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“ Did I make some mistakes?
Yes.
Did I only make mistakes?
Yes.
But did it all work out?
Kind of.

— Samuel Barnett as Dirk Gently
Dirk Gently’s Holistic Detective Agency (Season 1,

Episode 6), Max Landis
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Qui m’a montré la beauté des mathématiques,

Et s’est dit que je pourrais peut-être réussir quelques choses dans ce domaine.

Pour Fabien Caron,
Qui a entretenu mon émerveillement,

Et dans les pas de qui je suis allée sur les bancs de Jussieu.





AVANT-PrOPOS

Cette thèse se compose de deux parties, pensées pour pouvoir être lues indépendem-
ment. Elles sont précédées d’une courte introduction rappelant le contexte général. Si la
deuxième partie expose les résultats de travaux en cours, la première partie correspond
elle à un article intitulé « Rigidité Local-Globale des réseaux de SLn(𝕂) » [Esc20] (à pa-
raître dans Annales de l’Institut Fourier). En dehors de l’introduction pour laquelle il y a
deux versions (française et anglaise), le reste du manuscrit est rédigé en langue anglaise.
Signalons enfin qu’un index des notations se trouve en fin de manuscrit à toutes fins
utiles.

FOrEWOrD

This thesis is composed of two parts, thought and written to be read independently. A
short introduction recalling the general context precedes them.The second part exposes
results of ongoingworkwhile the first corresponds to an article entitled “Local-to-Global
Rigidity of lattices in SLn(𝕂)” [Esc20] (to appear in Annales de l’Institut Fourier). The
manuscript is written in english but the introduction has a french and an english version.
Finally let us mention the presence of a notations index at the end of this manuscript
for all practical purposes.
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rÉSUMÉ

Ce manuscrit présente les travaux de recherche effectués durant ma thèse sur les ques-
tions de rigidité Locale-Globale et les problèmes d’équivalence mesurée.
Après une courte introduction, nous présentons dans la première partie les résultats

obtenus sur la LG-rigidité et correspondant à l’article [Esc20].
Un graphe transitif 𝒢 est dit Locale-Globale rigide s’il existe R > 0 tel que tout autre graphe
dont les boules de rayon R sont isométriques aux boules de rayon R de 𝒢 est revêtu
par 𝒢. Un example de tel graphe est donné par l’immeuble de Bruhat-Tits de PSLn(𝕂)
lorsque n ≥ 4 et 𝕂 est un corps local non-archimédien de caractéristique nulle. Dans
cette première partie nous étendons cette propriété de rigidité à une nouvelle classe de
graphes quasi-isométriques à l’immeuble parmi lesquels figurent les réseaux sans-torsion
de SLn(𝕂).
La preuve est l’occasion de démontrer un résultat sur la structure locale des immeubles.
Nous montrons que si l’on y considère une PSLn(𝕂)-orbite donnée, alors un sommet est
uniquement déterminé par les sommets voisins contenus dans cette orbite.
Dans notre deuxième partie nous exposons les travaux (en cours) portant sur les équi-

valences orbitales et mesurées.
On dit que deux groupes sont orbite équivalents si tous deux admettent une action sur
un même espace de probabilité qui partagent les mêmes orbites (à ensemble de mesure
nulle près). Notamment, le théorème d’Ornstein et Weiss stipule que tout groupe infini
moyennable est orbite équivalent au groups des entiers. Delabie, Koivisto, Le Maître et
Tessera ont introduit une version quantitative de l’équivalence orbitale et de son pen-
dant mesuré afin d’affiner cette relation au sein des groupes moyennables infinis. Ils
obtiennent en outre des obstructions à l’existence de telles équivalences à l’aide du profil
isopérimétrique.
Dans cette partie nous proposons de répondre au problème inverse de la quantification
(trouver un groupe qui est orbite oumesure équivalent à un groupe prescrit avec quantifi-
cation prescrite) dans le cas du groupe des entiers ou du groupe d’allumeur de réverbère.
Pour ce faire nous nous basons sur les produits diagonaux introduits par Brieussel et
Zheng fournissant des groupes à profil isopérimétrique prescrit.

