(X) be an injective homomorphism and q be an
Isom(X)-equivariant injective quasi-isometry from X to X;

5. Assume that p(Isom(X)) is of finite index in Isom(X) and that g(X)

contains T '(0).

Unless otherwise stated we will assume from now on that (H) is verified. We can now

define our hybrid graph Y.

DEFINING OUR HYBRID GRAPH

This section is dedicated to the definition of a graph locally the same as X which we will
call' Y. Before moving to the detailed definition let us explain the idea of the construction.
Recall that the vertices of X are partitioned into different types (see Section 2.1) denoted
by integers in {0,...,n — 1}. By Lemma 3.1.3 if q(X) contains a vertex of a certain type
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then it contains all the vertices of that type. Denote by T the set of types that are not
contained in q(X), namcly T={0,..,n—1N\1(q(X)). We have the following partition

X =qX) U (Uiert (1)) (3.1)

Example 3.2.1. Take K = Q2 and assume thatim(q) is composed only of type zero vertices.
When n =2 we have T ={1} and the bui]ding is rcprcscntcd in Figure 2.1a. The partition
in eq. (3.1) corresponds to the partition of vertices in two different colors.

When n = 3, we get T ={1,2}. An apartment of X is rcprcscntcd in Figure 2.2 and the
partition of this part of X corresponds to the partition in three different colors.

Example 3.2.2. Letn =4 and K = Q; and assume that im(q) contains type zero and type
2 vertices. Then T = {1,3}. We will not try to represent X or an apartment but recall
that it is tiled by tetrahedrons. The partition is illustrated on a tetrahedron in Figure 3.3,

where im(q) corresponds to the two blue vertices.
Type 1

Type 3

ar

im(q) (Type 0 and 2)

Figure 3.3.: Partition of a simplex

The idea of the construction of Y is to take the vertices of Y and add to them vertices of
the missing types, ie. vertices with type in T (see Figure 3.6 for an example). But we want
to build this vertices only with informations encoded in V(Y). That is Why we introduced
the notion of print of a vertex in the building (see Definition 2.3.1).

The construction of Y is organised as follows. Using a well chosen set of isometries
from Y to X (see Section 3.2.1), we transfer this print notion to Y, each print in Y corre-
sponding to a vertex of a missing type (see Section 3.2.2). We conclude with the definition

of our graph Y.

3.21  Atlas of local isometries

To build our graph locally the same as X, we need to restrict ourselves to a particular set
of local isometries from Y to X. More precisely, if‘y1 and Yy, are close in Y and f; (resp.
f,) is an isometry from By (y1, R) (resp. By(yz2, R)) to X, we want the transition map f2f7!
to coincide with an element in p~'PSL,(K) on a small ball. This is what we formalize
here and schematize in Figure 3.4.

In order to avoid any ambiguity regarding the notion of center of a ball, let us precise
our definition of ball in a graph. What we mean when we talk of “a ball of radius R” is
actual]y a pointed ball of radius R that is to say, a couple (B,y) such that y is a vertex in
Y and B = By(y,R). We will abuse notation by denoting such a pointed ball By (y, R)
(instead of (By(y, R),y)). This way, the center of a ball is :ﬂways well defined.
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Definition 3.2.3

Let 2 be a set of isometries from balls of radius R in Y to X, We say that 2 is an atlas
of local isometries from Y to X if the map that associates to each isometry in 2 the
center of its ball of definition is a bijection from 2 to Y. That is to say, we can write

A:={fy : By(y,R) = X|ye Y},

where the map that associates fy toy is bijective.

We say that fy is the isometry associated to y in 2L

Let Ho := p~'PSL,, (K). Now, we show that we can construct an atlas of local isometries
from Y to X such that the transition maps between two isometries defined on balls with
neighbouring centers coincide with elements of Ho. We will note a path between two
vertices vi and v, as a sequence (v1, ..., v) of adjacent vertices.

Lemma 3.2.4

Let ra > 0 and let Hg := p~'PSL,(K). For R large enough, if Y is R—locally X, then
there exists an atlas 2 such that for any two neighbours y and z in Y

JaeHo fy-f:' IB(fs(z),ra) — QUB(fz(2),ma)- (3.2)

Before proving it, let us schematize the framework of this lemma. In Figure 3.4 we rep-
resent two isometries fy and f, with z neighbour to y. The larger discs correspond to
balls of radius R and the smaller ones to balls of radius ro. The map fy ;" restricted to
B(f2(z),7a) takes f.(z) to fy(z) which is a neighbour of f (y) and coincides on this ball
with and element in Ho. Let us discuss the idea of the proof. First, for two neighbours

fy

_

!
Figure 3.4.: Composition of isometries with neighbouring centers

y and z we use Proposition 3.1.1 to prove that fyf;" coincides on a small ball with an
element a in Isom(X). This isometry corresponds to the “default” of belonging to Ho we
want to correct. Hence, we consider in our atlas the new isometry defined on B(z,R)
by af.. Finally, we extend this construction along paths in Y and prove that the wanted
property for 2 does not depend on the choice of path.
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Proof of Lemma 3.2.4. Let ta > 0 and let Ho := p~'PSL,(K). Now, let y € Y and f, be an
isometry from B(y,R) to X. Let zbe a ncighbour ofy in Y and f, be an isometry from
B(z,R) to X. Then the map

fy 21 Bx(Falz), R=1) = Bx (fy(2),R—1)

is a well defined locnl—isomctry of X. By Proposition 3.1.1 ifRis 1argc Cnough, there exists
a in Isom(X) such that f, - fz ' coincides with a on Bx (f;(z),7a + k), where we recall chat
k refers to the scale at which Y is simply connected. We will see below Why we need to
consider such a radius.

Now let f, := af,. By definition we have

. .{BY(Z,R) — Bx (fy(2),R)

z = afz(z) = fg (z),

thus the transition map f, ', is well defined on Bx(f.(z), R—1). Moreover, by choice of
f. we get that fyf*] , restricted to B(fy(z),rA + k) coincides with the identity and thus
belongs to Ho.

Extending this construction aiong paths inYwegetan atlas 2 of local isometries from
Y to X.

Now ify €Y and fy is the associated isometry in 2l, we want to show that (up to a
multiplication by an element in PSL,(K)) this isometry does not depend on the choice
of path. Solety € Y and (yo = y,y1,..,y1 = y) be a loop of length 1. Take fo to be an
isometry from By(yo,R) to X and using the process detailed above, build a sequence of
isometries f1, ..., f; such that f; is defined on By(y;, R) and

vie{l,...,1} Ja; € Ho | (fi,lf;‘)‘B(fi(yi)7TA+k) = QUB(fi(yi),ra+K)-

We have to prove that the restrictions to B(yo,ra) of fo and f; are equal up to a multi-
plication by an element in Ho. Since Y is simply connected at scale k, we only have to
prove this for loops oflcngth smaller chan k. Hence, we assume that 1 < k.

First, remark that for all i € {0, ..., 1 — 1}

fiify! @ Bx (fi(yi),Ta + k) — Bx (fi—1(yi),7a + k),

fif)y @ Bx (fir1(Yis1),ma +k) = Bx (fi(yic1),Ta + k).
Now since y; and yi41 are at distance 1, the ball Bx (fi(yit1),7a + k— 1) is included in
Bx(fi(yi), A + k). Hence the map (fi_1f;") (fif)y) is well defined and coincides with

i+1
aiair1 on Bx (fir1(yip1),ma +k—1).
By induction we get that for all x in Bx (fiy1(yis1),7a +k—1+1)

fofy T(x) = (fofy 1) = (fiify ') (x) = ay = ar(x).

Since H:ﬂ ai belongs to Ho and 1 is smaller than k, it implies that fo is equal to fy on
By (Yo, Ta) up to multiplication by an element in H. O

The atlas is defined such that a transition map between two isometries defined on
balls with neighbouring centers belongs to Ho. But in fact, this property is also true
when the centers are at a slightly bigger distance.
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Lemma 3.2.5

Let > 0 and 2 be an atlas verifiying the conditions of Lemma 3.2.4 with ra > 3r.
Lety and z in Y be at distance less than 2r and fy, f, the associated isometries in 2.

Then
JacHo (fyf;])\sy(z,r) = ABy(z,7)- (33)

Proof. Let v > 0 and assume ra > 3r. Let y,z € Y be at distance 1 < 2r and let fy, f, be
two elements of 2 such that

fy : By(y,R) = X f; : By(z,R) = X.

Take (yo =y,y1,...,y1 = z) to be a geodesic between y and z, and for all i € {0, ..., 1}, let
f; € A be the isometry associated to yi. Remark that by definition of an atlas, it implies
fo = fy and fy = f, and

. —1 —
VEE{0, s L=T) Fac e Ho (BT ) gy o)) = QB e )ra)-

Now, ifra > 3rand 1 < 2r, then By(z, 1) is contained in By (y, Ta ). Hence the composition
of transition maps (fofy ") = (f_1fy ') is well defined on By (fi(y), ra — 1) and verifies on
that ball

fofy ! = (fofy ") = (fioafy') = ao - ar_1. (3.4)

Hence the result. O

3.2.2 PrintsinY

Using the atlas built above, we can now transfer chis print notion to the gmph Y. Let
rp > 0and assume that Y is endowed with an atlas of isometries % as given by Lemma 3.2.4

with r4 > 3rp. Hence, we have
R>ra >3Tgp > To.

Definition 3.2.6

Let P be a set of vertices in Y. We say that P is a print if there exists y in Y and f € 2
an isometry from By (y, R) to X such that

« The set P is contained in By(y, 13);

« There exists x € X\im(q) such that P(x) = qf(P).

Remark 3.2.7. Note that in the definition above we ask that x does not belong to im(q).
The definition would also make sense if x bclongcd to im(q) but the purpose of these
prints is to reconstruct the "missing” vertices, namely vertices that are not in the image
of q. Thus to simplify formalism in the next pages, we chose to restrict now the definition
to prints of vertices in X\im(q).

Example 3.2.8. If n = 3 and p = 2 there are exactly 3 types of vertices, each represented in
Figure 3.5 by a different color. The 1-neighbourhood of a vertex x in X is then composed
of fourteen vertices, represented on the right side of the aforementioned figure (where

x is the brown vertex at the center). If x € X\im(q) then seven of these fourteen vertices
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are in im(q) (the blue vertices). On the left side of the figure is represented P (the black
dots) inside B(y, rp) (the darker disc). The set qf(P) is Cxactly the set of blue vertices.
Hence P is a print.

qf
Y —_— X
OB(y,R) 0qf(B(y,R)) ox
®B(y,y) 0qf(B(y,rs)) ®B(x,1)\qf(P)
- Elements of P @qf(P) = P(x)

Figure 3.5.: Definition of a print in Y

For now, let’s say that P verifying the definition above is a print associated to y and f.
We are going to show that this definition depends neither on y nor f.

Lemma 3.2.9

Letyr,yz2 € Yand fy, f2 be the associated isometries in 2. Let P be a print associated
toyy and fy. If P C B(yz,Tp) then P is a print associated to y, and f5.

Proof. First, remark that since P € B(yz,19) N B(y1,Tp), then taking any y in P we get

dyv(y1,y2) < dv(y1,y) + dv(y,y2) < 2rp.

Applying Lemma 3.2.5 with r =1, we get that there exists a € Ho such that

—1 —
(f1f2 )|Bx(fz(yz),rg,) = QBx(fi(y2),re):

Now let x € X be such that P(x) = qf; (P). Using the equivariance of q and Lemma 2.3.7,
we get
qf2(P) = p(a)"qf1(P) = p(a) 'P(x) =P (p(a) ' (x)).

Hence P is a print associated to yz and f5. O

This last lemma proves that being a print does not depend on the choice of local
isometry.

Remark 3.2.10. In the above proof p(a)~'(x) has same type as x since p(a) is type pre-
serving, Thus, once we have taken our atlas in PSL,,(K), the type of the source of qf(P)
does not depend on the choice of local isometry f.



3.2.3  Definition of Y: a building’s replica

The following property defines the graph Y we will demonstrate to be locally the same
as X.

Proposition 3.2.11

Letrp > 0 and 2 be the atlas given by Lemma 3.2.4 for ra > 3rp. If Ris large enough,
then the fol]owing gmph is well defined.
Let Y be the graph whose vertices are given by

V(Y):=V(Y)U{P : Ix € X\im(q), P(x) =P},

and edges are given by:

« Ifys,yz2 € V(Y), then (y1,y2) is an edge if there exists z in Y and f € A defined
on By(z, R) such that y1,y2 € B(z,v9) and dx(qf(y1), qf(y2)) = 1.

« IfyeVv(Y)andPisa print, then (y, P) isan edge if there exists zin Yand f € 2
defined on By(z,R) cointaining y and P and such that qf(y) is at distance 1
from the source of qf(P).

« If Py and P, are two prints, then (Py,P;) is an edge if there exists z in Y and
f € Adefined on By(z, R) such that Py, P, € By(z, r9) and such that the source
of qf(Pq) is at distance 1 from the source of qf(P2).

Before looking at the proof of this property, let us sketch some part of this graph.

Example 3.2.12. If n =4 then X is composed of vertices of type 0, 1, 2 and 3. Assume that
q(X) is composcd of vertices oftypc 0and 2, then T = {1, 3} and we saw the Corrcsponding
partition of X in Example 3.2.2 and Figure 3.3. The appearance of the corresponding V(Y)
is represented in Figure 3.6.

Ay

Prints

Figure 3.6.: Schematic view of V(Y) in the case of Example 3.2.12

Proof. Let Y be as in Proposition 3.2.11 and let us show that the definition of the edges
does not depend on the choice of f in the atlas.

First, letyq,y2 € Yandy, z € Y such that y; and y; belong to B(y, rp)NB(z, rp). Then,
take two local maps fy, f, in 2 associated to y and z respective]y. Then d(y,z) < 2rp
and by Lemma 3.2.5 there exists a € Isom(X) verifying eq. (3.3). Hence, by Isom(X)-

cquivariance of g we get

dx (af=(y1), af=(y2)) = dx (p(a)af(y1); pla)af. (y2))

= dx(q(afz(u1)), q (af(y2)) ) = dx (afy (y1), afy (y2)).

Thus dx (qu(y1 ) qu(yz)) = Tifand onlyif dx (qu (Y1), qfy (yz)) =1 and the definition

ofcdgcs between two vertices of Y does not dcpcnd on the choice of local isometry.
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3.3

Now take y € Y and let P C Y be a print. Let z and 2’ such that y and P are contained
in B(z,mp) N B(z/,1p) and take f (resp. f') in A defined on B(z,R) (resp. B(z/,R)). Then
d(z,z') < 2rp and by Lemma 3.2.5 there exists a € Isom(X) verifying eq. (3.3). Hence,

dze(af(y), x) = dze(p(a)qf(y), pla)(x))
— dx(q (afly)), pla)(0)) = dx (4 (), p(@)(x)).

If x is the source of qf(P) then, by Lemma 2.3.7 we get

Plpla)(x)) = p(a) (P(x)) = p(a)qf(P) = qf'(P).

Thus, the existence of en Cdgc between y and P in Y does not dcpcnd of the choice of
map in 2.

Finally, take Py,P> C Y two prints and let z,z in Y and f € 2 (resp. ') defined on
By(z,R) (resp. B(z/,R)) such that Py, P, C By(z,mp) N By(2/,13). Again d(z,2/) < 2rp and
by Lemma 3.2.5 there exists a € Isom(X) Vcrifymg eq. (33). Hence if %7 is the source of
qf(P1) and x, the source of qf(P2), then d(x1,x2) = 1if and Only it d(p(a)(x1), p(a)(xz)) =
1. Morcover, by Lemma 2.3.7

Vi=1,2 Plp(a)(xi)) = pla) (P(x1)) = pla)qf(Pi) = qf'(P).

Hence the existence of en edge between Py and P, in Y does not depend of the choice of
map in the atlas 2. O

FROM ONE GRAPH TO THE OTHER

In this section we prove the isometry between the graph Y built and the Bruhac-Tits
building and show that it induces an isometry between X and Y.

3.31  Isometry with the building

We can now prove that Y is isometric the Bruhat-Tits building. Recall chat ra is the
radius used to define our atlas 2 (see Lemma 3.2.4) and 15 is the radius used to define
prints in Y (see Definition 3.2.6). These constants Vcrify R>1a > 319 > 19p.

Lemma 3.3.1

Let Ry > 0. If rp (and hence R) is hrge enough, then Y is Rx—locally X.

To prove this lemma, we define explicitely the local isometries on balls of radius Ry
and prove that these maps are well defined injections. Then, we compute the minimal
value of rp necessary for these applications to be surjective on balls of radius Ry. We
conclude by showing that these maps preserve the distance.

Proof. Letv € V(Y). If v € V(Y) let f € 2 be the isometry defined on By(v,R). Ifvisa
print P let y and f € A be such that P is a print associated to y and f. Our goal is to show
that the map

By(v,Ryx) — X,
dr:QzeY = qf(y),
Q — x where P(x) = qf(Q)a



is an isometry.

By Proposition 2.3.4, it is a well defined map. Moreover, using the injectivity of g and
Proposition 2.3.4 and eq. ('3.1) we get that ¢¢ is an injective map.

Now, recall that since q is a quasi-isometry, two clements q(x1) and q(x2) joined by
an edge in X might be at distance greater than 1 in X. If we want to prove that ¢y is
surjective on Bxc(d¢(v), Ry ) and preserves the distance, we have to show that there exists
a radius 1o allowing us to “reconstruct” all the edges of By (d¢(v),Ry) in By(v,Ry). Let
L, e > 0 be such that q is a (L, ¢)-quasi-isometry. We distinguish three cases, represented
in Figure 3.7.

If x1,x2 € im(q), then let x1,x, € X such that q(x;) = xi. They verify dx(x1,x2) <
Ldx(x1,X2) + €. This case is represented in Figure 3.7a.

If x; € im(q) and x2 ¢ im(q), let x; = =" (x1). For all x, € X such that q(x,) € P(x2), we
have (see Figure 3.7b)

dx(q(x1),q(x2)) < 1+dx(x1,%x2) = dx(x1,%2) < Ldx(x1,x2) +L+e.
Ifx1,x2 ¢ im(q), let x; € X such that q(x;) € P(xi) for i =1, 2. Then (see Figure 3.7b)
dx(q(x1),9(x2)) < 2+dx(x1,%x2) = dx(x1,%2) < Ldx(x1,Xx2) +2L + .

Hence, assume mp > LRy + 2L + € and let us show that ¢y is an isometry.

P(x2) Plx2)
X
) q(x2) qlxa)
_r & 0
v X2 5 X2 "
T - Cre
@ @ 0
- - X1
D
X1 X1 Px1) q(x1)
(a) First case (b) Second case (¢) Third case

Figure 3.7.: The three cases (im(q) 18 represented by the blue vertices)

Let x € Bx(¢¢(v),Rx), by choice of vy either x € im(q) and then there exists z €
By (y,rp) such that qf(z) = x or x ¢ im(q) and then there exists P ¢ By(y,rp) such
that gf(P) = P(x). Hence, in both cases x € im(¢¢) and thus, ¢y is a bijection from
By (v, Rx) to Bx(d¢(v), Ry). Now take v,V in By(v, Ry) at distance Lin Y and let (wy =
V1, W1, .., W = v3) be a geodesic in Y. By definition of Y and choice of rp, for all i €
{0, ... ,1—T1}if there is an edge between wi and wiq, then d(d¢(wi), d¢(wir1)) = 1. Hence
dx(dpr(vi), dr(v2)) <1 To get the reversed inequality, take x1,%2 in Bx($¢(v), Ry). Since
¢ is bijective there exists vo, ..., vi in Y such that (¢¢(vo), ..., ¢(v1)) is a geodesic between
x7 and x>. Again, by definition of Y and choice of rp, an edge between ¢ (vi) and b (vipr)
gives an edge between v and viyq in Y and thus dy(vy,v2) < L

Hence, if 79 > LRy + 2L + ¢ then ¢¢ is an isometry. O]
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The LG-rigidity of the building will give us a covering from X to Y. In order to obtain
an isometry we need to prove (by Proposition 1.1.11) cthat Y is simply connected at the
same scale as X.

Lemma 3.3.2

If Ry (and hence R) is ]argc cnough, then Y is simply connected at scale 3.

We first prove that Y is quasi-isometric to Y and use it to show that Y is simply connected
at some scale k'. We conclude using the Contractibility of the bui]ding and the fact that
Y is locally the same as the building. But before looking at the detail of the proof; let us
make a remark.

Remark 3.3.3. Let P be a print associated to somez € Yand f € A and lety € P. If x is
the source of qf(P), then dy(P,y) = dx(x, qf(y)) = 1.