MOTS-cLÉS : graphe, rigidité, immeubles, corps local, LG-rigidité, équivalence or-
bitale, équivalencemesurée, couplage, produit diagonaux, profil isopérimétrique, pavage,
suite de Følner, approximations Sofiques.
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ABSTrAcT

This manuscript presents the research work carried out during my thesis concerning
LG-rigidity problems and orbit equivalence questions.
After a short general introduction, we expose in the first part of this manuscript

the results obtained on LG-rigidity and corresponding to the article [Esc20]. A vertex-
transitive graph 𝒢 is called Local-to-Global rigid if there exists R > 0 such that every other
graph whose balls of radius R are isometric to the balls of radius R in 𝒢 is covered by 𝒢.
An example of such a graph is given by the Bruhat-Tits building of PSLn(𝕂) with n ≥ 4
and 𝕂 a non-Archimedean local field of characteristic zero. In this part we extend this
rigidity property to a class of graphs quasi-isometric to the building including torsion-
free lattices of SLn(𝕂).
The proof is the occasion to prove a result on the local structure of the building. We
show that if we fix a PSLn(𝕂)-orbit in it, then a vertex is uniquely determined by the
neighbouring vertices in this orbit.
The second part presents (ongoing) work on orbit and measure equivalence.

We say that two groups are orbit equivalent if they both admit an action on a same prob-
ability space that share the same orbits (up to a set of measure zero). In particular the
Ornstein-Weiss theorem implies that all infinite amenable groups are orbit equivalent to
the group of integers. Delabie, Koivisto, LeMaître and Tessera introduced a quantitative
version of orbit equivalence and its measured couterpart to refine this notion between
infinite amenable groups. They furthermore obtain obstructions to the existence of such
equivalences using the isoperimetric profile.
In this part we offer to answer the inverse problem (find a group being orbit or mea-
sure equivalent to a prescribed group with prescribed quantification) in the case of the
group of integers or of the lamplighter group. To do so we use the diagonal products
introduced by Brieussel and Zheng giving groups with prescribed isoperimetric profile.

KEYWOrDS: graph, rigidity, building, local field, LG-rigidity, orbit equivalence, mea-
sure equivalence, couplings, diagonal products, isoperimetric profile, tiling, Følner se-
quence, Sofic approximation.
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INTRODUCTION (VERSION FRANÇAISE)

“ Une des causes principales de la misère dans les
sciences est qu’elles se croient riches, le plus souvent
présomptueusement. Leur but n’est pas d’ouvrir une
porte à la sagesse infinie mais de poser une limite à
l’erreur infinie.

— Bertolt Brecht
La vie de Galilée

Si l’on vous donne un objet, ou disons plutôt un sujet, quel qu’il soit —une petite
cuillère, un ficus, un chaton— et que l’on vous demande d’étudier sa structure, plusieurs
manières de procéder s’offrent à vous. Une première possibilité est l’approche macro-
scopique du sujet : on peut chercher à comprendre sa forme, sa couleur, son volume…
On considère l’objet dans sa globalité. Un autre moyen de procéder serait d’étudier la
structure microscopique du sujet, en déterminant par exemple sa composition chimique,
sa structure moléculaire, son organisation cellulaire… On considère alors le sujet à une
échelle beaucoup plus locale. Bien que basées sur deux points de vues différents, ces deux
méthodes sont non-seulement complémentaires, mais peuvent aussi s’entrecroiser : si l’on
sait que la forme d’un objet est bien définie, on peut en déduire que sa structure molé-
culaire est plus proche de celle d’un solide que d’un liquide ; si l’on sait que les cellules du
sujet comportent une paroi cellulaire, on peut en déduire qu’il s’agit d’une plante verte
plutôt que d’un mammifère.
Entrecroiser ces approches est ce que nous proposons de faire dans cette thèse en

prenant des groupes pour sujets d’observation. À l’échelle macroscopique, nous cherchons
à décrire les groupes à travers leur géométrie « asymptotique » ou « à grande échelle » ;
à l’échelle microscopique nous verrons que la donnée de l’organisation moléculaire sur
quelques millimètres cubes du groupe peut nous permettre de déduire des informations
sur la forme de celui-ci. Ces deux points de vue et les outils auxquels nous faisons appel
inscrivent ainsi cette thèse à l’interface des théories géométrique, ergodique et mesurée des
groupes.
La première de ces trois théories a pour objet l’étude des groupes via leurs actions

sur des espaces géométriques ou topologiques. En observant la manière qu’a un groupe
d’agir sur les éléments de l’espace, de préserver ou non les distances, nous pouvons en
déduire des informations sur la structure algébrique du groupe. Dans le cas fort amène
des groupes de type fini on peut de plus voir le groupe lui-même comme espace géomé-
trique en considérant son graphe de Cayley. Rappelons que si SG est une partie génératrice
finie (symétrique) de G, le graphe de Cayley (G,SG) est le graphe dont les sommets sont
les éléments de G et dont l’ensemble des arêtes est donné par {(g, sg) | g ∈ G, s ∈ SG}.
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Un tel graphe est alors muni d’une distance naturelle fixant à 1 la longueur d’une arête.
À l’aune de la précédente définition, le graphe de Cayley obtenu et la métrique cor-
respondantes dépendent donc fortement du choix de partie génératrice SG considérée.
Néanmoins deux graphes de Cayley différents partagent certaines caractéristiques géo-
métriques. Plus exactement, deux graphes de Cayley ont même géométrie à grande échelle ;
c’est ce que l’on formalise à l’aide de la notion de quasi-isométrie.

Définition 1

Soient (X,dX) et (Y,dY) deux espaces métriques. On dit qu’une application f définie
de X vers Y est une quasi-isométrie s’il existe L ≥ 1 et ε > 0 tels que pour tout x, x′ ∈ X

1
LdX(x, x

′) − ε ≤ dY (f(x), f(x′)) ≤ LdX(x, x′) + ε,

et pour tout y ∈ Y il existe x ∈ X tel que dY(y, f(x)) ≤ L.

Dans l’un de ses travaux fondateurs de la théorie géométrique des groupes, Gromov
[GNR93] soulève le problème de la classification des groupes selon leur géométrie à
grande échelle —ou « à quasi-isométrie près ». La recherche et l’étude d’invariants de
quasi-isométrie tels que le type de croissance d’un groupe ou le profil isopérimétrique
(voir Definition 6.1.12) ont mené à de remarquables résultats tels que le théorème de Gro-
mov sur les groupes à croissance polynomiale ou la classification des réseaux irréductibles
dans les groupes de Lie semi-simples (voir [Far97]). Mais en plus de poser les fondements
de ce qu’est la théorie géométrique des groupes, Gromov, faisant fi des barrières entre
domaines, ouvre un pont vers une autre branche des mathématiques en présentant la
notion suivante comme le pendant mesuré de la quasi-isométrie.

Définition 2

Deux groupes de type fini G et H sont mesure équivalents s’il existe des actions libres,
préservant la mesure et qui commutent de G et H sur un espace mesuré (X,μ) telles
que chaque action admette un domaine fondamental de mesure fini.

Nous développerons plus en détails cette notion d’équivalence mesurée dans le cha-
pitre 6, mais poursuivons d’abord notre exploration mathématique et cheminons vers les
terres de l’étude dynamique des groupes. Car parallèlement à la théorie mesurée de ces
derniers et sous l’impulsion des travaux fondateurs de Dye [Dye59, Dye63], ces contrées
ont vu naître l’analogue ergodique de l’équivalence mesurée.

Définition 3

Ondit que deux groupes de type finiG etH sont orbite équivalents s’il existe un espace
de probabilité (X,μ) et des actions libres de G et H sur X préservant la mesure telles
que pour presque tout x ∈ X on ait G ⋅ x = H ⋅ x.

Arrêtons-nous quelques instants et tournons-nous à nouveau vers le rivage de la théorie
géométrique des groupes. Nous avons vu que la relation de quasi-isométrie traduisait le
fait d’avoir même géométrie à grande échelle et que nombre d’invariants existaient. Qu’il
s’agisse du type de croissance ou du profil isopérimétrique, ces fonctions caractérisent
certaines propriétés du groupe dont elles sont issues et sont préservées par les quasi-
isométries. Mais sur la berge de la théorie ergodique, l’équivalence orbitale procède avec
bien moins de délicatesse en écrasant des familles entières de groupes sur une seule et
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même classe d’équivalence. Une fulgurante illustration de cette rustrerie nous est donnée
par le théorème d’Ornstein et Weiss [OW80] qui prouve que tout groupe infini moyen-
nable est orbite équivalent à ℤ. Dès lors s’impose la nécessité d’affiner cette relation
d’équivalence orbitale. Pour ce faire Delabie, Koivisto, Le Maître et Tessera proposent
dans [DKLMT20] une définition quantifiée des équivalences orbitale et mesurée, en éva-
luant l’intégrabilité des applications distances (voir ci-dessous) définies sur les graphes
de Schreier associés aux actions. Rappelons que si SG est une partie génératrice finie
d’un groupe G agissant sur un espace X, le graphe de Schreier associé à cette action est le
graphe dont les sommets sont les éléments de X et dont l’ensemble des arêtes est donné
par {(x, s ⋅ x) | x ∈ X, s ∈ SG}. On peut munir ce graphe de la distance usuelle dSG fixant à
1 la longueur d’une arête.
Supposons maintenant pour simplifier que nous sommes dans le cas d’une équivalence