Proof of Lemma 3.3.2. Let us show that Y is quasi-isometric to Y. Define m:Y — Y such
that ify € V(Y) then n(y) =y and if Pis a print then 7(P) =y for somey € P arbitrarily
chosen. Let (vo, ..., vim) be a geodesic in Y and for all 1 € {0, ..., m} define y; := n(v;) and
f; to be the isometry of 2 associated to yi. Using that q is a (L, ¢)-quasi-isometry, we get

3

dy (m(vo), (vin)) = dy (Yo, ym) < Y_ dy (Y1, Yis1),

-
o

l\/]a

[Ldx (afi(yi), afi(yie1)) + €] .
5

Now let i € {0, ..., m}. If v; is a print, denote by x; the source of qf(v;) and if v; belongs
to the copy of V(Y) contained in Y let x; := qfimt(vi). Then dy (vi,viy1) = dx(xi, xi41) for
all i. Thus, using remark 3.3.3, we get
x (qfi(yi), qfi(yit1)) < dox (qfi(yi), %) + daxc(xi, xi41) + dx (i (Yie1), Xie1)
< 24 dx(xi,Xie1) =24 dy (vi, vigr) .

Since dy (vi,viy1) = 1, we obtain
m
dy (mt(vo), m(vim)) = dy (Yo, Ym) Z L2+ Ldy (vi,vis1) + €],

= (BL+¢)m = (3L + ¢)dy (vo, Vm) -

Now let v,v' € Y and let (n(v) = zo, ..., (V') = z) be a geodesic in Y. For all i € {0, ..., 1}
take f} € 2 the isometry associated to z;. Then

-1
dy(v,v) < dy(v,zo) + ) _ dy(zi,zi41) + dy(z1,V).
Fry
But by remark 333 ifv (resp Vv)isa print then dy(v,z0) =1 (resp. dy(V,z1) = 1). And if
v (resp. v') belongs to V(Y) then v = zo (resp. v/ = z¢). Thus both dy(v, z0) and dy(v', z1)
are always smaller than 1. Hence,

L 11
dy(v,v) <2+ ) dylzi,zi01) =2+ ) dux (afi(z1),qf (zi11))
izo izo
11
<24 Z [Ldy(zi,zi1) + €],
izo

=2+ (L+e)l=2+(L+¢)dy(n(v),n(v)).
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Thus 7 is a quasi-isometry between Y and Y. Hence Proposition 1.1.12 implies that there
exists k' € N* such that Y is simply—conncctcd at scale k.

Finally, let ¢ be loop in Y of length less than k'. If Ry is large enough then € is contained
in some ball B in Y. By Lemma 3.3.1 there exists a local isometry ¢ from B to some ball
B in X. But ¢(€) is contractible inside its convex hull, by Claim 2.2.2. In particular it is
simply-connected. Since X is 3-simply-connected and if Ry is large enough, the convex
hull of ¢(£) is contained in the Complex obtained by gluing triangles on all the 100ps of
length 3 in B. Which, by local isometry with B, proves the wanted assertion.

O
Thanks to the previous lemma, we can now use the rigidity of the Bruhat-Tits building.

Proposition 3.3.4

If Ry (and hence R) is large enough, then Y is isometric to X.

Proof. Recall that we have R > rA > 319 > rp > 3Ry + 2L + ¢ > Ry.

By Theorem 1.2.1, the building X is LG-rigid. Moreover, since its isometry group is transi-
tive Proposition 1.1.11 gives us the existence of some radius Rge. > 0 such that every graph
which is 3-simply connected and Ryc-locally X is isometric to X.

By definition of the Cdgcs on Y, this graph is simply connected at scale 3. Taking Tp
(and hence R) large enough so that Ry > Ry the preceding paragraph combined with

Lemma 3.3.1 give us the existence of an isometry between X and Y. O

3.3.2  Change of local map, change of global isometry
Lety € Y and fy € 2 be the isometry defined on B(y, R). Let

By(y,Rx) —X
by 1 {zeY — qfy(z) (35)
Q = X where P(x) = qfy (Q).

Lemma 3.3.5
Let y and z be neighbours in Y and a € Ho such that fyfz! coincide with a on
Bx(f(z),7a). If Ry is 1arge enough, then by ¢z ! coincide with p(a) on Bx (¢ (z),2).

Proof. Let y and z be neighbours in Y and a € Ho such that fyfz! coincide with a on
Bx(f(z),7a). If Rx (and hence R) is large enough, then By(z,2) is contained in By(y, Rx).
Thus, ¢ydz ! is well defined on By (¢ (2),2).

Let v € By(z,2). If v € V(Y), then

dy(v) = qfy (v) = qafz(v) = p(a)qf.(v) = p(a) P (v).
If v="P with P C Y a print, then

P(by(v)) = qfy(P) = qaf:(P) = p(a)qf.(P) = P(p(a)d.(v)),

Thus ¢y (v) = p(a)d.(v), since the print determines the vertex. Hence the result. L]
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Now let r > 0. If Ry is large enough then, by SLG-rigidity of X there exists an
isometry y, from Y to X that coincides with ¢y on B(y, x). Thus, the lemma above allows
us to work with a set of isometries from Y to X that differs only by a multiplication by
an clement of PSL,, (K).

Lemma 3.3.6

Ify and z belong to Y and Ry is large enough, then iz € PSL,(K). Hence for
ally €Y, the isometry Ly sends the copy of V(Y) contained in Y to im(q) and sends
prints contained in Y to vertices in X\im(q).

! is an isometry of X it permutes the

Proof. Let y and z be neighbours in Y. Since 1z
PSL,, (K)-orbits. Recall that vy coincides with ¢y on B(y, x). Hence, if vy (and hence R)

is large enough, then By(z,2) is contained in By(y, r), thus

—1 _ —1
(W) By (z),2) = Pz

But ¢y dz " coincides with an element of PSLy, (K) on Bx(¢-(z),2), by Lemma 3.3.5. Hence
Ly iz ! restricted to a ball of radius 2 preserves the PSL,, (K)-orbits. Since such a ball con-
tains a vertex of each type, it implies that 127 preserves the PSLy, (K)-orbits and thus
bclongs to PSL,, (K).

Now take y and z in Y (not necessarily neighbours), denote by (yo =y, y1...,y1 =2) a
gcodcsic inY. By the prcccding paragraph, there exists a sequence «i, ..., o of elements
in PSL, (K) such that

viel{l,..,l} Lyity_L] = 4.

Thus, recalling that z = yy and y = yo, we get 1, = oy xy1,. Which proves the first
assertion of the lemma.

Let us now prove the second part of the lemma. Lety € Yand v € Y. There existsz € Y
such that v € By(z,2), and using the paragraph above, there exists a € PSLy, (K) such that

ty = atz. In particular, since v belongs to By(z, Ry),
Ly (V) =z (v) = ad.(v).

By definition of ¢, if v € V(Y) then ¢.(v) belongs to im(q) and if v =P withP c Y a
print, then ¢ (v) belongs to X\im(q). This finish the proof of the lemma. O

Now we have all the tools we need to prove the isometry between Y and X.

3.3.3  Isometry from Y to X

Let k be che natural injection of Yin Yz and v an isometry given by Proposition 334
With the objects constructed so far we get the diagram in Figure 3.8.
The aim of this section is to prove the following result.
Proposition 3.3.7
For Ry large enough, the graphs Y and X are isometric.

Let us discuss the strategy of the proof. Using the preceding section, we chose an isom-

etry t from Y to X that coincides with a ¢y ona small ball. Then, we show that KLq*] is
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q X
X————— X 0
T [som(X) —— I[som(X)
R-loc | , isom. ab—— p(a)
:' HO PS Ln ([K)
Y——— Y
K
(a) Maps between graphs (b) Relations between groups

Figure 3.8.: Relations between the different graphs and groups

L LK restricted to any bZlH Of

locally an isometry, viz. there exists a radius ry such that q-
radius ry preserves the distance. We conclude by showing that it forces kig™' to be an

isometry.

1

Proof of Proposition 3.3.7. By Lemma 3.3.6, for any y € Y the map q 'y« is well defined.

-1

Now fix yo € Y and consider t := 1;,. We want to prove that q~'wk restricted to small

balls preserves the distance. Then we will show that it is an isometry from Y to X.

1

Claim 3.3.8. Lety € Yand ry > 1. If Ris large enough, then g~ "k restricted to By(y, vy)

preserves the distance.

Proof of the claim. Let ry = 1 and recall that we have R> 14 > 3rp > 19 > 3Ry + 2L+ ¢ >
Rx > rx. Lety € Y and recall that L and e are constants such that q is a (L, ¢)-quasi-
isometry. If ry > Lry + ¢ (and hence if R is large enough) then k(By(y, rv)) is included in
By(y, ). Indeed if z € By(y, ry) then

dx (afy(¥), afy(2)) <Ly (Fy(), fy(2)) + & = Ldvly,z) + ¢ < Lry +e < 7.
Thus ¢y (k(z)) = qfy(z) and
dy (x(y), k(2)) = dax (by (x(y)), by (k(2))) = dx(afy (y), afy (2)) < Ra

Now, recall that Hy = p~"PSL, (K). Then, by Lemma 3.3.6 there exists ay € Ho such that
" = p(ay). Hence, using the equivariance of q we get that for all z; and z, in By (y, rv)

dx (@ "tk(z1),q " k(z0)) = dx (ayq " klz1), ayq N ik(z)
= dx(q""playJix(z1), 4" play )ix(z1))

= dx(a " oyk(z0), 4 T y(z))-
But z; and z; belong to By(y, rv), hence for i = 1,2 we have vy«(zi) = qfy(z;). Thus,

dx (@ "z, a7 k(z)) = dx (a7 afy(z1), Aty (22))

= ax(fy(z1), 1y (z2)) = dv (21, 22).

Thus q~ "k restricted to By (y, ry) preserves the distance. O

43



'tk to be an isometry from Y to X. Take ry > 2 and

Let’s show that the claim forces q—
lety,y" € Yand (yo = y,y1,.,y1 =y’) be a gcodcsic in Y. Since for all 1 the vertices
yi and yi41 are adjacent, then Claim 3.3.8 implies that dx(q~"w(yi), g~ "ik(yi1)) = 1.

Hence

-1
dx (@ (), a " wy)) < Y dx (a7 wlyo),q k())<= L
i=0

Moreover, if (xo = 7" tk(y), X1, ., xm = ¢~ 'tk(y’)) is a geodesic in X, then by bijectivity

of q~'ik there exists z; € Y such that g~ "wk(z1) = x; for all i in {1,..,m — 1}. Denote
zo =y and z,, = y'. Since for all i the vertices x; and x;,1 are adjacent, then Claim 3.3.8

implies that dx(zi,zi11) = dxc(q 7" tk(z1), " tk(zi41)). Thus

m—1 m—1 m—1
dyv(y,y) < ) dvlzizin) = ) dx(q*m(m,q*m(zm) =Y dx(xi,xie1) =m
i=0 i=0 i=0

We conclude by the proof of Theorem 1.2.6.

Proofof Theorem 1.2.6. Letn # 3 and X Verifying the hypothesis of Theorem 1.2.6. If n =2
then X is the (p + 1)-regular tree, thus by Example 1.1.3 if X is quasi-isometric to X then
X is LG—rigid. Ifn > 4, let k € N such that X is simply connected at scale k. Then by
Proposition 3.3.7 for R large enough, any k-simply-connected graph Y being R-locally the
same as X is isometric to X. Thus X is LG—rigid. Finally for any n # 3, since X is assumed

transitive it is actually SLG-rigid by Proposition 1.1.14. O
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4.1

RIGIDITY OF LATTICES

— Quiest-ce que tu sais sur les réseaux cocompacts?
— Les risottos trop compacts ? Il faut les delayer avec
du bouillon.

— Conversation téléphonique avec F. Caron

In tl’liS chapter W¢ prove %eorem 1.2.5 Wl’llCh we 1‘€C2111 hereunder.

Theorem 1.2.5

Let n # 3 and K be a non-Archimedean local skew field of characteristic zero.
The torsion-free lattices of SLy (K) are SLG-rigid.

Letn # 3, let K be a non-Archimedean skew field of characteristic zero and I' < SL, (K)
be a lactice without torsion. Denote by (T, S) one of its Cayley graphs. Recall that any

lattice in SL,, (K) is uniform (i.c. Cocompact).

QUASI-ISOMETRY BETWEEN BUILDING AND LATTICE

To show the theorem, we first check that the lattice is quasi-isometric to the building.
Then, using a famous result of Kleiner and Leeb we show that the isometry group of the
lattice acts on the building and that the quasi-isometry can be chosen to be equivariant
under this action.

Lemma 4.1.1

Let A be a lattice of SL, (K). Then A is quasi-isometric to X.

Proof. First, recall that any lattice in SL, (K) is uniform, viz. cocompact (see for example
[BQi4]).

Since A is a lattice of SLy(K), there is a natural action on the Bruhat-Tits building
induced by the action of PSL,(K). Morecover, since A is cocompact and the PSLy(K)
action has exactly n orbits, the A action is also cocompact. Hence by the Svarc-Milnor’s
lemma A is quasi-isometric to X. O

By a result of Kleiner and Leeb [KL97] and Cornulier [Cor18, Theorem 34B.1] ap-
plied to our lattice T, this quasi-isometry implies the existence of a homomorphism
from Isom(T, S) to Isom(X) and a quasi-isometry from (T, S) to X which is Isom(T, S)-
equivariant. Since T is assumed to be torsion-free, we can refine the informations about

these two npplications.
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4.2

Lemma 4.1.2

Let A be a lactice of SL, (K) and T a symmetric generating set. If A is torsion-free,
then there exists an injective homomorphism

p : Isom(A,T) — Isom(X),
and an injective quasi-isometry which is Isom(A, T)-equivariant

q: (AT)—= X

Proof Since we assumed that A has no torsion element, by Proposition 1.2.7 the isometry
group of (A, T) contains no non-trivial compact normal subgroup. Hence the morphism
p given by Kleiner-Leeb'’s theorem is injective.

Assume that there exist A1,A; € A such that Ay # A2 and q(A1) = q(A2). Then, the

cquivariance of ¢ implies that
a({on)" s ment) =(a(en,

which contradicts the fact that q is a quasi-isometry. O

RELATION BETWEEN THE ISOMETRY GROUPS

To apply Theorem 1.2.6, we still need to check that Isom(T, S) is of finite index in Isom(X).
As stated in the lemma below, this is not always the case: the lattice’s isometry group
can also be discrete. But as we will see in Section 4.3 we will be able to prove the rigidity
of the lattice in that case too.

Lemma 4.2.1
Using the previous notations,
« Either Isom(T, S) is discrete.
« Or Isom(T, S) is of finite index in Isom(X) and contains PSL, (K).

Before proving this lemma, let us recall a useful consequence of a theorem of Benoist and
Quint. The original and more gcncral statement can be found in [BQ1y4, Coroll:u'y 4.5].

Proposition 4.2.2 (Benoist, Quint [BQ14])

Let G be p-adic Lie group and H be a finite covolume closed subgroup of G, with
Lie :ﬂgebra h. If G has no proper cocompact normal subgroup, then G normalizes b.

Proof of Lemma 4.2.1. Let G = PSL,(K) and H = Isom(T,S) N G and note h =: Lie(H)
and g := Lie(G) their respective Lie algcbras. Since T is a lattice in SL,, (K), we get that
p(I) N PSL.(K) is a lattice in PSL, (K). Hence H contains the uniform lattice p(I') N G of
G, thus H has finite covolume in PSL,, (K).

If K is a non-Archimedean local skew field of characteristic zero then it is an extension
of Qp for some prime p (see for example [dIST16, Section 1]). In particular G is a p-adic
Lie group. Thus the above property applied to G and H implies that G normalises b, in
other words b is an ideal of g. Since g is simple, we get that b is either trivial or the full
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Lic algebra g. If Isom(T, S) isn't discrete, then it is a closed subgroup of Isom(X). Hence
H is a closed subgroup of G and its Lie algcbra is non-trivial. By the previous point it can
only be g. Hence, it implies that H is an open subgroup of G. Since it is also cocompact,
it is necessarily of finite index in G. Thus, we get that p (Isom(T, S)) is of finite index in
Isom(X).

Let’s show that PSL,(K) < p(Isom (T, S)). First assume that p(Isom(T,S)) is strictly
contained in PSLy, (K). Since these two groups are of finite index in Isom(X), we get that
p (Isom(T, S)) is of finite index in PSL, (K). But then the core:

() 9-p(som(T,S))-g~"
gePSL,,

of p (Isom(T, S)) is itslef of finite index in PSL,, (K) (and different from PSL,, (K)), which
contradicts the simplicity of PSLy, (K).

Let us now go back to the gcncml case. Assume that PSL,(K) is not included in
p(Isom(T, S)) and remark chat:

h = Lie (Isom(X)) = Lie (PSL,(K)).

In particular p(Isom(T, S)) is “locally” PSL,, (K) so, up to apply what precedes to an open
set centered on er sufﬁciently small of p(Isom(T, S)), we obtain a contradiction.
Hence PSL, (K) is contained in p(Isom(T, S)). O

RIGIDITY OF LATTICES

We conclude by the proof of Theorem 1.2.5.

Proof of Theorem 1.2.5. Let n # 3 and p be a prime. Let T be a torsion-free lactice of
PSL.(K) and S be a symmetric generating part.
If n = 2, then X is the (p + 1)-regular tree. Since by Lemma 4.1.1, the graph (T, S) is
quasi-isometric to X, Example 1.1.3 implies that (T, §) is LG-rigid.
Assume now that n > 3. If Isom(T, S) is discrete the LG-rigidity of the lattice is given
by Theorem 1.1.15.
If Isom(T, S) is non-discrete, then by Lemma 4.2.1 it has finite index in Isom(X) and in
this case the hypothesis of Theorem 1.2.6 are satisfied, hence the rigidity of the lattice.
Finally, for all n # 3 the lactice T acts transitively on (T, S) thus, by Proposition 1.1.14,
it is SLG-rigid. ]

47






CONCLUSION AND OPEN PROBLEMS

Maintenant nous savons ce que nous ne savons pas

comment faire!
— Buck
Dans L'Age de glace 5 : Les Lois de 'Univers de
M.Thurmeier et G.T.Chu

Our main result is proved for graphs quasi-isometric to the Bruhat-Tits building of
PSL,.(K) and the key idea of the proof is to use the rigidity of this buiiding to “transfer
it” to the graph quasi-isometric thereto. One can ask wether we can generalize this idea
to other LG—rigid gmphs.

Question 5.0.1. Let § be quasi-isometric to a LG—rigid graph K, both having cocompact
isometry group. If the quasi-isometry is Isom(§)-equivariant, is § LG—rigid’?

Remark that if H and G are two Cayley graphs of the same group, we can chose H to
be LG-rigid and § to be non-rigid (see the discussion below Counter-example 1.1.4 for
more details). In that case the hypothesis of the preceding question are satisfied without
§ being LG-rigid. Thus, more restrictive hypothesis will be needed to get the rigidity of
our graph qS.

Our result on lattices is proved for n # 3; when n = 3 we don’t know (yet) the answer.
Indeed, our proof'is based on the rigidity of the Bruhat-Tits building of PSL,, (K), a resulc
known to be true only for n # 3. In the n = 3 case, a lot of flexibility seems to be allowed
(see for example [BPo7]) obstructing any local recognizability result. Hence the following

question:
Question 5.0.2. Are torsion-free lattices of SL3(K) LG—rigid?

Lattices in p-adic Lie groups can be viewed as particular cases of S-arithmetic lattices.

Definition 5.0.3

Let S be a set of prime.
We say that T"is an S-arithmetic lattice if it’s a lattice in a product of the form []; G;
where G; is cither a real Lie group or a p-adic Lic group for p € S.

Hence, one we can ask what happens in that more general case.

Question 5.0.4. Are torsion-free S-arithmetic lattices LG-rigid?
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Aresult by Bader, Furman and Sauer [BFS20, Theorem B can be used to deal with irre-
ducible torsion-free S-arithmetic lactices. Indeed, if the product []; Gi contains at least
a non-compact real factor, then the aforementioned theorem implies that the isometry
group of a Cayley graph of T is discrete. Thus, by Theorem 1.1.15 the lattice is LG-rigid.
Now, if the product contains a compact real factor then the isometry group of the Cayley
graph might not be discrete and in that case, the problem is still open.

When the lattice is reducible, we now know that the projection on the p-adic factors
gives LG-rigid lattices. Moreover, if we suppose the real factors to be simple and con-
nected, then a result by de la Salle and Tessera [dlSTlt)] shows that the projection on
these factors are also LG-rigid. Hence it remains to understand how to combine these

I'CSUltS on thC facrors in ordcr to gCt a result on th€ p?‘Odqu.
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Part II

ORBIT AND MEASURE EQUIVALENCE

It’s better to fail while striving for something
wonderful, challenging, adventurous, and uncertain,
than to say, “I don’t want to try because I may not
succeed completely.”

— Jimmy Carter






AN INTRODUCTION TO MEASURE AND
ORBIT EQUIVALENCE

Qui a fait lexperience de penser dans un autre
domaine lemporte toujours sur celui qui ne pense pas
du tout ou trés peu.

— A. Einstein
Comment je vois le monde

Arecurring theme in group theory is the description of large-scale behaviour of groups
and their geometry. A well known exarnplc is the study ofgroups up to quasi-isometry: it
describes the large-scale (or “coarse”) geometry from the metric point of view. A measure
analogue of quasi-isometry was introduced by Gromov in [GNR93] and is called measure
equivalence. A first illustration of measure equivalent groups is given by lattices in a
common locally compact group. Another impressive example is given by a famous resule
of Ornstein and Weiss (see Theorem 6.1.7) which implies that all amenable groups are
measure equivalent. In particular —unlike quasi-isometry— measure equivalence does
NOL Preserve coarse geometric invariants.

To overcome this issue it is therefore natural to look for some refinements of this mea-
sure cquivalcncc notion. Assume for Cxarnplc that G and H are two finitcly gcncratcd
measure equivalent groups over a probability space (X, p). Recall that if a finitely gener-
ated group K acts on X and Sk is a finite generating sct of K, we can define the Schreier
graph associated to this action by being the graph whose set of vertices is X and set of
edges is{(x, s-x)|s € Sk}. So let us consider the Schreier graph associated to the action of
G (resp. H) on X and equip it with the usual metric ds, (resp. ds,,), fixing the length of
an edge to one. A first way to refine the measure equivalence is to quantify how close the
two actions are by studying forall g € Gand h € H the integrability of the two following
maps

x> dsg (x,h-x) x = ds,, (x,9x).

When these two maps are LP we say that the groups are LP-measure equivalent (see
[BFS13] for more details). This refinement allowed for example Bowen to prove in the
appendix of [Aus16] that volume growth was invariant under L'-measure equivalence.
Delabie, Koivisto, Le Maitre and Tessera offered in [DKLMT20] to extend this quantifi-
cation to a family of functions larger than {x — xP, p € [0,+o0]} (see Definition 6.1.8).
They furthermore showed the monotonicity of the isoperimetric profile under this quan-
tified measure equivalence definition (see Theorem 6.1.16). In [BZ21] Brieussel and Zheng
managed to construct amenable groups with prescribed isoperimetric profile. Consid-

ering the monotonicity of the isoperimetric proﬁlc, the striking result of Brieussel and
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6.1

Zheng thus triggers a new question: instead of trying to quantify the measure equiva-
lence relation between two given groups, can one find a group that is measure equivalent
to a prescribed group with a prescribed quantification?

This is the problem we address in this article. Using Bricussel-Zheng’s groups we first
exhibit a group that is measure equivalent to Z with a prescribecl quantification (see
Theorem 6.3.1). In a second time we construct a measure-subgroup coupling (which is
a relaxed version of measure equivalence, see Definition 6.1.1 for a definition) with che
lamplighter group Z/qZ i Z with prescribed integrability. In both cases we compare
the obtained couplings to the constraints given loy Theorem 6.1.16 and show that our
couplings are close to being optimal in a sense that we precise in Section 6.3. Before
looking at these results, we recall some material about quantitative measure equivalence
couplings in Section 6.1 and expose tools to build such couplings in Section 6.2.

QUANTITATIVE MEASURE AND ORBIT EQUIVALENCE

Let us recall some material of [DKLMT20]. A standard measure space is a couple (X, p)
where X is 2 measurable space endowed with a measure p on the U—algebra B(X) given
by the Borel o-algebra of some separable and completely metrizable topology on X. The
elements of B(X) are called Borel. We say that (X, u) is a standard Borel probability space
ifuX)=1. A measure-preserving action of a discrete countable group G on (X, u) is an
action of G on X such that the map (g,x) — g-xisa Borel map and u(E) = u(g - E) for
all E C B(X) and all g € G. We will say that a measure-preserving action of G on (X, p) is
free if for almost every x € X we have g - x = x if and only if g = eg.

We recall below the definitions of measure and orbit equivalence and their quanti-
fied version as introduced by Delabie, Koivisto, Le Maitre and Tessera. We conclude by
studying the relation between isoperimetric profile and measure equivalence.

6.11  Measure and orbit equivalence

Let G be a countable group acting on a standard measure space (X, n). A fundamental
domain for the action of G on (X, ) is a Borel Xg C X which intersects almost every
G-orbit at exactly one point. We say that the action is smooth if it admits a fundamental
domain. Before giving the definition of measure equivalence let us introduce a relaxed
version of this notion.

Definition 6.1.1 ([DKLMTzo, Deﬁ 2.4])

Let G and H be two countable groups. A measure subgroup coupling from G to His a
triplc (X, Xy, 1) such that:
+ (X, ) is a standard measure space equipped with commuting smooth free
measure-preserving actions of G and H,
« Xy is a fundamental domain of finite measure for the action of H on X.

Example 6.1.2. If G < H then (H, {en}, n) is a measure subgroup coupling where p is the
counting measure and G (rcsp. H) acts by left (resp. right) translation on H.

Remark that this definition does not require G to admit a fundamental domain of
fim'te measure, in particular this coupling notion is asymmetric. If we add the condi-
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tion that G must admit a fundamental domain of finite measure we obtain a measure

equivalencc coupling..

Definition 6.1.3 ([DKLMTz20, Def. 2.3])

Let G and H be two countable groups. A measure equivalence coupling from G to H
isa quadruple (X, Xg, Xn, u) such chat:
+ (X,p) is a standard measure space equipped with commuting free actions
measure-preserving smooth of G and H,
« Xg (resp. Xp) is a fundamental domain of finite measure for the action of G
(rcsp H) on X.
We say that G and H are measure equivalent if there exists a measure equivalence
coupling from G to H.

Example 6.1.4. Let G and H be two lattices in the same locally compact group § and let
Ag be the Haar measure of G. Remark that § is unimodular since it admits a lattice. Then
G (resp. H) acts freely on§ by left (resp. right) translation with fundamental domain Xg
(resp. Xp) of finite measure. These two actions commute and preserve the Haar measure

thus (§, Xg , Xu, Ag) is a measure cquivalcncc coupling from G to H.

More examples will be given in Section 6.2. Remark that our definition is asymmet-
ric, we talk indeed of a coupling from one group to another. This asymmetry might be
unsettling for now since it is called measure equivalence but it will make sense when we
introduce the quantification of the coupling (see Definition 6.1.8). Let us now introduce
a stronger equivalence relation between groups which comes from ergodic theory.

Definition 615

Let G and H be two finitely generated groups. We say that G and H are orbit equivalent
if there exists a probability space (X, 1) and a measure-preserving free action of G
(resp. H) on (X, p) such that for almost every x € X we have G-x = H-x. We call
(X, ) an orbit equivalence coupling from G to H.

We called this equivalence relation stronger than measure equivalence because orbit
equivalence implies measure equivalence. But the converse is not always true. To ensure
that two measure equivalent groups are orbit equivalent we need the two fundamental
domains Xg and Xy to be cqual. This is what we formalise below.

Proposition 6.1.6

Two countable groups G and H are orbit equivalent if and only if there exists a
measure equivalence coupling (X, XG, X, 1) from G to H such that X = Xg.

Although this orbit equivalence relation is stronger than measure equivalence, it does
not distinguish amenable groups. Indeed by the Ornstein Weiss theorem [OW 8o, Th. 6]

below, all infinite amenable groups arc in the same cquivalencc class.

Theorem 6.1.7 ([OW3o])

All infinite amenable groups are orbit equivalent to Z.

To refine these equivalence relations and “distinguish” amenable groups we introduce

quantification of measure and orbit equivalence relations.
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6.1.2  Quantification

Recall that if a finitely generated group G acts on a space X and if Sg is a finite generating
set of G, we can define the Schreier graph associated to that action as being the graph
whose set vertices is X and set of edges is {(x,s - x)|s € Sk}. This graph is endowed with
a natural metric ds, fixing the length of an edge to one. Remark that if S is another
generating set of G then there exists C > 0 such that forallx € Xand g € G

1
cdse(x,9°x) < dsg (x,9-%) < Cds(x,9%).

Finally if (X, Xg, XH, W) is a measure cquivalencc coupling from G to H we have a natural
action of G on Xy (secFigure 6.1 for an illustration) denoted by e were for all x € Xy and
g € G we define g e x to be the unique element of H - g - x contained in Xy viz.

{gex}=H-g-xNXy.

- x
/9_\9
x gex
@9-x @ Elements of Xy @ Other clements of the corresponding orbit

Figure 6.1.: Definition of g e x

Definition 6.1.8 ([DKLMTz0, Def. 2.18])

Let ¢ : RY — R* be a non-decreasing map. Let G and H be two finitely generated
groups and Sy be a generating set of H. We say that a measure subgroup coupling
(X, Xn, p) from G to H is @-integrable if for all s € Sg there exists ¢s > 0 such that

J %) (ldsH(s-x,s ox))> du(x) < 4o0.
X1 c

s

We say that the Coupling is L°°—integrabl€ if the map x — ds,, (s-x,sex) is Cssentially

bounded.

We introduce the constant ¢, in the definition for the @-integrability to be independent
of the choice of generating set Sy If no integrability assumption is made we will say
that the Coupling is Lo—integmblc. Finally it ¢(x) = xP we will sometimes talk of LP-
intcgrability instead of (p—intcgrability. Finally, note that every L* measure subgroup
coupling is (p—integrable for any increasing map @ : R — R*.



Definition 6.1.9 ([DKLMTz0, Def. 2.18])

We say that a measure equivalence coupling (X, Xg, X, 1) from G to H is (@, )-
integrable if the coupling (X, Xy, ) from G to H is ¢-integrable and the coupling
(X, Xg, 1) from H to G is P-integrable. We say that an orbit equivalence coupling is
(@, w)—integmble if it is (o, w)—integrable as a measure equivalence coupling.

When ¢ =1 we will say that the coupling is (p—integrable instead of (o, (p)—integrable.

Example 6.1.10. Delabie et al. [DKLMT20] showed that there exists an orbirt equivalence
Coupling between Z* and the Heisenberg group Heis(Z) thatisLP —integrable forallp < 1.

Example 6.1.11. Let k € N* and BS(1,k) := (a,b | a~'ba = b*). The same authors showed
[DKLMTz0, Th. 8.1] that their exists an orbit equivalence coupling from Lq to BS(1,k)
that is (L*, cxp)—intcgrablc.

We will see more examples in Section 6.2 where we develop tools to build couplings.
But before adressing these constructions, a natural question to ask is whether there ex-
ists obstructions for finding @-integrable couplings between two amenable groups, for a
given function . A first answer —and thus a first obstruction— is given by the isoperi-
metric profile.

6.1.3 Isoperimetric profile

As stated in the inroduction the measure equivalence notion introduced by Gromov
does not preserve the coarse geometric invariants. But the quzmtified measure equiv-
alence defined above allowed Delabie et al. [DKLMT20] to get a relation between the
isoperimetric profiles of two measure equivalent groups which we describe below.

Let C > 0. If f and g are two real functions we denote f ¢ g (or f X g for short) if
f(x) = 0(g(Cx)) as x tends to infinity. We write f ~c g (or f ~ g for short) if f <c g and
g=xcf.

Definition 6.1.12

Let G be a finitely generated group and S a finite generating set. The isoperimetric
profile of G is defined as
|A]

Ic(n) = sup —.
Al<n [OA

We chose to adopt the convention of [DKLMT20]. Note that in [BZ21], the isoperimetric
profile is defined as Ag = 1/Ig. Remark that due to Folner criterion, a group is amenable
if and only if its isoperimetric proﬁle is unbounded. Hence we can see the isoperimetric
profile as a way to measure the amenability of a group: the faster Ig tends to infinity,
the more amenable G is.

Example 6.1.13. The isoperimetric profile of Z verifies I7(x) ~ x.
A famous result of Erschler [Ersos] gives the two following examples.
Example 6.1.14. Let q > 2and d > 1. If G:=Z/qZ: Z9 then I (x) = (log(x))'/4.

Example 6.1.15. If G:=7:Z then Ig(n) ~ log(n)/logo log(n].
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6.2

The behaviour of the isoperimetric profile under measure equivalence coupling is
given by the foilowing theorem.

Theorem 6.1.16 ([DKLMTz0, Th.1])

Let G and G’ be two finitely generated groups admitting a (@, L°)-integrable mea-
sure equivalence coupling. If @ and t/@(t) are increasing then

polg X Ig.

This theorem provides an obstruction for finding @-integrable couplings with certain
functions ¢ between two amenable groups. For example we can deduce from the pre-
ceding examples that there is no L' measure equivalence coupling from 7217 to /27 Z.
On the other hand given a group G and a function ¢ one can ask whether there exists a
group G’ which is (@, L°)-measure equivalent to G. This is the question we try to answer
in this paper for G = Z or G = Z/qZ : Z. Our construction is based on the powerful
machinerie developped by Bricussel and Zheng in [BZ21] to construct amenable groups
with a prescribed isoperimetric profile (see Chapter 7 for a definition of these groups
and appendix A.1 for the technical construction from che isoperimetric profile). This
machinerie builds the wanted group G/, we now have to construct the coupling.

BUILDING COUPLINGS

To obtain and quantify couplings we will use two different constructions which we recall
below. The first one is based on Folner tiling sequences described in [DKLMT20, Section
6] and the second one using Sofic approximations is described in [DKT21].

6.21 Felner tiling sequences

A first way oi‘building an orbit equivalence between two groups is to build Folner tiling
sequences. These sequences are Folner sequences that are defined recursively: the term of
rank (n+1) is eomposed of a finite number of translates of the n-th term of the sequence.

Definition 6.2.1

Let G be an amenable group and (Zn)nen bea sequence of finite subsets of G. Define
by induction the sequence (Tn)new by To := Zo and Tri1 == TaZnar. We say that
(Zn)new is a (left) Folner tiling sequence if

* (Tn)nen is a left Folner sequence, viz.

(vgeG) lim 9T\l _ ¢
nooo Ty

e Tay1 =Uges,,,0Tn.

We call £,, the set of shifts and (T )nen the ciles.
Let ﬁnally Sbea generating part of G. We say that (Z)nen is 2 (Rn, en)-Folner

tiling sequence if for all n we have

diam (T,,) < Ry, IsTA\Tn| < enlTnl (Vs €S).




Delabie et al. showed in [DKLMT20] the two following cxamp]es.

Example 6.2.2. If G = Z the sequence defined by £,,41 := {0,2"} is a (2™,2"™)-Folner
tiling sequence and the sequence (T,,) thus defined verifies T,, = [0,2™ —1]. We represent
the tiling of T41 by T,y in Figure 6.2.

0+[0,2" — 1] 274[0,2" — 1]

| I .
I 0 | 271,
:
|
I
|
I

Tn 1 = En-&-lTZn = {”7271}Tn

Figure 6.2.: A tiling for Z.

Example 6.2.3. If G = (Z/2Z): Z then the sequence (£,,)nen defined by

2o = {(f,0) € G | supp(f) C{0,1}},
Zner = {(f,0) € G |supp(f) C 2™, 2" —1]}
U{(f,2") € G | supp(f) C [0,2™ — 1]},

is a right (3 - 2™,27™)-Felner tiling sequence. Moreover the tiling (Tn)nen thus defined
verifies Tp = {(f, m) € G | supp(f) € [0,2™ —1], m € [0,2™ — H}A

Delabice et al. [DKLMT20] gave a condition for two amenable groups admitting both a
Folner tiling sequence to be orbit equivalent. Indeed if G admits a Folner tiling sequence
(Zn)nen then we can define X := [T, ¢ Zn and endow it with an action of G. Up to
measure zero, two elements of X will be in the same orbit under that action if and only
if they differ from a finite number of indices. The equivalence relation thus induced is
called the cofinite equivalence relation. Now if G’ admit a Felner tiling sequence (X )nen
verifying |Z,| = |4 | for all integer n, then there exists a natural bijection between X and
X' = [Then Zn which preserves the cofinite equivalence relation. That is to say G and
G’ are orbit equivalent. Furthermore they showed that if we know the diameter and the
ratio of elements in the boundary of each tile then we can deduce the intcgrability of the
coupling. This is what the following proposition sums up.

Theorem 6.2.4 ([DKLMTz20, Prop. 6.6])

Let G and G’ be two discrete amenable groups and let (£,,)n be an (en, Ry )-Folner
tiling sequence for G and (Zi,)n be an (¢'n, R'n)-Folner tiling sequence for G'.

If |Z.] = |Z',], then the groups are orbit cquivalcnt.

Moreover if ¢ : Ry — Ry is a non-decreasing function such that the sequence
(@(2R"1) (En—1 — €n))pney is summable, then the coupling from G to G’ is (¢, L°)-

integrable.

Using this tiling technique and the above theorem, Delabie et al. [DKLMT20] showed
Example 6.1.10 stated before and the two following examples.
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Example 6.2.5. For all n and m there exists an orbit equivalence coupling from Z™ to Z™
which is (q)e,lbe)—intcgrablc for every € >0 where

Xn/m XT'rl/n

‘Pe(x):W Ve (x :W-

Remark that in particulur ifn < m then for all p < n/m there exists a (LP, L'/?)-orbit
equivalence coupling from Z™ to Z™.

Example 6.2.6. Let m > 2. There exists an orbit equivalence coupling between Z and
ZmZ . Z that is (exp, q)g)—intcgrablc for all ¢ > 0 where

B log(x)
el = e logty e

Given two finitely generated groups G and H, Theorem 6.1.16 gives an upper bound
for the integrability of a coupling from G to H. As we will see in Chapter 10 Folner
tiling sequences do not nlways induce couplings with a “good” intcgmbility: the map ¢
quantifying the coupling obtained with Felner tiling sequence can grow much slower
than the one suggested by Theorem 6.1.16. Morcover, given two amenable groups it is
not always easy (or even possible) to find Felner tiling sequences verifying [Z,| = |Z/,].
Hence this tiling technique does have its limitations and we thus need other tools to

build couplings.

6.2.2  Sofic approximations

Another tcchniquc to build measure cquiva]cncc coup]ings is given by Sofic approxi-
mations. In this paragmph G will be a ﬁnitely gcnerated group endowed with a finite
generating set Sg and (Gn)new will be a sequence of finite, directed, labeled graphs. Let
> 0 and denote by & the set of elements x € Gy, such that Bg,, (x, 1) is isomorphic to

Bg(eg, 1) seen as directed labeled graphs, viz. gl = {x € Gn | Bg, (x,7) = Bg(eg, 1)}
Definition 6.2.7

We say that (Gn)nen is a Sofic approximation if for every v > 0

5%

n—oo |Gy

=1

Example 6.2.8. Any Folner sequence in an amenable group G is a Sofic approximation.

In [DKT21] Delabie, Koivisto and Tessera proved a condition for a measure subgroup

to be (p—intcgrab]c using Sofic approximations.

Theorem 6.2.9

Let G and H be two finitely generated groups with Sofic approximations (Gn)n
and (Hn)n and let t: G — Hp be an injective map. Let ¢ : Rt — R* be a non-
decreasing map. If for every s € Sg there exists & > 0 such that

R x € 91 o, (tn(x), tn k) =}
]}Ln; supT;0 @ (o) Sl < 400 (6.1)

n
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then there exists a @-integrable measure subgroup coupling from G to H.

We will use this theorem to obtain a measure subgroup with the Lamplighter with
prescribed integrability (see Theorem 6.3.3). But before that, let us state its analogue for
measure and orbit equivalence Couplings.

Theorem 6.2.10 ([DKTz1])

Let @,: Rt — R* be two non-decreasing maps. Let G and H be two finitely
generated groups with Sofic approximations (Gn)n and (Fn)n. Let tn: Gn — Hn
and t, : Hn — Gn be two injective maps that satisfy the following:
1. There exists C > 0 such that the image v, is C-dense for all n e ;
2. For every s € Sg there exists § > 0 such that

R x € 5 1 dac, (tn (x), tnlx) =7}
]aler:o supTZ0 @(d7) EN < 00;

n

3. For every h € H there exists & > 0 such that the following limit is finite

{v € (G N3 | diam (i (W) UG (y W) =}

R
2 W)

lim su
Rioo ) = EN

Then there exists a (¢,)-integrable measure equivalence coupling from G to H.
Moreover if the maps Ly, are bijcctivc then there is an (@, w)—integrable orbit equiv-
alence coupling from G to H.

Given two ﬁnitely generated amenable groups, we now have tools to build and quantify
couplings between them. But we can also address the problem the other way round.