orbitale entre deux groupes G et H. Afin de mesurer la proximité de ces deux actions,
nous pouvons étudier pour tout g ∈ SG et tout h ∈ SH les applications distance associées :

x ↦ dSG(x,h ⋅ x) x ↦ dSH(x,g ⋅ x).

Plus précisément, Delabie et al. [DKLMT20] proposent demener cette étude enmesurant
l’intégrabilité desdites applications distances. Cependant, plutôt que de se contenter
d’intégrabilités Lp où p ∈ [0,+∞], les quatre auteurs apportent une plus grande finesse
dans leur quantification en considérant la (φ,ψ)-intégrabilité.

Définition 4

Soient G et H deux groupes de types finis orbit équivalents et φ,ψ : (0,+∞) →
(0,+∞) deux fonctions croissantes non-bornées. Notons (X,μ) un espace sur lequel
G et H partagent les mêmes orbites. On dit que l’on a un couplage (φ,ψ)-intégrable si
pour tout g ∈ SG (resp. h ∈ SH) il existe cg (resp. ch) tel que

∫X/H
φ(

1
cg
dSH(x,g ⋅ x)))dμ(x) < +∞

∫X/G
ψ(

1
ch
dSG(x,h ⋅ x)))dμ(x) < +∞.

C’est autour de ces notions que s’organise notre Partie ii où nous cherchons à répondre
au problème dit « inverse » de la quantification : à groupe H et intégrabilité (φ,ψ) pres-
crits existe-t-il un groupe G admettant un couplage (φ,ψ)-intégrable avec H ? Pour nous
aider dans cette quête, les produits diagonaux introduits par Brieussel et Zheng dans
[BZ21] s’avéreront de précieux alliés et nous permettront de répondre à la précédente
question lorsque H = ℤ (Théorème 9) et H = ℤ/qℤ ≀ ℤ (Théorème 10).
Ainsi étudions nous les groupes à l’échelle macroscopique — pour ne pas dire asymp-

totique — depuis les rives des théories ergodiques et mesurée des groupes, à l’aide des
versions quantifiées des équivalences susmentionnées. Mais nous pouvons aussi nous de-
mander ce qu’il advient lorsque l’on adopte le point de vue opposé. En effet, plutôt que
d’étudier des objets selon leur géométrie à grande échelle, nous pouvons chercher à sa-
voir si les propriétés locales d’un objet peuvent avoir des conséquences globales sur sa
géométrie. C’est le point de vue adopté dans notre Partie i où notre étude des graphes et
groupes se rapproche d’une observation au microscope de ces objets. Plus précisément,
nous étudions les graphes en considérant et comparant leurs boules de rayon R, pour un
R fixé.
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Définition 5

Soit R > 0. Deux graphes transitifs sont dits R-localement les mêmes si leurs boules
de rayon R sont isométriques.

Il est alors naturel de demander s’il peut y avoir des conséquences à plus large échelle de
cette locale similarité. Autrement dit, la trame locale d’un graphe peut-elle contraindre
sa structure globale ? Parmi les premiers à s’être intéressés à cette question, Benjamini
[Ben13] et Georgakopoulos [Geo17] formalisent cette propriété sous le nom de rigidité
Locale-Globale ou LG-rigidité.

Définition 6

On dit qu’un graphe transitif X est Locale-Globale rigide s’il existe R > 0 tel que tout
graphe R-localement X est revêtu par X.