6.3 BUILDING PRESCRIBED EQUIVALENCES

Instead of looking for a quantification for a given coupling from one group to another,
one can ask if given a group G and a non—decreasing function ¢ we can find a group H
and a measure (or orbit) equivalence coupling from G to H that is (¢, L°)-integrable. As
we saw before, given G and @ as above, Theorem 6.1.16 gives obstructions to find such a
group H: it provides a bound on the growth of the isoperimetric profile of H.
Considering the work of Brieussel and Zheng [BZ21] giving an engincering to build
groups with prescribed isoperimetric profile, we exhibit groups orbit equivalent to Z
with prcscribcd intcgrability. In a second result we build a measure Subgroup Coupling
with the Lamplighter group with prescribed integrability. We discuss the case of the
measure equivalence coupling with the Lamplighter group below Theorem 6.3.3.

6.3.1 Main results

In this part we show the two following theorems and their three corollaries.

Theorem 6.3.1

For all non—decreasing function p : [1, +oo[— [1, +oo[ such that p(1) = 1 and x/p(x)
is non-decreasing, there exists a group G such that
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e Ig=>po 10g ;
« there exists an orbit equivalence coupling from G to Z that is (¢, expop)-

+e

integrable for all ¢ > 0, where ¢.(x) := p o log(x)/(logop o 1og(x))1

Let us discuss the optimality of this result. Consider a (¢, L%)-integrable orbit equiv-
alence coupling from some group G to Z. By Theorem 6.1.16 it verifies @ o I7 <X Ig. In
particular since Iz(x) =~ x, we can not have a better integrability than ¢(x) ~ Ig. Since
Ia = p o log our above theorem is optimal up to a logarithmic error.

Let us now consider the possible generalisations of this result to other groups than
the group of integers. To do so we can use the composition of couplings described in
Appendix B. We also refer to Figure B.1in this last nppendix wich sums up the our main
results and illustrates the discussion to come.

Given the above theorem, once we have a measure subgroup coupling from Z to a
group H we can compose the two couplings to obtain a measure subgroup coupling from
G to H. If the growth of the isoperimetric proﬁ]c of H is close from the one of Z, the
integrability of the obtained coupling will be close to the optimal one given by Theo-
rem 6.1.16. It is for Cxamplc the case when H = 74.

Corollary 6.3.2
Let d € N*. For all non-decreasing function p : [1, +oo[— [1, +ool such that p(1) =1
and x/p(x) is non—decreasing, there exists a group G such that

e Ig~po log ;

- there exists an orbit Cquivalcncc Coupling from G to Z4 thatis (@, LO)—intcgmblc

for all e > 0, where @ (x) := polog(x)/(logopo log(x))lﬂ.

Now if the growth of Iy is quite slower than the one of 17 (it is for example the case
when H is the hmp]ighter group) the Coupling obtained by composition will not have
the optimal integrability: by using Z as an intermediary to build our coupling we lose
information about the geometry of G and H and thus lose precision in the intcgrabi]ity.
To obtain a coupling with a finer quantification it is thus necessary to construct a cou-
pling without making a “detour” by Z. It is what our second main result offers to do in
the case of the lamplighter.

We denote by Lg the lamplighter group with g lamp configurations, that is to say
Ly=2/qZ. 7.

Theorem 6.3.3

For all ¢ > 0 and all & > 0 there exists a group G such that
1/(1+«)

+ Ig(x) = (log(x)) ;
« if we define @¢(x) := x#o7< then there exists a @.-integrable measure sub-
group coupling from G to L.

Let us discuss the conclusion of this theorem. First remark that it implies the existence
of a measure subgroup coupling. Indeed our demonstration is based on the construction
of Sofic approximations (Gn)nen of A and (Hn)nen of Lg, but the construction we make
allows us to obtain an injective map between G, and K, not an injective and C-dense
one. The hypothesis of Theorem 6.2.10 implying the existence of a measure equivalence
coupling are thus not verified. However, we can apply Theorem 6.2.9 to obtain a measure
subgroup. Nonetheless, let us mention that even though the result is not present in this
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manuscript, we worked on the construction of Sofic approximations and injective C-
dense maps between them in order to obtain a measure equivalence coupling between A
and Lq. The (quite technical) proof could not be written before rendering this thesis.

Second, note that the integrability is almost optimal. Indeed, consider a (¢,L°)-
integmble orbit equivalence Coupling from some group G to Lq. By Theorem 6.1.16 it
verifies ¢ o I, I, In particular since I, (x) = log(x) we can not have a better in-
tegrability than @ = Ig o exp. Since Io(x) = log(x)"/("**) our above theorem is thus
optimal up to a small error.

Finally, let us remark that the above theorem applies to a map p of the form p(x) =
x!/(1*+e) while Theorem 6.3.1 worked for a larger family of functions p. As we will see in
Section 9.2, the construction we make require us to estimate the ratio lepn+1))/lepn)
in order to get the integrability of the coupling. But in a general case we have no control
on that last ratio: there exists diagonal product such that the sequence (Lin)men grows as
fast as possible. That is why we restrict ourselves to the case where 1, = k*™ for some
k > 2 and « > 0 and thus only obtain diagonal product A with isoperimetric profile
Ia(n) = log(x)!/(1+e),

We can deduce from the above theorem two corollaries. First define H := 72 X5 Z

()

Using once more the composition of Couplings we will deduce from Theorem 6.3.3 the

where A is the macrix

following result.

Corollary 6.3.4

For all ¢ > 0 and all & > 0 chere exists a group G such that
1/(1+«)

« Ig(x) = (log(x)) ;
« if we define @ (x) := x7ra7e then there exists a measure subgroup coupling
from G to H that is (pg—integmble.

Second consider k € N* and the Baumslng—Solimr group defined by
BS(1,k) = (a,b|a "ba=1b¥).

Using Example 6.1.11 and Theorem 6.3.3 we will also show this last corollary.

Corollary 6.3.5

For all € > 0 and all & > 0 there exists a group G such that
1/(1+«)

« Ie(x) = (log(x)) ;
« if we define @, (x) := x77a++ then there exists a measure subgroup coupling
from G to BS(1, k) that is ¢.-integrable.

6.3.2 Idea of the proofs

Let us discuss the idea of the above theorems proofs.
p
The proof of Theorem 6.3.1 is based on Folner tiling sequences and on the criterion
p 3 g s¢q
given by Theorem 6.2.4. What we actually show is that a Bricussel-Zheng’s diagonal
product A admits a coupling with Z satisfying Theorem 6.3.1. Hence, we first compute



a Folner tiling sequence (T, ) for A and estimate the value of the tiles diameter and the
value of [T, |/|Tn| in Section 8.1. In Section &.2 we build a tiiing of Z and compute (R'n)n
and (¢'n)n such that the tiling gives a (R'n, ¢'n)-Folner tiling sequence. As we will see,
the values of (R'y)n and (¢'n)n depend on the cardinality of the tiles (Th)n of A. Thus
—in order to use the criterion given by Theorem 6.2.4— we compute bounds to In|T,|.
We conclude by showing the integrability of the orbit equivalence coupling obtained
and use it to prove that A thus considered satisfies Theorem 6.3.1.

The main tools of the proof of Theorem 6.3.3 are Sofic approximations and Theo-
rem 6.2.9. Analogous to the proof of the theorem with Z, we prove that G satisfying
Theorem 6.3.3 can be taken to be a Brieussel-Zheng'’s diagonal product A. We thus start
by dcﬁning Sofic approximations (Gn)nen of A and (%) new of Z (see Section 9.1) start-
ing from the following observation: given two Felner tiling sequences (£,)5 of A and
(Z0)y of Lq such that |Z,] < |Z%] for all n, one can define an Cmbcdding vy from I,
to I, 'Then denote T, = [[io Zi and T = [[i_o £/ and let x = oy, - 0o such that
o; € %; for all i. We can define without ambiguity amap L from T, to T/ such that
n(x) = ]_[?:0 vi(oi). Since (Zn)n and (Z%), are Folner tiling sequences this map is in-
jective. We are thus going to take sequences of tiles as Sofic approximations. Moreover,
in order to obtain a coupling with the wanted integrability we need the embedding v,
to preserve the geometry of the groups. As we will see in Section 9.1 we will have to
consider subsequences of the tiles sequences for the hypothesis of Theorem 6.2.9 to be ver-
ified. Once our Sofic approximations are defined we compute some useful bounds on
In|Z,.|, show the integrability of the Coupling thus obtained and use it to prove that A
thus considered satisfies Theorem 6.3.3.

6.3.3 Structure of Part ii

We first describe Brieussel—Zheng’s diagon:ﬂ product and recall all necessary material in
Chapter 7. Theorem 6.3.1 is shown in Chapter 8 using Folner tiling sequences. Chapter 9
is devoted to the proof of Theorem 6.3.3 which involves Sofic approximations. We first
define the desired Sofic approximations of A and Lg, compute some useful inequalities
rcgarding these two sequences and show the intcgrabiiity of the measure subgroup cou-
pling using Theorem 6.2.9. More details on the proofs of Theorems 6.3.1 and 6.3.3 will
be given in the related chaptcrs. We finaily conclude this part with Chaptcr 10 Were we
discuss unachieved proofs, work in progress and open problems.
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7.1

DIAGONAL PRODUCTS OF LAMPLIGHTER
GROUPS

Avec un escalier prévu pour la montée on réussit
souvent a monter plus bas qu'on ne serait descendu
avec un escalier prévu pour la descente.

— Proverbe Shadok

We recall here necessary material from [BZ21] concerning the definition of Brieussel-
Zheng’s diagonal products. We give the definition of such a group, recall and prove some
results concerning the range (see Definition 7.2.1) of an element in such a group and
conclude by identifying a Folner sequence.

DEFINITION OF DIAGONAL PRODUCTS

Recall that the wreath product of a group G with Z denoted G Z is defined as G Z :=
BmezGXZ. An clement of G Z is a pair (f,t) where fis a map from Z to G with finite
support and t belongs to Z. We refer to f as the lamp configuration and t as the cursor.

711 General definition

Let A and B be two finite groups. Let (T )men be a sequence of finite groups such that
cach Iy, admits a generating set of the form Ay, U By, where Ay, and By, are finite sub-
groups of T isomorphic respectively to A and B. For a € A we denote a, the copy of
a in Ay, and similarly for By, Finally let (km)men be a sequence of integers such that
Kmi1 = 2k for all m. We define A, = T« Z and endow it with the generating set

Sa, = {(id,+1)} U {(améo,O) | am € Am} U {(bmékm,o) by € Am}.

Definition 7.1.1

The Brieussel-Zheng’s diagonal product associated to (' )men and (km)men is the sub-
group A of ([T, Tm) 1 Z generated by

Sp = {((id)m,+1)} U {((améo)m,O) lae A} U {((bmékm)m,o) Ibe B}.

The group A is uniquc]y determined by the sequences (M )men and (Km)men. Let us give
an illustration of what an element in such a groups looks like.



Example 7.1.2. We represent in Figure 7.1 the element ((gm)men, t) of A verifying

((gm)meﬂ\h t) = ((améo)mv O) ((bmékm)nu O) (0,3),

when k, =2™. The cursor is represented by the blue arrow at the bottom of the figure.
The only value of go different from the identity is go(0) = (ap, by). Now if m > 0 then
the only values of gy, different from the identity are gm(0) = am and gm (ki) = bmm.

gn an | bn
|
92 a by |
I
g1 aj , b 1 1

I
9o (ao,bo) : | |
| | | | | |
Cursor

Figure 7.1.: Representation of ((gm)m,t) = ((@mo),0)((bmdx,,),0)(0,3) when ky, = 2™.

712 The expanders case

In this part we will restrict ourselves to a particular familiy of groups (Mm)men called
expanders. Recall that (I'm)men is said to be a sequence of expanders if the sequence of
diameters (diam (Tyn))men is unbounded and if there exists cg > 0 such that for allm € N
and all n < [Ny l/2 the isoperimetric profile verifies Ir,, (n) < co.

Consider a family (Tn)nen of expanders for which there exists ¢ > 0 such thar for all
1> 1 there exists T, such that diam (Ty(q)) =c 1 (for an example see Example 7.1.3). We
can thus define a “parametrization” by ﬁxing amap L — T,. Consider now two non-
decreasing sequences (km)men and (L )men of real numbers greater than 1 and denote A
the diagonal product associated to (Ty(1,,))men and (km)men. Then A is uniquely deter-
mined ]:)y the data of (1) men and (k) men. In what follows, we will abuse notations and
denote Iy, instead of Ty(1,,). Moreover we will always make the following assumptions
when talking about diagonal products.

Hypothesis (H)

¢ (km)m and (Ln)m are sub-sequences of geometric sequences.

o kmg1 =2k for all me N;

* (Mm)men is a sequence of expanders such that Iy, is a quotient of A% B
and diam (Ty) = L

« ko =0 and Ty = Ay x Bo;

. Fm/(([Am, Bm})) ~ A X By, where (([Am, Bm})) denotes the normal
closure of [An,Bm].

\ J

We recall below an example of such expanders (Tm)men and refer to [BZ21, Example
2.3 for more details.
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Example 7.1.3. Assume (K )men and (L) men given and consider the sequence (An)nen
defined by Ay, == SLs (F,[X]/(X™ — 1)) and let

0 1T X 0 01 0
A::< of,10 1 0 >=[F$, B::< 0 0 1 >=Z/3Z.
1 10 0

1
1
0 0 0 1

Now we need the last assertion of (H) to be verified, so define T, to be the diagonal

o oo —

product of A, with A x B, that is to say I, is the subgroup of A, x A x B generated by
{(an, (a,e)) | ac A} U {(bn, (e,b)) | be B}.

Finally, denote by Iy :=Ty1,,), then (M) men verifies (H).
Recall (see [BZ21, page 9]) that in this case there exist ¢y, ¢2 > 0 such that, for all m

cilm —c2 < InjM| < el + c2. (7.1)

7.3 Relative commutators subgroups

Forallm e Nlet 0, : T — Fm/<([}\m7 Bm]>) ~ Ay X By, be the natural projection. Let
07 and 6%, denote the composition of 8,, with the projection to A,, and By, respectively.
Now let m € N and define My == (([Am, Bm])). If (gm, t) belongs to Ay, then there exists
aunique gy @ Z — Iy such that gm = 0m(gm)ghn.

Example 7.1.4. Let (g,3) be the element described in Section 7.1.1. Then the only non-
trivial value of 00(go) is 00(go(0)) = (ao,bo). If m > 0 then the only non trivial values
of 01 (gm) at¢ O (gm(0)) = (am,€) and 8, (gm(km)) = (€, b ). Finally for all m we have
g = id since there are no commutators appearing in the decomposition of (g, 0).

Example 7.1.5. Assume that ky, = 2™ and consider first the element (f,0) of A defined
by (f,0) := (0, k1)((am60)m, 0) (0, —k;). Now define the commutator

(9,0) = (£,0) - ((bmBi, )Jm,0) - (£,07" - (b &, I, 0)

and let us describe the values taken by g and the induced maps 61 (gm) and g (see
Figure 7.2 for a representation of g). The only non-trivial commutator appearing in
the values taken by g is g1 (kq) which is equal to a;b; af‘bf]. In other words gy is the
indentity, thus 8y = id. Morcover when m = 1 we have 6; = id and the only value
of ¢} (x) different from e is g} (k1) = aibra; by (on a blue bnckground in Figure 7.2).
Finally if m > 1 then gy, is the identity thus 6,, = id and g}, = id.

Let us study the behaviour of this decomposition under product of lamp configura-
tions.
Claim 7.1.6. 1f gy, fm 1 Z = Ty then (gmfm)’ = Om(fn)) " GinOrm (Frn) i
Proof. Since gm = 0m(gm)gm and fi = 0y (fin)fin We can write

-1
(9mFm)’ = Om(gm)gin * O (Fm )i = Bm(gm)Bm (Fm) - (Om(Fm)) GO (Fim)Fin.

But 01m (gm)0m (fim) takes values in Ay x By and Iy, is a normal subgroup thus the map
(Gm(fm)f1 GmOm (fm) takes values in I'y,. Hence the claim. O

Finally let g = (gm)men. Combining Lemma 2.7 and Fact 2.9 of [BZ21], we get the

fol]owing result.
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7.2

g2 wa; ' =e boby ! =e

g1 ajbra; 1bI U
go (e,boby ") acay' =e
57070 4
(ee)
I | | | | .
lo B e =2 '3 I, —4
Cursor

Figure 7.2.: Representation of (g, 0) defined in Example 7.1.5

Lemma 7.1.7

Let (g,t) € A. Forallm e Nand x € Z

gm (%) = 071 (go(x))OR(go (x — km))gin ().
In particular the sequence g = (gm) ey is uniquely determined by go and (gin) e

In the next section we are going to prove that we actually need only a finite number of

elements of the sequence (gim)men to characterize g.

RANGE AND SUPPORT

In this section we introduce the notion of range of an element (g, t) in A and link it to
the supports of the lamp configurations (gm)men.

7.2.1 Range

We denote by 7, : A — Z the projection on the second factor and for all n € N denote
by [(n) the integer such that Kim) <N <Kimn)41-

Definition 7.2.1

I[f'w =57 ...s;m is a word over So we define its range as

range(w) = {th <f[ Sj> [i=1,.. ,n} .
j=1

The range is a finite subinterval of Z. It represents the set of sites visited by the cursor.

Definition 7.2.2

The range of an element & € A is defined as the minimal diameter interval obtained
as the range of a word over Sa representing .

When there is no ambiguity we will sometimes denote range(8) the diameter of this
incterval.

Example 7.2.3. Let (g,0) € A such that range(g,0) = [0, 6], that is to say: the cursor can

only visit sites between 0 and 6. Then the map g can “write” elements of Ay, only on
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sites visited by the cursor, that is to say from 0 to 6, and we can write elements of By, only

from ko, to 6 + k. Thus go is supportcd on [0, 6], since kg = 0. Moreover, commuctators

(and hence elements of T'y,) can only appear between kqy, and 6, thus supp(g'm) C [k, 6.
Such a (g, 0) is represented in Figure 7.3 for ky, = 2™.

(%) belongs to...

w0 A Bl O -

0 131 k2 7 k3 Kn

Figure 7.3.: An element of A

The element g of‘g is the function gy : Z — Ty If m < 1(6), then g (%) bclongs to A if
x € [0, km — 1], it belongs to Ty, if x € [km, 6] and to By, if x € [7, 6 + km] and equals e elsewhere.
If m > ((6) then g (%) bclongs to A, if x € [0,6] and to By, if x € [km, 6 + k] and Cquals e

elsewhere.

Let us now recall a useful fact proved in [BZ21]. In order to emphasize the behaviour
of Ty we also recall its proof.

Claim 7.2.4 ([BZ21, Fact 2.9]). An element (g,t) € A is uniquely determined by t, go and

the sequence (gh)mg [(range(g,t))-

To illustrate this proof we refer to Figure 7.3 which represents the support and values
taken by g and to Figure 7.4 which pictures the corresponding characterizing data given

by the claim.

Proof. Ifm > [(range(g)), then kp, > range(g,t) which means that the map gm takes
values in Ay U By, in particular ¢’y = e. Thus, using Lemma 7.1.7 we get gm(x) =
075 (9o (%)% (go (x — km)). Hence g is uniquely determined by go.

Finally, if m < I(range(g)) then gm is uniquely determined by go and (9',,) . cp0»

by
Lemma 7.1.7. Hence the result. L]
Example 7.2.5. Consider again (g,0) € A such that range(g,0) = [0, 6], which was illus-
trated in Figure 7.3. Since k3 = 8 > 6, the element (g, 0) is uniquely determined by the
data go (that is to say, the values read in the bottom line) and the values of g} fori=1,2

(namely, the value taken in the blue area). Figure 7.4 represents the aforementioned
characterizing data.

69



9}

0 k4 k2 7

Figure 7.4.: Data needed to characterized g such that range(g) € [0, 6] when ky, = 2™

7.2.2  Relation between range and support

RCCZlH that fOl‘ 2111 m € N we can write

gm (x) = 07(go (x))OR (go (x — km))g'm (X).

To work with the Folner sequence we compute in Section 7.3 and deduce a Folner
tiling sequence from it, we will need to link the range of (g, t) in A with the support of go
and the sequence of supports of(g/m)mew. This is what the fol]owing lemma formalises.
Lemma 7.2.6

Let n € N and take (g,t) € A. Then range(g, t) is included in [0, n] if and only if

t e [0,n]
supp(go) € [0,n]
supp(g'm) € [km,ml vi<m<i(n)

g,.=c vYm > [(n).

Proof. Letn € N and let (g,t) = HLO si be a decomposition in a product of elements of
S of minimal length.

First assume that range(g,t) C [0,n], that is to say: the cursor can only visit sites
between 0 and n. Let m € N, then by definition of S an element s; can “write” elements
of Ay only between 0 and n, and it can write elements of By, only between ki and ntko,.
Thus go is supported on [0,n], since ko = 0. And commutators can only appear between
km and n, hence supp(gin) C [km,nl. In particular if kyy > n then gin = e. Finally we
obtain that t be]ongs to [0, by noting that t =7, (]_[}:1 sj).

Now let us prove the other way round. Take m € [1,[(n)], then kiy < nand supp(ghn) is
contained in [k, nl. Now let x € supp(gh) C [km,nl. Since Iy, C ' which is generated

by Amm x By we can decompose gy as

lgm (x

)|
gin(x) = H aib;.
=1

Let i € [1,[gm(x)[]. If the cursor is at some u € [0,n] then, to write a; at the position
x it needs to visit sites from u to x. Since x be]ongs to [k, nl, the cursor stays in [0,n]
all along. Now, to write b; it will need to go from x to x — k. But since x € [km,nl,
it will only visit sites between [0,x] and will therefore always stay in [0,n]. Hence, to

U
write ]_[‘9"‘(x

19m 0 by at the position g (x) the cursor will only visit values between [0, ],
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7-3

Finally, for all x the cursor needs only to visit position x in order to write go(x). Since
supp(go) is contained in [0, n] then the cursor needs only to visit sites between 0 and n.
Combining what precedes with Lemma 7.1.7 we get that the cursor needs only to visit

cites between [0, 1] to write (gm)men. Hence the lemma.

O]

FOLNER SEQUENCES

In this section we describe a Folner sequence (Fn)nen for A. Recall that I(n) denotes the
integer such that Kin) €1 <Km)+1-
Proposition 7.3.1

The following sequence is a Folner sequence of A

Fn = {(f, t) | range(f,t) C{0,..,n— 1}}.

Proof. Let n € N and & € F, and let s1,...,51 € Sa such that § = s; 5. Now take
s141 € Sa. If siq = ((améo),O) for some a € A orif s;.1 = ((bmékm),O) for some b € B

then .
range(ds141) = {nz (H sj> [i=1,..,1+ 1} = range(),
i=1

since the cursor of si;1 equals 0. Thus 8s111 € Fy. Finally denote by [x,y] the range of s,
then using the same formula as above we get

range(5 - (id, 1)) € x,y + 1if t <y,
range(d - (id, 1)) C x,ylif t =y.
Hence for all t < n—1 we have range(é-(id, 1)) C [x,y+1] C [0,n—1]. Now ift =n—1then
the cursor of 8(id, 1) visits the site n, thus range(5- (id, 1)) is not included in [0,n—1] and
therefore 5(id, 1) does not belong to F,,. A similar argument shows that §(0, —1) belongs
to Fy, if and only if t # 0. Hence 3F, ={(f,t) € F, : t =0,n} and thus
OFul _2

[Frl n n—oo

O

Since we will need an estimation of the diameter of F,, in our proofs to come, let us
conclude this section by computing an upper bound for that diameter.

Lemma 7.3.2

There exists Cyin > 0 depending only on A such that diam (Fy) < Cymnlin_1) for
all n € N. In particular if kpy = ™ and 1y, = k™ for some k > 2 and a > 0, then
diam (Fn) < Cgun' ™.

To show this result, we use Proposition A.2.2.
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Proof. Letn € N and (f,t) € Fy. First, take m < [(n —1) and let us bound E,, by above.
Recall that " = Gkm/2,(j + Dkm/2 = 1. Since (f, t) bclongs to Fy, its range is included
in [0,n — 1], thus

\{j € Z :range(fm, t) NI # @}\ <|{ez:10,n=11NGkm/2, G+ Dim/2 =11 # B},

< \{jez; jkm/2 <n—1and (j+1)km/2>1}\,
< 2(n—2)

X km

+ 1.

Morcover remark that [fim (x)|r. < diam (M) = 1y for all x, thus

m

< km > Lms
j:rangc(fm,t)ﬂljmaé@

<Kkl (y + 1) — 1 (2(n—=2) + k).

Thus, applying the second part of Proposition A.2.2 we get

(range(fm, t) + Em(fm)) ,
(M + 12N —=2) +Kkm)) -

I(fms t)la, <9
<9
But if m < I(n—1) then kyy € n— 1 < n thus we can bound [(fim, t)la,, by above

by 9n (3l + 1). Now remark that [(range(f, t)) < I[(n—1). Thus, using the preceding
inequality and the first part of Proposition A.2.2, we get

[(r:mge(f,t))
‘(fv t)|A < 500 Z |(fm7t)|Am7
m=0
[(n—1)
<500 Y nBln+1),
m=0
[(n—1)
<4500n ) (Blm+1)

m=0

Thus diam (F,) < 4500n Zf:;)” (3l + 1). Finally, since 1, is a subsequence of a geo-
metric sequence, there exists C, > 0 such that Zi:;)” (3lm +1) < Cilyn_1). Hence the
first part of the lemma.

Now let k > 2 and « > 0 and assume that k,, = k™ and 1, = «*™. Then diam (F,,) <
Caamnk® =1 But by definition of I(n — 1) we have k'™=1) <n —1 thus k*(™=1) < n2,

Hence the second part. ]
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8.1

ORBIT EQUIVALENCE COUPLING WITH THE
GROUP OF INTEGERS

Actually it’s very simple, but simple things are always
the hardest to explain

— David Eddings
Belgariade, Book 3 : Magician’s Gambit

Our aim in this chapter is to show Theorem 6.3.1 which we recall below.

Theorem 6.3.1

For all non—decreasing function p : [1, +oo[— [1, +oo[ such that p(1) = 1 and x/p(x)
is non—dccrcasing, there exists a group G such that
e Ig=po 10g ;

« there exists an orbit equivalence coupling from G to Z that is (@, expop)-
+e€

integrable for all € > 0, where ¢, (x) := p o log(x)/(logop o log(x))1

What we actu:ﬂly show is that the group A built in nppendix A.1is the wanted group G.
To do so we first exhibit a Folner tiling sequence for A in Section &.1. Then in Section 8.2
we define an appropriate Folner ti]ing sequence for 7, compute some useful incqualitics
for the quantification and show the theorem using Theorem 6.2.4.

TILING OF A

Let us define a Folner tiling sequence for our group A. Our goal is to obrtain a tiling
Verifying Tn = Fen. After deﬁning the shifts sets Z,, we prove that the sequence (Zn)nen
is actually a Folner tiling sequence. Finally we precise this last statement by computing
(Rn)new and (en)new such that (Zn)nen is a (Rn, €n)-Folner tiling sequence (see Defini-
tion 6.2.1).

8.1.1 Definition of the shifts

For anyn € N, let £(n) = (k™ — 1), that is to say £(n) is the integer such that kem) <
K" —1< kg(n)+].

Example 8.1.1. If'k, := k™ foralln € N then £(n) =n—1.
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Before defining our sequence (Zp)nen, let us show some practical results on €. First
remark that since (kn)new is 2 subscqucncc of (k™)nen, it verifies k, > «™ for alln e N.
Thus £(n) < n and

Kem) < K™ < Kgmy41-

Claim 8.1.2. Let n > 0, then cither £(n+1) = £(n) or £(n+ 1) = £(n) + 1. Morcover in

this second case kg(ny1) = k™

Proof. Recall that by definition £(m) = max{i € N[k < «™ — 1} for all m € N.

Letn € N, then £m+1) > £(n). Moreover if kg(ny11 = ™1 then £m+1) < £(n) +1.
That is to say £(n+ 1) < £(n) and thus £(n+1) = £(n).

On the contrary, if ke(n)41 < k™1 then £n+1) > £(n)+1. But, by definition of £(n)
it verifies Kem)y+1 = k" and by construction of (k) men we also have Kem)+2 = KKemn)+1
thus kg(n)2 = k™' Hence £(n+ 1) < £(n) + 2 and the first assertion.

Finally if £(n+1) = £(n) 4+ 1 then by definition of £

kem) < K™ <Kgn)+1 =Kegmer) < kT =1,
But (km)men is a subsequence of k™ thus the above inequality implies kg (1) = k™. O

Now, let us define the shifts sets. First let Zy := Fo, then if n > 0 we distinguish two
cases depending on whether £(n+1) = £(n) or £(n+1) = £(n) + 1 and in both cases we
split the set of shifts Z,,,1 in « parts.

If ¢(n+1)=gn),lecforallje{0,..,k—1}

supp (go) C [0,jk™ — 1] U [ + Dk™, k™1 —1]
vm € [1, £(n)]
O =1(g,jk") €A SUPP (gin) C [km, k™ +km — 1] U [+ D™, k™ 1],
vm ¢ [0, £(n)]
supp (gm) = @.

Now if £(n+ 1) = £(n) + 1 we add the condition that gl ,,,,; has support contained
in [ke(ni1), k™1 — 1], namely

supp (go) C [0,jk™ — 1] U [+ Dk™, k™1 —1]
vym e [1, £(n)]
(9,jx™) € A Supp (gm) € [km, K™ 4 km — 1] U [+ 1)k, k™1 1]
supp (gl‘(nm) C [ke(nyrr, k™ =11,
vm ¢ [0, £(n+ 1)] supp (gh) = .

Finally, in both cases we define £, 41 := U] R

Let (g, t) be an element of some £ ;. We represent in Figure 8.1 the supports and the
sets where the maps go, ¢', ..., 9'¢c(n41) take their values. The light-blue rectangle with
dotted outline is in £ ; ifand only if £+ 1) = £(n) + 1.

Now that we have the shifts sequence, let us turn to the definition of the tiles.
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.
Ie(n)+1

[

9

9

0 jK™ (j+ 1" S

Figure 8.1.: Support and values taken by (g,t) € =

8.1.2 Tiling

Recall that (Fu)new denotes the Folner sequence of A defined in Proposition 7.3.1. The
aim of this section is to show the theorem below.

Theorem 8.1.3

The sequence (Zn)nen defined in Section 8.1.1 is a Felner tiling sequence of A.

Before showing that the sequence of tiles (Tn)nen thus induced verifies indeed the con-
ditions of Defiition 6.2.1, let us show the following lemma.

Lemma 8.1.4

The sequence (Tn)new defined by To := Fo and Tnq := Zy41 Ty for all n > 0 verifies

(neN) T,=F.

Let us discuss the idea of the proof. We proceed by induction and use a double inclu-
sion argument to prove the induction step. To show that £, 1Ty, is included in Fona
we rely on Lemma 7.2.6, that is to say we verify that every element of £,1 T, has range
included in [0, k™*!—1]. For the reversed inclusion we consider an element (h,t) of Fin i1
and explicit the elements (g,jx™) of Z,.41 and (f,t') of Ty, such that (h, t) = (g, jx™)(f, t).
To show this we have to split supp(h) into smaller subintervals and show that last equal-
ity on cach subintervals separately. Indeed for ecach m > 1 the supports of g and i,
partly overlap (see Figure 8.2 for an illustration). We thus have to consider differently
subintervals where the two supports overlap from the ones where fy, or gm equals e.

Mind the involved maps here: we study the values of g and fy, instead of the “de-
rived* functions ghy, fim usua]ly considered.

Proof of the lemma. The assertion is true for To. Now let n < 0 and assume that T, = Fyn.
We show the induction step by double inclusion.

FIRST INCLUSION
Let us show that 41Ty C Fensr. Recall that £,47 can be decomposed as Z,.1 =

k—15]
Uj:O Zn+1 '
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0 K™ =Ke(n)41 jK™ G+ 1k™ Kkt

fm(x) belongs to...

Ao x Bg D Am - m l:l Bm

gm(x) belongs to... Ao x B Am T Bm

Figure 8.2.: Supports OVCI‘l’Ap

Let (f,t) € Ty and j € {0, ...,k — 1}. Take (g,jx™) € £, then the following product

(9,3K™) (£,6) = ((gmFm (- =3K™) ) s t+5x7)
verifies t +jk™ € [jk™, k™ — 14 (k — 1)k™] C [0, k™ —1] and

go(x) ifx e [0,jk™] U [(G + 1)k™, kT —1]
go(x)fo(x —jk™) = ¢ fo(x —jx™) if x € [jk™, (j + k™ —1]
0 else.
Thus supp(gofo(- —jk™)) C [0, k™ —1].
Morcover, for all m € {1,..., £(n)}
supp(g'm) C [km, iK™ + km — 1] U [+ D™, k™ —1]
supp (f'm (- —jk™)) € GK™ +km, (+ 1™ = 1],
hence by Claim 7.1.6 the support of (gmfm (- —jk™))" is contained in [k, k™' — 11.
Now if £m+1) = £(n) + 1 let us denote m = £(n) + 1. In that case f',, = e since m >
£(n). Thus (gmfm(- —jk™)) = g'n whose support is contained in [kg(n)41,kn+1—11.

Finally (gmfm (- —jk™)) = 0 for all m ¢ [0, &(n + 1)]. Hence by Lemma 7.2.6 the
product (g,j«™) (f, t) has range included in [0, k""" — 1] and thus belongs to F 1.

SECOND INCLUSION

Let us show that Fnr1 is contained in Z,,41 . Take (h,t) € Fnsr. We want to define
(f,t') € Tn and (g,jk™) € Zn41 such that (g,jx™) (f,t') = (h,t).

First remark that t < k™*7, since (h,t) € Fen1. Thus there exists to, ..., t,, in [0, k — 1]
such thatt = 31" jtixh Letj =t, and t' = Z{:o] tik*. Then j does belong to [0, k — 1]
and t’ to [0, k™ — 1]. We now have to define f and g such chat

((gmfm (: _an))at/ +an) = (h" t)'

Recall that the supports of gy and i, overlap. One can refer to Figure 8.2 for an illus-
cration of such overlaps. Let

ho(x +jk™) ifx € [0, k™ —1],
fo(x) ==

e else,

ho(x) ifxe[0,jk™ =1 UG+ k™, ™ —1],
go(x) :=

¢ else.



One can verify immediately that gofo (- — jk™) = ho. Then take m € [1, £(n)] and let

)= {hm(x—i-jK) ifx € [k, k™ —1],

¢ else,
R (%) ifx € [0,jk™ — 1]
U[(] + ])Kn + km7 Kn+1 - ”7
/ 02 (ho (%)) W (x)82 (ho(x)) ifx € GK™, iK™ + knm — 11,

9 m(x) = —1 . .
08 (ho(x —km)) W (x)0§ (ho(x —km)) itxe [(G+Dxm,

G+ DK™ +km — 1],

(@ ClSC.

Note that to define ¢'m on [k™,jk™ + km — 1] and [ + Dx™, ( + k™ 4+ k. — 1] we
need to conjugate hi, because these two intervals are included in the support of fy, (see
Figure 8.2).

Now if £(n +1) = £(n) + 1 then k¢(ny1) = k™ and in that case define

h' i (%) it x € [k™,jk™ — 1]
Ul +2)k™, k™ —1],
9/ (%) = { 02 (ho(x)) W m (x)02 (ho(x)) ifx € k™, (G +1)k™ — 1],

08 (ho(x — kum)) Wan ()08 (ho(x —km)) | ifx € [(G+ DK™, (j +2)k™ — 1],

¢ ClSC.

Finally let fe(nyny =candifm > €n+ 1) let g, = e = .

With the above definitions f and g are uniqucly defined. Moreover, by definition
((gm)m,jx™) belongs to ZLH and by Lemma 7.2.6 we have range(f,t) C [0, k™ — 1] thus
(f,t') belongs to Ty.

Now, using Lemma 7.1.7 we verify that gmfm (- —jk™) = hyy thus (h,t) € 1 To.

Hence, combining the first and second inclusion we get Fons1 = T, O

We now know that (T )ney is a Folner sequence. To prove Theorem 8.1.3 we have to
show that (Zn)nen a Folner tiling sequence. We thus only have to verify that the set of
shifts (Zi)ign tiles T,.

Proof of Theorem 8.1.3. 'The sequence (Tn )new is a Folner sequence, by the last lemma. Thus
we only have to show that for all 0 # & € £,,41, 0T, N 6T, = @. So let us denote by (h, t)
an element of 6T,y N 6T,. We distinguish WO cases.

Firstif o € £/, and & € £, for some i # j, then the cursor of o is equal to jk™ and
the one of & to ix™. Thus

(h,t) € 0T, = t € [jx™, (j+ 1)k™ —1],
(h,t) € 6T, = t € [ik™, (i + 1)k™ —1].

But since i # j these two intervals are disjoint, thus 0T, N 6T, = @.

Now fixj € {0,...,x — 1} and take 0,6 € Z;H. Let o := (g,jk™) and & := (§,jk™).
Assume that there exists (f,t), (f,1) € T, such that (g,jk™) (f, t) = (g,jx™) (f,T). Then

YmeN  gmfm(-—jik™) = Gmfm(- —jk™). (8.1)
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First remark that

0,6€%),, =  supp(go)s supp(go) C [0,ik™ — U [+ k™, kn+1 — 1]
(f7t))(f~‘7{) €Ty == SUPP(fO(‘—an)), Supp(fO('_an)) c [anu(j"_])Kn_”-

In other word the support of go (resp o) is disjoint from the one of fo(- — jk™) (resp
fo(- —jk™)). Combining this with eq. (8.1) we obtain that go = o and fo = fo.

Now let m > 0 and let us show that gy = gm. Due to supports overlap (see Figure 8.2)
we need to decompose [0, k™! — 1] in five subintervals, namely

[0,k = 1] = [0,k — 1] U [k k™ Ko — 1] U [fR™ 4 e, (G4 1) = 1],
U [+ 1%, G D™ k= 1] [+ D™ 4, k1 1],

Ifx <jk™—=Torx > (§+ 1K™+ km, then f(x —jk™) = ¢ = T (x —jk™) and thus
gm(x) = gm(x) by eq. (8.1).

If x € [jk™,jk™ 4 km — 1] then using Lemma 7.1.7 and the fact that on that subinterval
fo = 1?0, we get

fan (x —JK™) = 08 (fo (x —jx™)) = 04 (fo (x —jx™)) = fm (x — jk™).

Hence by eq. (8.1) we get gm(x) = Gm(x).

Ifx belongs to K™ +km, (j+1)k™—1] then g (x) = §m(x) = e and thus eq. (8.1) implies
that f (x —jk™) = fin (x — jk™), that is to say i, and i, coincide on [k, k™ — 1],

Finally it x € [+ k™, G+ 1Dk™ + kyy — 1] then using Lemma 7.1.7 and the fact that
fo = fo on that subinterval, we get

fin(x — k™) = 0§ (fo (x —jk™ —km)) =05 (fo (x —jk™ —km)) = i (x).
Hence by eq. (8.1), we have gm (%) = gm (x).
Thus g = § and then o = & Which concludes the proof of the theorem. O

We showed that (Z,)nen is a Folner tiling sequence. Let us now compute the sequences
(Rn)nen and (en)nen such that it is a (Ry, en)-Folner tiling sequence.

8.1.3 Quantification

In order to build our orbit equivalence with Z we need to estimate the diameter of the
tiles and the value of [T, |/[Tyl. Recall that we gave an estimation of the diameter of Fyy
in Lemma 7.3.2.

Lemma 8.1.5

The sequence (Zn)nen defined in Section 8.1.1 is a (Ry, €5 )-Folner ti]ing sequence
for
2

Rn = CRKnLE(n] &n = KT?

for some strictly positive constant Cg.

Prof of Lemma 8.1.5. First remark that by the proof of Proposition 7.3.1 we have

e = iaTn| o |aFK“i _ i
" |Tni |FK“| Kn.

Now by Lemma 7.3.2 we have diam (T,) = diam (Fen ) < kMg ). L]
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8.2

Example 8.1.6. Let a > 0. If ky, := k™ and 1, = k®" for all n € N, then £n) =n—1and
thus R,, = Crx(1+eim,

We can now use our Folner tiling sequence to build and quantify an orbit equivalence

Coupling with Z.

COUPLING

Our aim in this section is to show Theorem 6.3.1. The main tool is Theorem 6.2.4. We
thus start by defining an appropriate Folner tiling sequence for Z in Section 8.2.1 and give
useful bounds for In|T,| in Section &.2.2. Finally we prove in Section 8.2.3 that the orbit
cquivalence coupling induced by the two built Felner tiling sequences is (e, exp op)-
integrable. We conclude this chapter by showing that the orbit equivalence coupling
from A to Z thus obtained is satisfies Theorem 6.3.1.

8.21 Tiling sequence for Z

We will denote by (£ )nen a Folner tiling sequence of Z and by T’ the corresponding
tiles.