De nombreux exemples de tels graphes — détaillés au chapitre 1 — existent, parmi
lesquels les fameux et non moins fascinants immeubles de Bruhat-Tits. En effet de la Salle
et Tessera [dlST16] ont montré que pour tout n plus grand que 4 et tout corps local
non-archimédien 𝕂 de caractéristique nulle, l’immeuble de Bruhat-Tits de PSLn(𝕂) était
LG-rigide (voir Chapitre 2 pour les définitions). Dans ce manuscrit nous montrons que
la rigidité de ces immeubles va encore plus loin, en prouvant qu’une information lo-
cale partielle suffit à reconstruire de tels graphes. Nous introduisons la notion d’empreinte
d’un sommet de l’immeuble qui désigne l’intersection du 1-voisinage du sommet avec une
PSLn(𝕂)-orbite fixée, et montrons que cette empreinte caractérise le sommet (voirThéo-
rème 8). Nous utilisons alors cette propriété pour étendre la LG-rigidité à une nouvelle
classe de graphes quasi-isométriques à l’immeuble (Théorème 7), parmi lesquels figurent
les réseaux sans-torsion de SLn(𝕂).

rÉSULTATS PrINcIPAUX

Nous regroupons ici les résultats principaux démontrés dans cette thèse. Leurs énoncés
ainsi qu’une plus complète mise en contexte peuvent-être retrouvés dans les chapitres 1
(pour la rigidité Locale-Globale) et 6 (pour les équivalences orbitale et mesurée).

Rigidité Locale-Globale et immeubles

Le résultat principal de la Partie i est le Théorème 1.2.6 que nous rappelons ci-dessous.

Théorème 7

Soient n ≠ 3 et𝕂 un corps local (non nécessairement commutatif) non-archimédien
de caractéristique zéro. Soit 𝒳 l’immeuble de Bruhat-Tits de PSLn(𝕂) et X un graphe
transitif. Si

• il existe un morphisme injectif ρ de Isom(X) vers Isom(𝒳) tel que ρ(Isom(X))
est d’indice fini dans Isom(𝒳) ;

• il existe une quasi-isométrie injective et Isom(X)-équivariante de X vers 𝒳 ;
alors X est LG-rigide.

Nous en déduisons en particulier que les réseaux sans torsion de SLn(𝕂) sont LG-rigides
(voir Théorème 1.2.5). La démonstration du théorème ci-dessus repose sur une étude ap-
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profondie de la structure locale des immeubles de Bruhat-Tits. Si 𝒞 est une PSLn(𝕂)-
orbite de l’immeuble 𝒳, nous définissons l’empreinte de type 𝒞 d’un sommet x comme

𝒫𝒞(x) ∶= B𝒳(x, 1) ∩ 𝒞.

Nous montrons alors dans la propriété 2.3.4 (que l’on rappelle ci-dessous), que cette em-
preinte caractérise le sommet.

Propriété 8

Soit 𝒳 l’immeuble de Bruhat-Tits de PSLn(𝕂) et 𝒞 une PSLn(𝕂)-orbite de 𝒳. Notons
x et y deux sommets de 𝒳. Si 𝒫𝒞(x) = 𝒫𝒞(y) alors x = y.

Équivalences orbitale et mesurée

La deuxième partie de cette thèse se focalise sur la construction d’équivalence mesurée
ou orbitale à l’intégrabilité prescrite et comporte deux résultats principaux. Le premier
(Théorème 6.3.1) concerne l’existence d’une équivalence mesurée avec ℤ.
Théorème 9

Pour toute fonction croissante ρ ∶ [1,+∞[→ [1,+∞[ telle que ρ(1) = 1 et x/ρ(x) est
croissante, il existe un groupe G tel que

• IG ≃ ρ ∘ log
• Il existe une équivalence orbitale de G vers ℤ qui est (φε, exp ∘ρ)-intégrable
pour tout ε > 0, où φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

Le second résultat établit l’existence d’un couplage sous-groupe mesuré (cf. Définition
6.1.1) à intégrabilité prescrite avec le groupe d’allumeur de réverbère Lq ∶= ℤ/qℤ ≀ ℤ.
Théorème 10

Pour tout α > 0 il existe un groupe G tel que
• IG(n) ≃ log(n)1/(1+α)
• si ε > 0 et l’on définit φε(x) ∶= x

1
1+α+ε alors il existe un couplage sous-groupe

mesuré de G vers ℤ qui est φε-intégrable.