In order to use Theorem 6.2.4 to get an orbit equivalence coupling between Z and A
we need Z,,41 and £’ to have the same number of elements. We thus define

{ o =0, Tol — 1] (82)

vn e N Z/n+1 = {07 iTnla leni, ey (izn+1 i - ]) |Tn|}

It induces a sequence (T'w)nen defined by T'o = £/ and Ty = £ Ty foralln > 0.
We are going to prove that (Z'1)new is a Folner tiling sequence for 7. We represent in

Figure 8.3 the construction of T4 from £/ 17 and T/, for [Z,44] = 3.

0400, |Tn| — 1] T +10, Tl = 1 2T [+[0,[T| = 1]

| | | |
To '|T,| L2\T,| 131,

T/-H = Ziz-HTn ={0,|T,|,2|T,|} T

n

Figure 8.3.: Example of tiling of Ty with T’ for 2/ 41 =10, [Tal, 2T}

Proposition 8.2.1

The sequence (£'y)nen defined by eq. (8.2) is a (R'y, €’n)-Folner tiling sequence for

Z with
2

R,n = |Tni Sln ==
[Tnl

Moreover the induced sequence (T )nen verifies Ty = [0, [Tn| — 1] for all n e IN.
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Proof. Let (£'w)nen be as defined by eq. (8.2) and recall that the induced tiling (T'w)nen
is the sequence defined by To:=2'0and T'hy1 =L w1 Tn for all n € N. One can Casily
prove that for alln >0

T, = [0, [Th| — 1] . (8.3)
It is now immediate to check that diam (T'n) = [Tal and [0T'w|/[T'n| = 2/|Twl. Further-
more note that if 0,0” € Z'51 ;1 such that ¢ # o’ then [0 — 0’| > [To| = diam (T',,). Thus

for such o and o’ we get 0T, N 0'Ty, = @. Therefore (Zn)nen is a Folner tiling sequence
and the proposition follows from the above quantifications on T,,. O

By the first part of Theorem 6.2.4 we now know that there exists an orbit equivalence
coupling between Z and A. To quantify the intcgrability of this coupling we need to
precise and bound the values of R,y and ¢'y,.

8.2.2  Useful inequalities

The intcgrability of the Coupling between Z and A dcpcnds on (Rn, en) and (R'n, /1)
but by the last proposition, that last couple depends on the value of the cardinality of
the tiles (Tn)nen. The aim of this subsection is to give estimations of [T, | involving only
terms of (km)men and (Ln)men. First let us precise the value of [T,.

Lemma 8.2.2

The sequence (Tn)n defined in Theorem 8.1.3 verifies

[Tal = k™ (IAIB])" H [

Proof. Recall that T, = Fen = {(f,t) | range (f,t) C{0,..,k™ —1}} for all n € N. Let
n € N and take (f,t) € T, then there are Cxactly k™ values of t possible. Moreover f
is uniquely determined by fo and f'y, ..., f'¢(n) (sce Lemma 7.1.7). But fo is supported
on [0, k™ — 1] which is set of cardinal ™ so there are exactly (IAHB\) possibic values

for fo. Morcover if m > 0 then remark that , is supported on [k, k™ —1] which has
‘ankm

Kt —k possiblc values for f4,. Thus the number

m

of elements in Ty, is
L)

" (JAlIBI) " H "
O

Now let us bound |T,| such that the bounds dcpcnd only on (K™)men and (L) men-

Proposition 8.2.3

There exists two constants Cz, C3 > 0 such that for all n € N,

Cok™ Mgn) < InTnl € C3x™gn)

Remember that [Ty, is given by Lemma 8.2.2. Before showing the above proposition
let us give an estimation of the right factor of the expression of [Ty/.
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Lemma 8.2.4

There exists two constants Cy, C > 0 such that for all n € N,

£(n) K™k
Cok™ Moy <In | ] ’r/m < Cik"lem)

Proof. Recall that by eq. (7.1) there exists ¢7, ¢z > 0 such tha, for all m
Cilm —c2 < In Tl < c1lm +c2.

Since My, < Ty we thus have

&
2

(

£(n) PR
In{ TT|Mm <D (KM —km)Inlwl,

m=1

3
[

L
2 L

< (k™ —km) (c1lim +c2) .

3
)

But we can bound «™ — k., from above by k™ and since (L )men is 2 subsequenC€ of a
1’] . . h h £(n) . ~

sequence having geometric growth, the sum 3" /™ (¢1lm + c2) is bounded from above by

its last term uptoa multiplicativc constant. That is to say: there exists C; > 0 such that

£n) K™k,
]1’1 H F’m < C] Knlg(n)

m=1

Hence the upper bound. Now, using that [y, : I'1n] = |A||B| we have

JECS N T S Mol
In H ‘F Z ) In T = Z (k™ —km)In (m)

m= m=1
Boundmg thC sum from bL] b 7 1its lust term 'md usmg €q. (7 1) we gCt

1 2( 1 |r£(n)|
" o) A )

> (k™ — kE(n ) (c1lg(m) —c2 — In(JA[B))) ,
2 Ca(k™ —ken))lem),
for some C, > 0. We get the wanted incquality by noting that k™ — Ken) = kT O

Proof of Proposition 8.2.3. By Lemma &.2.2 and Lemma 8.2.4

K™ Ln) K™ —Kkm
In[Tal = In [ ™ (IAlIB]) o

m=1

< In (k™) + k™ In (JAIB]) + C1k™lg(n).

Thus, there exists C3 > 0 such that In|T,| < C3k™lgm)
The minoration comes imediately from Lemma 8.2.4. O

Equipped with these bounds on [T,| we can now show the wanted integrability for the
coupling.
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8.2.3 Integrability and proof of Theorem 6.3.1

Let us now prove Theorem 6.3.1. So recall that p : [1,400[= [1, 400l is a non-decreasing
function such that p(1) = 1 and x/p(x) is non-decreasing and that A is the Bricussel-
Zheng’s diagonal product associated to p (see appendix A.1 for a defintion of A from the
map p). We will show that A is the group satisfying Theorem 6.3.1, but first let us quantify
the integrability of the orbit equivalence coupling with Z induced by the Folner tiling
sequences we built.

Theorem 8.2.5

Let p: [1,+00[— [1, +0o[ be a non-decreasing function such that p(1) = 1 and x/p(x)
is non-decreasing and take A to be the Bricussel-Zheng’s diagonal product defined
from p. Let ¢ > 0 and ¥ := exp op and let

!
P P “(X))W.

(Inpln(x)

There exists an orbit equivalence coupling from A to Z that is (¢, ¥)-integrable.

Let us discuss the strategy of the proof. The demonstration is based on Theorem 6.2.4,
thus we first prove that (W(2Rn)e'n_1)n is summable and then that (@¢ (2R )en—1)n is.
In both cases we use Proposition 8.2.3 to get majorations. So far, we have the following

quantifications.
Rn = CRKnlg(n)
) Ry =[Tal =1
&n = — 2
K™ g’n = —.
[Thl
o £(n) K™ —Km
Tl = «™(IAIB)" T |'m| :
m=1

Proof of Theorem 8.2.5. Let p : [1,+00[— [1, 400l be a non-decreasing function such that
o(1) = 1 and x/p(x) is non—deereasing and take A to be the Brieussel—Zheng’s diagonal
product defined from p as described in appendix A.i.
To begin7 let us recall some preliminary results about p. Remember that p ~ p where
p is defined below eq. (A2). By definition of £(n) we have kgnylem) < kMem) <
Ke(n)+1le(n), thus by eq. (A.2)
p(k™lgm)) = k™. (8.4)

Now let us show that the coupling from Z to A is ‘l’—integrable. To do so we prove that
(Y(2Rn)e'n—1) is summable. First note that by Proposition 8.2.3 we have the following
lower bound on |Ty_1]

[Tao1l = exp (CZK“*Zlg(n_”) . (85)
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Moreover recall that Ry = Crx™lg(n) and e’n_1 = 2/|T_1] thus by the inequality above

2
Y(2Rn)em—1 = exp [P(ZCRKnls(n))l T
T

< 2exp [p (2CkK™Men) = Cok™ 2Legn 1.
But remember that p ~ 5. Thus using eqs. (8.4) and (A.1) we get
P (2CrKk™lg(n)) = P (2Crk™g(n)) < 2CrP (k™ lg(n)) = 2CrK™. (8.6)
Combining the above result with the previous inequality, we get

Y(2Rn)e'n—1 <X 2exp [2Crk™ — Canizlg(n,])] ,
=2exp [«k™2 (2Crk? — Colgno1))] »

which is summable. Indeed lem) tends to iniinity and thus (ZCR K2 — Calen—1 )) <O0forn
large enough. Hence by Theorem 6.2.4 the orbit equivalence from Z to A si W-integrable.

Now, let us show that for all ¢ > 0 the Coupling from A to Z is (pa—integrable. Based
on Theorem 6.2.4 we only have to prove that ¢ (2R, )en_1 is summable. Recall that
R'n = |Tnl and en_1 = 2/k™ 2 and remark that by both the lower and upper bounds
given in Proposition 8.2.3 we have

2p(In(2ITaD) - 20(2C3k™lgn))
T+e ~ T+¢ :
(lnpanITnl) gn—1 (lnp (ZCZK”—WE(H))) gn—1

©e(2Rn)en—1 =

Let us give a lower bound for p (2C2x™ g () ). Recall that p = p furthemore if 2C; > 1
then by eq. (84) and since § is non—dccrcasing

e M) < 5@ M)
~p (ZCZKnillE(n)) .

Now if 2C, < 1 using Claim A.1.4 with ¢/ = 2C; and X' = k" g, we get (forn large
enough)

2Cok™ T =2Cop(K™ Mgn)) < P2C2K™ Mlg(n)) = p (2C2k™ Mg (n))

Hence, in both cases k™1 X p(2C2k™ "lg(n)). Finally replacing Cr by Cs3 in eq. (8.6)
we can show that p (2C3k™lg(n)) <X ™. Thus, combining the two preceding results we
obtain

2p(C3x™lg(n))
T+e
(lnp (CZK"*WQ(M)) gn—1
4 a T+e =
(ln (an1)> k-1 ((n=1)In(x))

@E(R/n)€n71 <

K

T+e?

which is 2 summable sequence. Hence by Theorem 6.2.4 the orbit Cquivalcncc Coupling
from A to Z si ¢.-integrable. O
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Remark 8.2.6. This result is stated in the general case, that is to say for an abstract p.
Nonetheless, for some particular functions p the quantiﬁcntion can be improvcd. For
example the case where k, = 2™ and 1, = 2%™ corresponds to p(x) = x"/1+%) In that
casc £(n) = n — 1 and we can show that the coupling from Z to A is exp-integrable
(instead of exp op-integrable). Indeed, let ¢ < C2/(Cr23"*) and W(x) := exp(cex), then
by eq. (8.5)

2
W(ZRn)e"n1 = exp [co2Crknln]
n,

< exp [cp2CRr2m2%(n=1) — Cy2n=22x(n=2)] 2
= 2exp [2"722%(2) (¢, Cr23t™ — C3)] .

Which is summable by choice of ¢.

Remark 8.2.7. We can Verify that the integmbility obtained for the Coupling from A
to Z is “almost” optimal. Indeed if the coupling from A to Z is g-integrable, then by
Theorem 6.1.16 we have

@olz X 1Ia

where we recall that Iz(n) ~ n and Ip(n) ~ p o In(n). Thus using the inequnlity above,
we get 9(n) <X poln(n). Hence the quantification of Theorem 8.2.5 is optimal up to a

logarithmic factor.
[t is now casy to prove our first main theorem.

Proof of Theorem 6.3.1. Let p : [1,400[— [1, 400l be a non-decreasing function such that
p(1) = 1 and x/p(x) is non—decreasing. Let A be the group defined in Proposition A.1.1.
By the aforementioned proposition it verifies In ~ p o log. Moreover by Theorem 8.2.5
there exists an orbit Cquivnlcncc coupling from A and Z that is (., exp op)—intcgrab]c
for all € > 0. ]

Finally let us show Corollary 6.3.2 concerning the coupling with 74,

Proof. Let p : [1,400[— [1,+o0o[ be a non—decreasing function such that p(1) = 1 and
x/p(x) is non-decreasing. Let A be the group defined in Proposition A 1.1, in particular
it verifies [ ~p o 1og.

Let d > 1 and recall (see Example 6.2.5) that for all p < 1/d there exists a (LP,L'/P)-
intcgmblc orbit cquivalcncc coupling from Z to Z4. Hence, using the composition
of couplings described in appendix B we can deduce from Theorem 9.3.1 and Propo-
sition B.1.3 that there exists a (¢¢(-P), L°)-integrable orbit equivalence coupling from A
to Z4. But p < 1 thus by Claim A.1.4

ppolog < p(plog) =polog(-P) X polog.

Thus ¢ (-P) ~ @.. Hence the corollary. O
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9.1

MEASURE SUBGROUP COUPLING WITH THE
LAMPLIGHTER GROUP

Happiness can be found, even in the darkest of times,
if one only remembers to turn on the light.

— J.K. Rowling
Harry Potter and the Prisoner of Azkaban

Let A be as defined in Section 7.1 and let g = |A x B|. Denote by Lq the wreath product
(Z/qZ): Z and endow it with the following generating part:

Si, = {(x60,0> |x € Z/qz} U{(eaxs, =)}

The aim of this section is to show Theorem 6.3.3 which we recall below.

Theorem 6.3.3

For all e > 0 and all « > 0 there exists a group G such that
)l/(1+¢x) _

« Ig(x) = (log(x) ;

- - 1 . .
« if we define @ (x) := x 7+« then there exists a @¢-integrable measure sub-
group coupling from G to Lqg.

Using Sofic approximations, we are going to prove that the Bricussel-Zheng's diagonal
product A verifying kym = k™ and 1,, = k*™ is the wanted group G. Drawing inspiration
from the Folner tiling tcchniquc described in Definition 6.2.1, we define tilings of A and
Ly in Section 9.1. However —unlike the result obtained in the previous chapter— we
can not obtain Folner ti]ing sequences having same number of elements at each step.
That is why we work in the framework of Sofic approximations which only requires that
we can embed one approximation into the other. Section 9.2 is devoted to the proof of
inequalities useful for the quantiﬁcation. The latter is proved in Section 9.3 as well as
Theorem 6.3.3.

CONSTRUCTION OF THE SOFIC APPROXIMATIONS

In this section we define a Sofic approximation (Gn)nen of A and a Sofic approximation
(Hn)nen of Lq. Recall that (T, )nen denotes the tiling of A defined in Lemma 8.1.4 and
let us describe the idea of the construction. We want (Gn)nen to be a subsequence of
(Tn)nen and (Hn)nen to be a subsequence of some Folner sequence of Ly such that G,
embedds in 3, for alln. Since we want these Sofic approximations to verify eq. (6.1) with
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@(x) = x1/0+e+e) e also need the embedding to respect the geometry of the groups.
To do so, we draw inspiration from the tiling tcchniqucs dcvcloppcd in the prcccding
sections. Indeed, we define (Hy ) nen such that H,,11 is tiled by #;, for all n, which means
that there should exist a finite subset PR such that H, 1 = Usesr 0.

As we will see in the next paragraphs, we will take (Gn)nen such chat G, = Ton for
some large enough p > 0 to be determined later. The need to take such a subsequence
of (Ta)nen comes from the following discussion. Assume first that §,, = T, and that it
embeds in some sequence H,, as described above for all n. Then these sequences verify
[Hnl > |9n] and due to the tiling process, the quotient of these two cardinalities is mul-
tiplied at each step. More precisely, since we want H,, to be tiled by 3,y and 3, to
embed in G, we thus need Z% to Vcrify |Zn] <124 We conscqucntly “approach” In by
L% (in a sense that will be precised by eq. (9.3)) and when taking the product £ - £ we
hence mu]tiply the errors. Since H,, is the product of 5y ey Z0, the error is thus cumu-
lative. Hence the size of #,, grows faster than Gy, and actually too fast. Indeed denote
by tn the embedding from G, to H,, and take x € G, and s € Sa; to obtain the wanted
integmbility we will need to control the distance between t,(x) and . (xs) in 3, But
if the size —and thus the diameter— of 3, grows too fast we will not be able to have
good enough control over the distance between t,(x) and 1, (xs). To avoid this pitfall
we define (Gn)nen to be a subsequence (Tpn)nen of (Ta)nen. The speed at which errors
of approximation of G, by H,, accumulate is slower. Consequent]y |HCn | grows slowly
and thus if p is large enough we will obtain the wanted control on the aforementioned
distance. We refer to page 94 for the concrete use of this parameter p in the proof of
Theorem 9.3.1.

Before dcﬁning these Sofic approximations, let us state a useful fact about tilings of

the lamplighter group.

9.11  Tiling of the Lamplighter group

Recall that a Folner sequence of Lq is given by
Fl o= ((si)i,t) cte{o,n—1}, supp((si)i) co,n— H}.

Our goal here is to extract a subsequence of (F;)nen to define a Folner tiling sequence
for our group Lq. So let (dn)nen be a sequence of integers and define Zf := F} . Now let
D, = H?:o d; and consider for alln > 0

== U T L ((60),3Dn) | supp((e)i) €[0,iDn —1]

(9.1
O+ 00w, Dy~ 1]}

These sets will be the shifts of the wanted Folner tiling sequence. This is what Lemma 9.1.2

formalises, but first let us give some illustration of this tiling.

Example 9.1.1. Assume do = 2 and d; =4 then Do =2 and Dy = 8. Let ((e1)i,t) € Fb,
and ((€}):,jDo) € £}. We represent the product of these two elements in Figure 9.1 for
j = 0 (Figure 9.1a) or j = 2 (Figure 9.1b). The dark blue squares correspond to lamp con-
ﬁgurations coming from the element in Fp o while the orange ones are coming from the
shift. The cursor of that product, namely t +jD1, belongs to the hatched blue rectangle.

Let us now prove that it nctually defines a Folner tiling sequence.
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(a) Representation of ((&})i,0) ((&i)s,t)
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(b) Representation of ((&})i,2D1) ((e1)s, )

Figure 9.1.: Tiling of the lamplighter

Lemma 9.1.2

Let (dn)nen be a sequence of positive integers and define I .yas above.
Then (£ )new is a Folner tiling sequence and Fb . =0 aFb,.

Proof. 'The strategy of the proof is the same as the one of Lemma 8.1.4.
Let (dn)nen be a sequence of positive integers and define £ ; as in eq. (9.1). Recall
that Dy = [T, dn forall n € N. First let us show that 77 F; is contained in Ff,

Let (())i,t) in Fj andj € [0,dni — 1] and take ((&1)1,jDn) € Z, ;. Then

e

(e06,30w) (D)) = (e €l 5, ) s t+iDn)
By eq. (9.1) and since (&}); is supported on [0, D, — 1], we have
supp (e + €, )icz) € [0,iDn = 1] U [+ 1)Dn, Dy =1] UGDy, (j+ 1D 11,
=1[0,Dns1 —1].
Finally, since t < D — 1 and j < dpny1 — 1, we get

an+t$ (dn+1 _1)Dn+Dn_1 < Dndn—H —1 :Dn—H —1.

Thus ((e1)1,iDn) ((¢})i, t) belongs to Foo o
Now take ((wi)i,t) € F5, and let us show that ((wi)s, t) belongs to 27
remark that since t < Dynyq — 1 there exists a unique 0 < j < dny1 — 1 such that 0 <

t—jDn < Dy — 1. For such ajlet t' ;= t —jDy, and let (e); and (&}); such that

1" 1
Fp . First,

Wi lfle [o7an_”U[(j+])Dn7Dn+l _”7
£ =
e else,

o — {wpern lfl S [O,Dn—”,
P =

¢ else.
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Then ((e4)1,iDn) (())i,t') = ((wi)i,t). Hence the equality of the lemma. To prove that
(Z)newn is indeed a Folner tiiing sequence we now oniy have to show that of No'F, =
@ forall o # o’ € £2_ ;. So take ((e1)i,jDn) and ((€})1,j'Dn) in £2_; and take ((w;)i, 1),
and ((w})i, t') in Ff . If

((e)1,iDn) ((wi)i,t) = ((1)i,iDn) ((w})i, 1) (9.2)

then in particular t+ijD, = t' +j'Dn. But t,t' < D, thus the last equality implies
t =t and j = j’. In particular (e;); and (&}); are supported on the same set, namely
[0,jDn — 1TU[(G 4+ 1)Dy, Dpyr — 11 That last set is disjoint from iDn,(G+ 1)Dyy — 1]
which is the interval where ((wi—jp, ):) and (wi_jp, ); are supported. Combining this
with eq. (9.2) we thus get that &; = ¢/ for all i. Hence the result. O

We thus know how to build Folner ti]ing sequences for Ly. Now we have to spccify the
sequence (dn)nen such that the obtained tiling will give an appropriate Sofic approxi-

mation for our coupling.

9.1.2  Sofic approximations

Let p € N. Let Gy = Tpn where (Ty)n is the tiling of A defined in Lemma 8.1.4. Recall
that the sequence of shifts (Zrn)nen 18 defined such that Tny1 = Zp1 T, In particuiar
Tp(n+l) = Zp(n+1)2pn+p,1 an+1Tpn- Let io =T Lll’ld

Lnpr = Zp(n+] )an+p71 an+l .
By the above discussion, we thus have Gn41 = L1401 Gn. Now, let us define inductively the
Sofic approximation Hy, of Lq. Firse, let Ho = F/ and define dg = 1. Then let n > 1 and
assume Hp, == Ff, defined. Let dny1 be the minimal integer such that Ff, 4 | contains
at least ’inH’ translates of F{’)n. In other words d,, ;1 is the minimal integer such that

the set £ defined in eq. (9.1) contains at least ‘inH‘ elements, viz.
st = ) €[] € ol (o)

Remark that in particular, one can embed L, in £ Finally let 3,41 = Fh, L, Ie defines
by induction a sequence (Hn)nen, which is a Sofic approximation oqu since it is a sub-
sequence of a Folner sequence.

9.1.3 Injection between Sofic approximations

Let us now define che Cmbcdding from G, to ;. First remark that there exists a natural
bijection 1o between Go and Ho that maps (f,0) € G to the element ((&;)i,0) of Ho where
g0 = fo(0) and &5 = e if i # 0. Now let n > 1 and denote by Vn an Cmbcdding of £, in
£} arbicrarily chosen. Since (i“)new is a Folner tiling sequence, one can write every
clement of G, as a product oy, - 0o where o; € £ is uniquely determined for all i. Thus

we can define without ambiguity the following injection.

Lemma 9.1.3

Let n € N. The map defined by

{9n :Tpn —)g{n,
by

Hil:o oi = Hilzo Vi (01),
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9.2

| is a well defined injection from Gy, to H,.

Proof. Let n € N. By the preceding discussion, this map is well defined. Now let
x, X' € Gn. For all i € {0,...,n} define oy (resp. of) to be the element in Z; such that
X = Op 09 (resp. X' = oh 06). Then by definition of 1, we have 1, (x) = H?:o vi (0})
and 1, (x') = [Ti_o vi (0}). But vi(0y) and vi(o}) belong to £; for all i, thus i o vi (03)
is the decomposition of tn(x) and H?:o vi (03) the decomposition of 1, (¥')) in product
of shifts. Since (Z};)n is a Folner tiling sequence, that decomposition is unique thus if
tn(x) = tn(x') then vi(oy) = vi(o}) for all i. Thus oy = o} since v; is a bijection for all i,
and therefore x = x’. Hence the injectivity of t,. O

USEFUL INEQUALITIES

In order to quantify the relation between A and Ly we will need some bounds on In ‘)_:n‘.
The first lemma bounds In ‘imq ‘ by above and the second one bounds In ’in‘ by below,
both in the general case (that is to say for abitrary sequences (km)men and (Ln)men)-
Corollary 9.2.3 gives a relation between In ‘)_:,H]‘ and In ‘)_:n’ in the particulur case when
km = k™ and 1,, = k¥™ for some « > 0.

First remark that, by the definition of in+] and Zn1

L(pn L(pn+1
i — P gP(+1)_pn (p jr/ gP(n+1)_pn (p! 2 r/ Kp("+”7ki ( )
wil=wq [T [T s o
i=1 i=£(pn)+1

We can now show the wanted bounds on In ‘in+]‘ and In ‘in‘.
Lemma 9.2.1

There exists a constant C; > 0 such that, for alln e N

In[En ] < G e ).

To show this lemma we first bound the two products on the right of eq. (9.4). Recall that
there exist ¢1,¢2 > 0 such that In|IY| is bounded above by ¢11; + ¢ for all i. Moreover,
since (L )m is a subsequence of some (un ) having geometric growth, a sum of of terms
of (lin)men is bounded by its last term up to a multiplicative constant. We use this to
bound by above (up to a multiplicative constant) 1n|in+1| by the highest term of 1,
appearing in eq. (9.4) times the highest possible power.

Proof, First remark that kP17 —k; < P+ P for all i € [S(pn) + 1, L(p(n + 1))],
thus

£(pn) - L(p(n+1)) - £(p(n+1))
In H |r{‘,<p n1) _epn H “".{IKP nED g < (Kp(n+l) _ Kpn) Z In |r{‘
i=1 i=L(pn)+1 i=1

But recall that by eq. (7.1) we have In T <cilm+cz and that (L) mew is a subsequence of
a geometric sequence thus a sum of its terms can be bounded by above by the last term
up to a positive constant. Thus

£(p(n+1)) £(p(n+1))
Z 11’l‘r1,| < Z (C]li +Cz) < Colg(p(n+1)),

i=1 i=1
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for some Co > 0 depending only on A. Thus using eq. (9.4) we get,

11’1‘5:71_._1‘
(n+1) Ly (n+1) Sl tt)) (n+1)
=In(kP)+In [q<" " T et e T et
i=1 i=L(pn)+1

< ln(Kp) + (Kp(n—H) — Kpn) [Colg(p(n+])) +1n(q)] .

But In(q) is constant and In(kP) < (kP(™+1) — kP™) thus there exists some constant ¢ >
0 such that 1n‘in+1‘ < 61 (KP("“) — Kp“) lepnit)). We get the lemma by (1'oughly)
bounding (kP — «P™) by above by kP(™+1), O

Now for the lower bound on In ‘in‘. Recall that C; is the positive constant given in

Lemma 8.2.4.

Lemma 9.2.2
For alln € N,

In ‘in’ > CzKpn71 lg(pn]

where C, > 0 is a constant.

Proof. Bounding In ‘in‘ by below by the last factor appearing in eq. (9.4) and using the
fact that kg(pn) < «P™T we get
ln‘in‘ > (kP™ —kg(pny) In |r,g(pm|
> (kP™ — kP T) hllr)’:(pn)l,
We conclude as in the proof of Lemma 8.2.4 and by bounding KPT — Pl by below by
kPmT, O

1

Now let p(x) = x"/1*%) for some « > 0 and consider the diagonal product A associated

to such a map o (see appcndix A.1). In that case ki, = k™ and 1,,, = k*™ for all m and we
can deduce from the two preceding lemmas the following corollary.

Corollary 9.2.3

Let « > 0 and assume that ky, = k™ and 1, = k*™ for all m € N. Then there exists
some constant C, > 0 such that for for alln € N

ln‘inﬂ‘ < Cokplot) ln‘}in‘

Proof. Let « > 0 and assume that k;, = k™ and 1,, = «*™ for all m. Remark that in that
case £(pj) = pj — 1 thus le(pj) = k*®I=1 for all j. Using Lemmas 9.2.1 and 9.2.2 we get,

ln‘inﬂj ¢ kp(n1) alp(ns1)=1)

ln’in‘ h Cykpn—Tga(pn=1)

)

PN

— &prﬂ ch(p(n+l)717pn+1)
C, !
- &KP"'] KXP
2
Let éz = 61 k/Cz, then ln‘)_:nﬂ‘ < (A?ZKP(”"‘) ln‘)_:n‘. Hence the lemma. ]
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QUANTIFICATION

Let us now prove Theorem 6.3.3. First let a > 0 and consider the diagonal product A
defined by ki, = k™ and 1, = k*™. For such a group we start by quantifying the inte-

grabi]ity of the measure subgroup coupling with Lq obtained using Sofic approximations.

'Ihcorcm 9.3.1

Let o > 0 and A be the diagonal product defined by km = k™ and 1, =
Then for all € > 0 there exists a measure subgroup coupling from A to Lg that is
(pe—intcgmblc where

©:(x) ;:x1+;c+s .

Using Theorem 6.2.9, we will show that there exists peN such that che sequences Gn
and H,, defined in Section 9.1.2 verify for every s € Sa

{x €8 1 dse, (), talx - s)) = 7}
lim supZ @e(7) G < oo. (9.5)

Let us discuss the strategy of the proof. Take (f,t) € G,. We first study the distance
between i (f, 1) and 1, ((f, 1) - s) for some generator s and we distinguish two cases, de-
pcnding on whether s = (e, 1) (see Claim 9.3.3) or not (see Claim ().3.2). In the first
case, the bound on the distance obtained involves terms of (D;)ien. Thus we compute
an upper bound to Dj (see Claim 9.3.4). Finally we show that eq. (9.5) is verified in both
cases.

Proofof Theorem 9.3.1. Lete >0, let p € N and G,, and 7., as defined in Section 9.1.2. Let
tn be the map defined in Section 9.1.3. Let (f,t) € G, and s € Sa such that (f,1) - s € Gnn.
Recall that for all i =0, ..., n there exists a unique (g*, tikP(=1)) € L; such that

(f, 1) = (g“,tnKp(“*”) (90,0). (9.6)

Let us study the value of 1, ((f, t) - s) when s € Sa.

Claim 9.3.2. If's = ((@m80)m,0) for some a € A or if's = ((bydxk,, )m,0) for some b € B
then d (tn ((f, 1)), tn ((f, 1) - 5)) =1

Proof of the Claim. First assume that s = ((am80)m,0) for some a € A. Let (h,0) be such
thac
g (x) if x #0,

v N hm(x) =
(me ) ) {g%(O)am ifx =0.

By definition it verifies (h,0) = (g°,0) ([aéo)m, 0) and its range is the same as the one of
(g°,0). Thus (h,0) belongs to Z,. Hence the decomposition

(h,0J,

n
[ (gt tikP (=D
i=1
gives the unique decomposition of (f,t)-sin product of shifts. Hence by definition of 1,

t((F,1) s :f[ (g%, tikPE1) 1o (R, 0)
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Thus, using the definition of 1

au, (i (£, n((£,0)-5)) = e, (10(6°,0) t0(1,0))
= dr, ((63(036,0), (no(0)86,0)) =1.

If's = ((bmdk,, )Jm,0) for some b € B, a similar argument shows that
dr, (Ln((f,t)),tn((f,t)-s)) =di, (Lo(g",O), Lo((g",o)-s)) =1
Hence the claim. O]

Let us study the case when s = (e, 1). Remark that by eq. (9.6) the decomposition of
t in base kP is given by the sequence (t; kP(i=1)); of the cursors of elements of)_:i, that is
tosayt=3 1 t;kP(=1). Now, denote by 1o(t) the integer such that

(Vi<iolt) ti=«xPV =1 and  ti ) < kPle®=1 7, (9.7)

That is to say ip(t) is the digit that will “absorb* the carry when we add one to t decom-
posed in base kP. Finally, let us recall that 6! is defined as

) _ {x € Gn | Bg, (x,1) =Bg(eg,7)}.

Claim 93.3. If's = (e,+1) and (f,t) € g then d(tn((F, 1), ((F, 1) +s)) < 3Diye)-
Moreover, to a given ip < n, the proportion of elements in Gy, verifying eq. (9.7) is (kP —
1)/kPlo,

When there is no ambiguity we will sometimes abuse notations and denote 1o instead
of io(t). Now, let us discuss the strategy of the proof. The action of s adds one to the
cursor and thus changes the the decomposition in base kP up to t;, (the coefficient that
will “absorb” the carry). Using this we show that the action of s on (f,t) changes only
the (ip 4 1)-right-most factors in the decomposition given by eq. (9.6). Thus (f,t) and
(f,t+ 1) differ at most from an element in Fp, . Hence the distance between these two
elements is bounded by the diameter of the aforementioned Folner set.

Proof of the claim. Assume that s = (e, 1) and (f,t) € G5 and let iy = io(t) as defined by
eq. (9.7). Remark that we have in pnrticulnr Z:O:o tikP(=1) < plo=1) _1 Now consider
the element of Ty, defined by

io

(P, ) =] (g% tuxre1).
i=0
Then, since (p,t') - s = (p,t' + 1) and since by the above discussion t' + 1 < kPle=1),
we obtain that (p,t') - s bclongs to Tpy,. Thus for all i = 0, ..., 1o there exists a unique
(hi,x;) € £; such that

ig

(p7t/) tS = H (hi-)Xi)'

i=o0
But by eq. (9.6)

io io

-1
<H (gi,tud’“”)> (1) -s =[] (gF, tixP 1) -5

i—ig+1 i=0 i=0

Il
—~
=

-
x
S
~
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Thus, the equality (f, t)-s = [Ti—, 1 (g%, kP -1)[Ti0 (hi, x;) gives the decomposition

of (f,t)s in product of shifts. Hence,

qu (Ln(f7t)7 tn(f,1) - S) = qu <H Vi (hiaxi)a H‘H(gi?tiKp(i_])))
i=0

i=0
= qu (Lio ((P,t') : 3)7 Lio(pyt,))>
< diam (F%io) .

The diameter ofF%io is at most 3Dy, hence the first part of the claim. Let us now show
the second assertion. The cursor of an element in Z; can uniformly take «P different
values. Thus the proportion of (gt, t;xk?(*=1) in Z; verifying t; = kP — 1 is 1/, whereas
the proportion Verifying t; < kP —11is (kP —1)/kP. Hence the ratio elements (f,t) € G,
such that the decomposition given in eq. (9.6) verifies eq. (9.7) is (kP —1)/kloP.

Finally, an analogous reasoning shows the result for s = (e, —1). O

To prove eq. (9.3) is verified we now need an estimation of Dy,.
Claim 9.3.4. There exists Cp > 0 depending only on A such that D, < (Cp |<P“+°‘J)n for
alln e N.

Proof. To prove the claim, we want to establish an upper bound to dn+1. By the left
inequality of eq. (9.'3) we get

(dngr = 1) qPn1dn =20 < [E |
:>ln(dn+1 — 1)+ Dn(dnst1 —2) 1H(Q) < 1n‘in+1‘>

ln ‘in_ﬂ ‘

dpy1 —2< ———.
:> +1 Dnln(q]

Using Corollnry 9.2.3 and eq. (9.3) applied to )_:n, we deduce

: 1n‘>_:n‘

D, In(q)’

1 Dn1(dn — 1) In(q) + In(dn)
D, In(q) ’

dn1 —2 < Corp(lre

< ézKp(lJroc

A dn, —1 In(dn)
< Cykp(T+a) ( n n ) .
2K dn * D, In(q)

But (dn — 1)/dn < 1 and In(dn)/(Dn In(q)) < 1, thus dnig < 2CxP0+%) 4 2 which we
can roughly bound by above by (2C, + 1)kPU+%) et us define Cp := 2C, + 1 then Cp
depends only A and we get D, < (Cp KP(H_“))“. Hence the claim.

O

Finally, let us show that eq. (9.5) is verified for some well chosen p. Let n,p € N and
R > 0. If's = ((ado),0) or s = ((bd,,),0) then by Claim 9.3.2

R {XES—ELS)|d9{n(tn(x)7tn(x's)):T}
Z(ps (1) N = (1)
r=0 n
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which does not depend on R nor on n, thus eq. (9.5) is verified. Now assume s = (e, £1).
By Claim 9.3.3 and the upper bound on Dy, given by Claim 9.3.4, we get

® x € G171 o, (tn(x), tnx-8)) =7}
@ (T
PIAY kN
kP —1
< .
\%@E(SDl) T
< 3C1 pi(1+«) kP —1
\%(Ps( pk ) p
1/(1+ate) p(4a)y Trere K2 — 1
=Y3 (Cok ) P
ieN

(CD Kp(1+oc))l/(l+cx+a)

:(Kp71)31/(1+£x+£)z( ) .
KP

ieN

But since (14 o)/(1 + o+ ¢) — 1 < 0, there exists p > 0 such that

C:)/(Hoers)Kp((w[x)/(ucxﬂ)q) <1
For such an integer p we get (kP —1) 3 iy ((CKP”*"‘))]/““"“]/KP)l < 400. Since that
term does not depend on R nor n we thus get that eq. (9.5) is verified. Hence the theorem.

O

Remark 9.3.5. We can verify that the result above concerning the coupling from A to
Lq is “almost” optimal. Indeed if the coupling from A to Lgq is @-integrable, then by
Theorem 6.1.16 we have

polr, X1Ia

where we recall that IL,(n) = og( n)and Ix(n) ~ 10g( y1/0+e) Thus using the mequahty
above, we get ¢ o log(n) < log(n)!/1+%). Hence the optimal integrability suggested by
this theorem gorresponds to @(x) == x"/+%)_ Thus the quantlflcatlon of Theorem 9.3.1
is almost optimal.

We can now prove Thcorcm 655

Proof of Theorem 6.3.3. Let « > 0 and A be the diagonal product defined by the two se-
quences ki = k™ and 1, = k*™. Then by appendix A.1 the isoperimetric profile of A
verifies Ix(n) ~ log( )1/0+%) - Moreover by Theorem 9.3.1 there exists a measure sub-
group coupling from A to Lq that is g.-integrable for all ¢ > 0. Hence the theorem. [

Let us conclude by the demonstration of Corollary 6.3.4.

Proof. Let « > 0 and & > 0 and define g (x) == X TFae . By Theorem 6.3.3 there exists
a group G such that Ig(n) = (log( 1170+ and such that there exists a q)e—intcgrablc
measure subgroup coupling from G to Lg.

Now let H := Z2 X5 Z where A is the matrix

A;_<§ ;).

By [DKT21, Th. 6.] there exists a measure equivalence coupling from Lq to H that is
(Lee, Cxp)—intcgmblc. It is thus (P, Cxp)—intcgrablc for all increasing map ¥ : Ry — Ry
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In particular if P = id we can compose the couplings and obtain by Proposition B.1.3 an
orbit Cquivnlcncc coupling from G to H that is (@, LO)—intcgrnblc. Hence the corol]ary.

O]

We show Corollary 6.3.5 similarly, by using Example 6.1.11 instead of [DKT21, Th. 6.1]

in the above proof.
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CONCLUSION, UNFINISHED WORK AND
OPEN PROBLEMS

Past the mud and the rain I will slowly stand
Yet still a long way to go on the route we planned.

— Alpine Universe
The Empire of Winds, from The Empire of Winds
(0.8.1)

We conclude this part on some open problems. This is also the occasion to discuss
possible strategies to tackle them and current work in progress.

THE LAMPLIGHTER CASE

Our result concerning the Lamplighter group (Theorem 6.3.3) gives only a measure sub-
group coupling. It is thus natural to ask the following question.

Question 10.0.1. If o > 0 et @(x) = x"/(1+*) does there exist a group G with isoperimet-
ric profile Ig = ¢ o log(x) and such that there exists a @-integrable measure equivalence
coupling from G to Ly?

As discussed in the introduction, we worked on this question and we hope to be able
to prove the existence of a ¢ -integrable measure equivalence coupling (for @, as defined
in Theorem 6.'3.3). However time did not allow us to add this result in chis mansucript,
since the proof was only achieved during spring 2021.

Another limitation discussed in the introduction was the fact that we needed an es-
timation of the growth rate of (L) mew in order to get the integrability (see discussion
below Theorem 6.3.3). We thus had to restrict ourselves to the family of functions of the
form x — x1/01+%) Nonetheless one can also ask what happens for a larger family of
functions.

Question 10.0.2. Let p : [T, 4+00[— [1,+00[ be a non-decreasing function such that p(1) = 1
and x/p(x) is non—decreasing. Does there exist G such that Ig ~ po 10g and a (p,1°)-
integrable measure equivalence coupling from A to L?
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FURTHER DIRECTIONS

These are possible refinements of our second main result, but we can also look at prob-
lems concerning other kind of groups. For example instead of considering H := 7% Xa Z

as in Corollary 6.3.4, we can look at the problcrn involving any polycyclic groups.

Question 10.0.3. Can we build measure or orbit equivalence coupling from some group
G to a polycyclic group, with prescribed integrabilicy?

Another possible direction is to consider couplings between two Brieussel—Zheng’s
diagonal products.

Question 10.0.4. Let p, p: [1, +oo[— [1, 400l be non-decreasing functions such that 5(1) =

~T a quasi-inverse for p.

p(1) =1 and x/p(x) and x/p(x) are non-decreasing. Denote by p
Given two Brieussel—Zheng’s diagonal products A and A with respective isoperimetric
profiles I ~ polog and I; =~ p o log(n), can we build a measure equivalence coupling

from A to A that is (pop~7, LO)—integrable?

We actually worked on this problcm but obtained couplings with “bad” intcgrability.
Indeed —as in the Lamplighter case— our constructions draw inspiration from the tiling
technique, which does have the kindness to provide us with a coupling bur with terrible
integrability. We adress and detail this issue in the next paragraph.