OrGANISATION DU MANUScrIT

Après cette brève introduction historique, le manuscrit se découpe en deux parties, pré-
vues pour être lues indépendamment. Chaque partie comporte notamment un introduc-
tion détaillée au sujet qu’elle traite et se termine par une conclusion sur des problèmes
ouverts. La Partie i concerne les immeubles et problèmes de rigidité Locale-Globale. Les
Théorème 7 et Propriété 8 y sont notamment prouvés. Ces résultats ont donné lieu à une
publication [Esc20] à paraître dans Annales de l’Institut Fourier. La Partie ii se consacre
aux équivalences orbitales et mesurées. Nous y montrons en particulier les Théorèmes 9
et 10. Cette partie concerne un travail en cours, les suites espérées de ces travaux sont
évoquées en conclusion. Enfin, une annexe regroupe certains résultats sur les produits
diagonaux et un index des notations.
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INTRODUCT ION (ENGL I SH VERS ION )

“ Once you’ve decided that something’s absolutely true,
you’ve closed your mind on it, and a closed mind
doesn’t go anywhere. Question everything. That’s
what education’s all about.

— David Eddings
Belgarath the Sorcerer

If you are given an object, or rather a subject, whatever it may be —a spoon, a ficus,
a kitten— and you are asked to study its structure, there are several ways to proceed. A
first possibility is to choose the macroscopic approach: you may try to understand the
shape, color or volume of the subject. You consider the object globally. Another way to
proceed would be to study the microscopic structure of the subject by identifying its
chemical composition, its molecular structure or its cellular organisation for example.
You consider then the subject at a far more local scale. Although based on two different
points of view, these two methods are not only complementary, they also intertwin: if
you know that the shape of an object is well defined you can deduce that its molecular
structure is closer to the one of a solid than the one of a liquid; if you know that the cells
of your subject have a cell wall you can deduce that the subject is a plant rather than a
mammal.
Intertwining these approaches is what we propose to do in this thesis by taking groups

as studied subjects. At a macroscopic scale we try to describe groups through their
“asymptotic” (or “large scale”) geometry; at a microscopic scale we will see that the data
of the molecular organisation of a few cubic millimetres of the group will allow us to
deduce informations about its shape. These two points of view and the tools we use put
this thesis at the crossroads of geometric, ergodic and measured groups theories.
The first of these three theories is devoted to the study of groups via their actions

on geometric or topological spaces. By observing how a group acts on the elements of
the space or if it preserves or not distances, we can deduce informations on the algebric
structure of the group. In the notably friendly framework of finitely generated groups
we can furthermore see the group itself as a geometric space by considering its Cayley
graph. Recall that if SG is a finite (symmetric) generating set of G then the Cayley graph
(G,SG) is the graph whose vertices are the elements of G and whose set of edges is given
by {(g, sg) | g ∈ G, s ∈ SG}. Such a graph is endowed with a natural distance fixing to 1
the length of an edge. In the light of the above definition, the obtained Cayley graph and
its corresponding metric thus depend on the choice of generating set SG. Nonetheless,
two different Cayley graphs share the same large scale geometry; this is what we formalise
with the notion of quasi-isometry.
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Definition 1

Let (X,dX) and (Y,dY) be two metric spaces. We say that a map f from X to Y is a
quasi-isometry if there exist L ≥ 1 and ε > 0 such that for all x, x′ ∈ X

1
LdX(x, x

′) − ε ≤ dY (f(x), f(x′)) ≤ LdX(x, x′) + ε,

and for all y ∈ Y there exists x ∈ X such that dY(y, f(x)) ≤ L.

In one of his seminal works on geometric group theory, Gromov [GNR93] brings the
matter of the classification of groups according to their large scale geometry —or “up
to quasi-isometry”. Research and study of quasi-isometry invariants such as the growth
type of a group or the isoperimetric profile (see Definition 6.1.12) lead to remarkable
results such as the Gromov theorem on groups of polynomial growth or the classification
of irreducible lattices in semi-simple Lie groups [Far97]. But in his work Gromov does
not just set the foundations of geometric group theory: ignoring boundaries between
mathematical areas, he also opens a bridge to another field by presenting the following
notion as the measured counterpart of quasi-isometry.

Definition 2

Two finitely generated groups G and H are measure equivalent if there exist two free
commuting measure preserving actions of G and H on a measured space (X,μ) such
that each action admits a fundamental domain of finite measure.

We will give more details about this measure equivalence notion in Chapter 6 but let
us first continue our mathematical exploration and journey to the territory of dynamical
group study. Indeed in parallel with the measure group theory and under the impulsion
of seminal works of Dye [Dye59, Dye63] these lands saw the emergence of the ergodic
counterpart of measure equivalence.

Definition 3

We say that two finitely generated groups G and H are orbit equivalent if there exist
a probability space (X,μ) and free, measure preserving actions of G and H on X such
that for almost every x ∈ X we have G ⋅ x = H ⋅ x.