COUPLINGS BUILDING TECHNIQUES

We exposed and used two different techniques to build couplings between groups: Felner
tiling sequences and Sofic approximations. As we saw in the Lamplightcr case, the tiling
technique —though inspiring— is not always usable to get orbit or measure equivalence
couplings. Indeed the condition that the two sequences must have at each step the same
cardinality is very restrictive. Furthemore this technique can give couplings with a very
“bad” integrability. Indeed we tried to use these tilings to answer Question 10.0.4 but the
integrability of the coupling thus obtained was not as good as the optimal one, namely
(LO+&)/0+«) 10) This is what we describe below.

Let « > & > 0 and take A (resp. A) to be the diagonal product defined with k;;, = k™
and Ly = k*™ (resp. km = km and 1, = «k*™). Consider the Folner tiling sequence
(Zn)nen of A defined in Chapter 8 and assume that we have overcome this cardinality
issue. That is to say, assume that we can build a Folner tiling sequences (Zy,)nen for A
such that |Z,] = |Z.] for all n € N. We can show that the sequence of tiles (:rn)nE[N verifies

diam <Tn) =R, < kmI+a),

Moreover by Lemma 8.1.5 the tiles in A verify e, = 2/k™. Hence to compute the integra-
bility of the coupling we have to find a map @ such that (¢(Rn)en—1)nen is summable
(see Theorem 6.2.4). For example if ¢ = x"/(1+**¢) for some € > 0, then the sequence is
summable and thus the coupling is (¢, Lo)—intcgrablc. But Theorem 6.1.16 suggests the
optimal integrability of the coupling from A to A could be as good as @(x) = x1+&)/(1+&),
Hence the integrability of the coupling obtained with the Folner tiling sequences is not
as good as the (theoretical) optimal one. Thus the motivation to define and use other



couplings building techniques is not just due to the fact that it might be hard to find Fel-
ner tiling sequences with same number of elements: it is also necessary because Folner
tiling sequences do not always provide couplings with good integrability.
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THE TECHNICAL CONSTRUCTION OF
DIAGONAL PRODUCT

In this section we recall the definition given in [BZ21, Appendice B] of a Bricussel-
Zheng’s group from its isoperimetric profile and some useful results concerning the met-
ric of these groups.

FROM THE ISOPERIMETRIC PROFILE TO THE GROUP

The aim of this section is to define —given a function— a group with this asymprotic
behavior. We also expose some tools used by Brieussel and Zheng to define such a group,

that will be useful for our proofs of orbit equivalence integrability.

A1 Definition of A

Recall that a Brieussel-Zheng’s group A is uniquely determined by the sequences (I'm )men
and (Km)men. Moreover, in the particular case of expanders (see Section 7.1.2), the group
Ais uniquely determined by the sequences (km)men and (L) men (Where 1, corresponds
to the diameter of Ty,). Thus, starting from a prescribed function p, we will define se-
quences (Km)men and (L) men such that the Corresponding A verifies In ~p o log.

First, let

€= {C:[1,+OO)H[],+OO) ¢ continue, (1) =1 }

¢ and x = x/¢(x)non-decreasing
Equivalently this is the set of functions ¢ satisfying ¢(1) = 1 and
(v, e 21)  C(x) < ¢fex) < egfx). (A1)

So let p € € and define f such that p(x) = x/f(x). Remark that in particular f belongs
to €. Combining [BZ21, Proposition B.2 and Theorem 4.6] we can show the following
result (remember that with our convention the isoperimetric profile considered in [BZ21]
corresponds to 1/I).

Proposition A.1.1

Let k,A > 2. For any f € € there exists a subsequence (km)men of (K™)nen and
a subsequence (Lm)men of (A™)new such that the group A defined in Section 7.1.2

verifies Ia(x) = p o log.

Example A2 ([BZ21, Exnmple 4.5]). Let « > 0. If p(x) := x'/0'+%) then the diagongl
product A defined by k= k™ and 1, = k™ verifies Ix ~ p o log.
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A2

A.1.2  Technical tools

Now let us recall the intermediary functions defined in [BZ21, Appendix B] and some of
their properties.

Let p € € and let f such that p(x) = x/f(x). The construction of a group corresponding
to the given isoperimetric profile polog, is based on the approximation of f by a piecewise
linear function f. For the quantiﬁcation of orbit equivalence, many of our computations
will use this function f and some of its properties. We recall below all the needed results,
beginning with the definition of f.

Lemma A.1.3
Let (ki) and (L) given by Proposition A.1.1 above. The function f defined by

f(x) == (A.2)

k":r] ifx € Kimt1lmy Kme 11l

N {1m ifx € Kanlims K 1lm)s

verifies f ~ f.

We will denote by p the map x — x/f(x). Remark that both f and p bciong to €. In
particular they verify eq. (A.1), which is only true when ¢ and x are greater than 1. When
c <1 we get the foilowing incquality.

Claim Aa.4. f0< ¢’ < Tand x' > 1/¢ then ¢/p(x’) < p(c'x').

Proof: 1£0 < ¢/ < 1 then 1/¢’ > 1, thus we can apply eq. (A1) with ¢ = 1/¢’ and x = ¢/x
which gives us
1

o) = (e ) = plex) < colx) = (e

Thus ¢’p(x’) < p(c'x)). ]

KNOWN RESULTS ON THE METRIC

We recall here some useful material about the metric of A and refer to [BZ21, Section 2.2]
for more details. First, let (x), := max{x, 0}.

Definition A.2.1

Forj € Zand m € Nlet ™ == [jkm/2,(j + 1km/2 — 1. We define the essential
contribution of iy : Z — Ty by

Em(fm) == km > max (|fm (x)Ir

jrange(fm, ) NI #0 x€lj

m

4o

The following proposition sums up [BZ21, Lemma 2.13, Proposition 2.14]. Recall that
[(n) denotes the integer such that k)41 >n and ki) < n.
Proposition A.2.2
For any 6 = (f,t) € A we have

[(range(8))
I(F,)[ <500 Y (fm,t)la,.,

m=0

|(fm7 t)iAm <9 (1‘ﬂng6(fm7t) + Em(fm)) .
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B.1

COMPOSITION OF COUPLINGS

We recall in chis chapter some material of [DKLMT20, Sections 2.3 and 2.5] concern-
ing the composition of couplings. We conclude by a figure summing up the different

couplings mentioned in this manuscript and their intcgrability.

COMPOSITION AND INTEGRABILITY

B.11  Definition of the composition

Let us first recall the definition of the composition of two couplings given in [DKLMT2o0,
Section 2.3]. Please note that we state it for measure subgroup and equivalence couplings
since these are the only two notions of coupling we consider in this manuscript, but in
[DKLMT20] the authors define the composition in a more general case.

Let T, A and £ be three countable groups and let (X, Xy, 4, 11) be a subgroup cou-
pling from T to A and (X2, X2,5,12) be a subgroup coupling from A to Z. We define the
composition of these two couplings to be the subgroup coupling (X3, X3 5, u3) obtained
as follows: the space of the Coupling is defined by X3 := (X7 x X2)/A where A acts di-
agonally on (X3 x X2, 1 ® p2). This space X3 is equipped with the measure p3 obtained
by idcntifying X3 with a A-fundamental domain. Denote by X, the map which takes
(almost) every x in Xj x X3 to the unique element of A-x which belongs to the aforemen-
tioned fundamental domain and define X3 5 := 7x, (X1, x X2,5). Finally equip X3 with
the induced I' and A actions and denote by X; 1 (resp. X2,4) the fundamental domain
for the T (resp. A) action on Xj (resp. X2), then X3, := mx, (X7,r X X2,4) is a fundamental
domain for che action of T on Xs.

This new coupling verifies the following property.
Proposition B.1.1 (IDKLMTzo0, Prop.z.9])

Let T, A and £ be three countable groups.

« Let (X1, X1,A, 1) be a subgroup coupling from T to A and (X2, X2 5, 12) be a
subgroup coupling from A to L. The composition of these two couplings is a
subgroup coupling from T to L.

. Ifboth Couplings are measure equivalence eouplings, then their composition

is also a measure equivalence coupling,
Let us now study the behaviour of integrability under composition.
B.i2 Integrability
Now that we know how to compose Couplings, we need to quantify the integrability of

the obtained composition. Such a tool is provided by [DKLMT20, Prop. 2.26] which we
recall below.
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Proposition B.1.2

Let ¢, : RY = RT be two non-decreasing subadditive maps with ¢ morcover
concave and let T, A and £ be three finitely generated groups. Let (X1, X1 4, 1) be

a @-integrable measure subgroup coupling from I to A and let (X2, X5, p2) be a -
integrable measure subgroup coupling from A to Z. Then the composition of these

two couplings is a ¢ o Pp-integrable measure subgroup coupling from T to L.

Using the above proposition and Proposition B.1.1 we can obtain a similar result for
the quantiﬁcation of measure cquivalcncc coupling.

Now recall that two orbit equivalent groups are measure equivalent. In particular ev-

following resul.

ery orbit cquivalcncc coupling induces an measure cquivalcncc coupling (see [DKLMT20,
Rk. 2.34]). Thus combining Proposition B.1.1 with [DKLMT20, Prop. 2.42] we obtain the

Proposition B.1.3 ([DKLMTzo0, Prop. 2.9 and 2.42])

If (Xq, 1) (resp. (Xz,12)) is a (¢, L%)-integrable (resp. (¥, L°)-integrable) orbit
cquivalcncc coupling from T to A (rcsp. A to ), the composition of the induced

measure equivalence couplings gives a (¢ o, LO)-integrable orbit equivalence cou-
pling from T to L.

See Corollary 6.3.2 and the discussion below Question 10.0.3 for examples of quantified
composition of couplings.

B.2 OVERVIEW

Figure B.1 sums up the known results on the integrability of couplings between the dif-
ferent groups appearing in this manuscript.

If p(x) = x!/(1+)

N

XHXi/um-z)

In=~po lu:c;

Iy .= lug
. log
PP Togalog 5

polog
MogpTog) 7 e

5 Ac
um)\sudu\o. ‘|

Measure cquivz\lcncc couplings
-

Measure subgroup coupling

J

Figure B.1.: Overview of the mentioned couplings



BIBLIOGRAPHY

[AB18]

[Ausi6]

[BE16]

[Ben13]

[BFS13]

[BES20]

[BPo7]

[BQ14]

[BS20]

[BZ21]

[Cori8]

[DKLMT20]

[DKT21]

[dIST16]

P. Abramenko and K. Brown. Buildings, volume 248 of Graduate Texts in
Mathematics. Springer-Verlag New York, 2018.

T. Austin.  Integrable measure equivalence for groups of polynomial
growth. Groups, Geometry, and Dynamics, 10:117-154, February 2016.

L. Benjamini and D. Ellis. On the structure of gmphs which are locally
indistinguishable from a lattice.  Forum of Mathematics, Sigma, 4, 2016.
arXiv:1409.7587 [math.COJ.

I. Benjamini. Coarse Geometry and Randomness, volume 2100 of Lecture Notes
in Mathematics. Springer, 2013. Notes de cours de '¢cole d’¢te de probabil-
ités de Saint-Flour XLI - 2011.

U. Bader, A. Furman, and R. Sauer. Integrable measure equivalence and
rigidity ofhypcrboiic lattices. Inventiones mathematicae, 194:313—379, 2013.

U. Bader, A. Furman, and R. Sauer. Lattice envelopes.  Duke Math. |.,
169(2):213-278, 02 2020. arXivi1711.08410 [math.GR].

S. Barre an . Pichot. Sur les immeubles triangulaires et leurs automor-
S.B d M. Pichot. Surl bles triangul tl t
phismcs. Geometriae Dedicata, 130:71-91, 2007.

Y. Benoist and J-F. Quint. Lattices in S-adic Lie groups. Journal of Lie Theory,
241179197, 2014.

B. Bekker and M. Solleveld. The Buildings Gallery: visualising Bruhat-Tits
buildings, 2020. arXiv:2011.11707 [math.HOJ.

J. Bricussel and T. Zheng.  Speed of random walks, isoperimetry and

compression of finitely generated groups. Ann. of Math., 193:1-105, 2021.
arXivi1510.08040 [math.GR].

Y. Cornulier. On the quasi-isometric classification of locally compact groups,
pages 275-342. London Math. Soc. Lecture Notes Series 447. Cambridge
Univerity Press, 2018. arXiv:1212.2229 [mach.GR].

T. Delabie, J. Koivisto, F. Le Maitre, and R. Tessera. Quantitative measure
equivalence, 2020. arXiv:2002.00719 [math.GR].

T. Delabie, J. Koivisto, and R. Tessera. Measure equivalence and Sofic approx-

imations, 2021. Article currentiy in writting.

M. de la Salle and R. Tessera. Loca]—to—g]obai rigidity of Bruhat—Tits build-
ings. [llinois |. Math., 60(3-4):641-654, 2016. arxiv:1512.02775 [math.GR].

107



108

[dIST1o]

[Dyesol

[Dye63]

[Ersos]

[Esczo]

[F ar97]

[Geor7]

[GNRoy3]

[KL97]

[OW80]

M. de la Salle and R. Tessera. Characterizing a vertex-transitive graph
by a large ball. Journal of Topology, 12(3):705-743, 2019. arxivi1508.02247
[macth.MG].

H. A. Dye. On groups of measure preserving transformations. i. American
Journal of Mathematics, 81(1):119-159, 1959.

H. A. Dye. On groups of measure preserving transformations. ii. American
Journal of Mathematics, 85(4):551-576, 1963.

A. Erschler. On Isoperimetric Profiles of Finitely Generated Groups. Ge-
ometriae Dedicata, 100, 2003.

A. Escalier.  Local-to-Global Rigidity of lattices in SLn(K), August 2020.
arxivi1512.02775 [math.GR] (to appear in Annales de I'Institut Fourier),.

B. Farb. The quasi-isometry classification of lactices in semisimple Lie

groups. Math. Res. Letters, 4(5):705-718, Sept. 1997.

A. Georgakopoulos. On covers of graphs by Cayley graphs. European Journal
of Combinatorics, 64:57 — 65, 2017. arXiv:1504.00173 [math.GR].

M. Gromov, G. Niblo, and M. Roller. Asymprotic invariants of infinite groups.
Cambridge Univ. Press, 1993.

B. Kleiner and B. Leeb. Rigidity of quasi-isometries for symmetric spaces
and Euclidean buildings. Publications Mathématiques de 'HES, 86:115-197,

1997
D.S. Ornstein and B. Weiss. Ergodic theory of amenable group actions. I:

The Rohlin lemma. Bulletin of the American Mathematical Society, 2:161-164,
1980.

[Tic81] J. Tits. A local approach to buildings. In Chandler Davis, Branko Griin-

baum, and F. A. Sherk, editors, The Geometric Vein, pages 519-547, New
York, NY, 1981. Springer New York.



INDEX

A

Apartment ......... ... 25

Atlas .o oo 33
B

Borel ... 54

Bricussel-Zheng's diagonal product . . .. 65

Bruhat-Tits building. ............. .. 24

Building ................oo o 24
C

Cayleygraph .................. o .. 7

Composition (ofcouplings) 4444444444 103
D

Diagonal product ............ ... ... 65

Discrete valuation................... 23
E

Expander ..................o o 66
F

Freeaction........... ... ... .. .. ... 54

Fundamental domain................ 54

Folner tiling sequence ............... 58
|

Isometry associated to a vertex........ 33

Isoperimetric profile................. 57
K

k—simply connected . ... 17
L

LG-rigid ... 16

LG-rigid group...................... 19

Local-to-Global-rigid . ............... 16

Locally the same................. ... 15
M

Measure

Equivalence ............ ... 8
Equivalence coupling .. .......... 55

Equivalent ................ ... 55
Preserving action ............... 54
Subgroup coupling.............. 54
N
Non-Archimedean local skew field .. .. 23
O
Orbit
Equivalence . ... 8
Equivalent ........... ... .. ... 55
P
@-integrabilicy. . ... o o o 56
(@, ¥)-integrability.............. . .. 56
Print
inabuilding...............o L 27
Y .o 35
Q
Quasi-isometry .................... .. 8
R
R-locally (the same as..) ... 0. 15
Range
Ofaword...................... 68
Ofancelement.................. 68
S
S-arithmetic lattice. ........... ... ... 49
Schreier graph. ... oL 8
Shifts. ... 58
Simply connected at scale k. .......... 17
SLG-rigid group ................ ... 19
SLG-rigidity .. ... 18
Smooth action............. .. ..., 54
Sofic approximation................. 60
Source (of a print)................... 28
Standard measure space. .. ....... ... 54
Strong Local-to-Global-rigidity . .. . . .. 18
T
Tiles oo 58
Type (ofavertex). . ... . 25

109






NOTATIONS INDEX

PART 1

A Atlas of isometries from Y to X.

A An apartment in X.

(I',S) Cayley graph of T with respect to the generating part S.
Ho The group p~1(PSLA(K)).

Isom(§) Isometry group of .

Ly Isomctry from Y to X based at y (see Ppage 42).

k Nartural injection of Y in Y (see Section 3.3.3).

(L] Class modulo homothcty of the latrice L.

P(x) The print of the vertex x (see Definition 2.3.1).

P A printin Y (see Definition 3.2.6).

¢y Local isometry from Y to X based at y (see eq. (3.5)).

q Quasi-isometry between X and X.

R Radius such that Y is R—locally the same as X.

p Injective homomorphism from Isom(X) to Isom(%).

A See Lemma 3.2.4.

rp Radius considered to define prints (see Definition 3.2.6).
Ry Radius such chat Y is Rx—locally X.

T Radius such that v, coincide with ¢y on By(y,rx) (see page 42).
ry See Claim 3.3.8.

t(x) The type of the vertex x, where x belongs to the Bruhat-Tits building of PSL,, (K).

X The Bruhace-Tits building of PSL, (K).
Y Hybrid graph built to be locally the same as the building (see Section 3.2.3).
(Y1, -,y1) Apath of‘adjacent vertices y1, Yz, ..., Yi.

PART 2

<, ~ Sec above Definition 6.1.12.
[X| Cardinal of the set X.

OF Boundary of the set F.

dn Integer such that £, ambedds in I} (sce eq. (9.3))
D, Equals to the product [T}, di.
A Sce Definition 7.1.1.

An See Section 7.1.

F. Folner sequence of A.

Fii Folner sequence of Lq.

g The sequence ofmaps (gm)men-
gin See Section 7.1.3.

S, Sofic approximation of A.
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" Normal closure of [A, Bl

H,. Sofic approximatin of Lg.

Ig Isoperimetric profile of G.

tn Injection from Z,, to I (see page 88).
Lq Lamplighter group Z/qZ . Z.

vi An injection from Z; to Z!.

R, Diameter of T,.

R’ Diameter of T',,.

Sg A generating part of the group G.

Zn Folner tiling sequence (of A).

L. Folner tiling sequence defined by .=

i=p(n—1)—1 Z“'

£’ Folner tiling sequence of Z.

I’ Folner tiling sequence of Lg.

Tn Tile of A defined by T =, Zi

T Tile of Z defined by T, = H?:o >

0 (fim) Natural projection of i, on Ay, (see Section 7.1.3).
0% (fm) Natural projection of i, on By, (see Section 7.1.3).

112



COLOPHON

Local and Asymprotic Geometry of Groups, Amandine Escalicr, September 8, 2021. This
thesis was realised under the supervision of Romain Tessera and Jérémie Brieussel. This
document was typeset using a custom version of classicthesis dcvclopcd by André Miede.
All figures have been encoded by the author using TikZ. The partition figuring in page 103
has been encoded using lilypond by Théo Laurent.



	Dedication
	Avant-Propos, Foreword
	Résumé, Abstract
	Acknowledgements
	Introduction
	i Local-to-Global rigidity and buildings
	An introduction to Local-to-Global rigidity
	Rigidities
	Towards our main results

	Bruhat-Tits buildings
	Definition of buildings
	Structural properties
	Prints

	Quasi-buildings
	Preliminary results
	Defining our hybrid graph
	From one graph to the other

	Rigidity of lattices
	Quasi-isometry between building and lattice
	Relation between the isometry groups
	Rigidity of lattices

	Conclusion and open problems

	ii Orbit and measure equivalence
	An Introduction to measure and orbit equivalence
	Quantitative measure and orbit equivalence
	Building couplings
	Building Prescribed Equivalences

	Diagonal products of lamplighter groups
	Definition of diagonal products
	Range and support
	Følner sequences

	Orbit equivalence coupling with the group of integers
	Tiling of Brieussel-Zheng’s diagonal products
	Coupling

	Measure subgroup coupling with the Lamplighter group
	Construction of the Sofic approximations
	Useful inequalities
	Quantification

	Conclusion, unfinished work and open problems

	iii Appendix
	The technical construction of diagonal product
	From the isoperimetric profile to the group
	Known results on the metric

	Composition of couplings
	Composition and integrability
	Overview

	Bibliography
	Index
	Notations
	Colophon