Let us stop here for a few moments and turn again to the shore of geometric group
theory. We saw that being quasi-isometric could be interpreted as having the same large-
scale geometry. We also mentioned the existence of several invariants. Whether it is
the growth type or the isoperimetric profile, these maps characterize some properties
of the group from which they derive and are both preserved by quasi-isometries. But
on the riverside of ergodic theory, proceeds orbit equivalence with far less delicacy: it
crushes entire families of groups on one same equivalence class. A dazzling illustration
of this ruthlessness is given by the Ornstein-Weiss theorem [OW80] which proves that
all infinite amenable group is orbit equivalent to ℤ. From then arises the need of a
refined notion of orbit equivalence. To do so Delabie, Koivisto, Le Maître and Tessera
offer in [DKLMT20] a quantified version of orbit and measure equivalence. They propose
to estimate the integrability of the distance maps (see below) defined on the Schreier
graphs associated to the actions. Recall that if SG is a finite generating set of a group G
acting on a space X then the Schreier graph associated to this action is the graph whose

8



vertices are the elements of X and whose set of edges is given by {(x, s ⋅ x) | x ∈ X, s ∈ SG}.
Such a graph is endowed with the usual distance dsG fixing to 1 the length of an edge.
Assume for simplicity that we are given an orbit equivalence between two finitely

generated groups G and H. In order to measure how close the two actions are, we can
study for all g ∈ SG and h ∈ Sh the associated distance maps:

x ↦ dSG(x,h ⋅ x) x ↦ dSH(x,g ⋅ x).

More precisely, Delabie et al. [DKLMT20] offer to proceed by measuring the integra-
bility of the aforementioned distance maps. However, rather than merely consider Lp-
integrabilities with p ∈ [0,+∞], the four authors bring a greater precision in their quan-
tification by considering what they call φ-integrability.

Definition 4

Let G andH be two finitely generated, orbit equivalent groups and φ,ψ : (0,+∞) →
(0,+∞) two non-decreasing unboundedmaps. Denote by (X,μ) a space whereG and
H share the same orbits. We say that we have a (φ,ψ)-integrable coupling if for all
g ∈ SG (resp. h ∈ SH) there exists cg (resp. ch) such that

∫X/H
φ(

1
cg
dSH(x,g ⋅ x)))dμ(x) < +∞

∫X/G
ψ(

1
ch
dSG(x,h ⋅ x)))dμ(x) < +∞.

This is around these notions that revolves our Part ii. We try yo answer to the “inverse”
quantification problem: to a given group H and prescribed integrability (φ,ψ), can one
find a group G admitting a (φ,ψ)-integrable coupling with H? To help us during this
quest, the diagonal products introduced by Brieussel and Zheng in [BZ21] will be invalu-
able allies and will allow us to answer the preceding question when H = ℤ (Theorem 9)
and H = ℤ/qℤ ≀ ℤ (Theorem 10).
We thus study groups at the macroscopic scale —or asymptotic scale— from the shore

of ergodic and measure group theories using quantified versions of the above-mentioned
equivalences. But one can also adopt the opposite perspective. Indeed, instead of ask-
ing whether an object is determined by its coarse geometry, one can ask whether local
properties of an object can have global implications for its geometry. This is the point
of view we adopt in Part i where our study of graphs and groups is a kind of microscope
observation of these objects. To be more precise, we study graphs by considering and
comparing their balls of radius R, with fixed R > 0.

Definition 5

Let R > 0. Two transitive graphs are said to be R-locally the same if their balls of
radius R are isometric.

It is then natural to ask whether there are large scale consequences of this local similarity.
That is to say, can the local weft of a graph constrain its global structure? Among the
first to consider this question, Benjamini [Ben13] and Georgakopoulos [Geo17] formalise
this property under the name of Local-to-Global rigidity also called LG-rigidity.

Definition 6

A transitive graph X is said to be Local-to-Global rigid if there exists R > 0 such that
any graph being R-locally the same as X is covered by X.
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There are numerous examples of such graphs (we detail them in Chapter 1) including
the famous and utterly fascinating Bruhat-Tits buildings. Indeed de la Salle and Tessera
[dlST16] showed that for all n greater than 4 and all non-Archimedean local skew field 𝕂
of characteristic zero, the Bruhat-Tits building of PSLn(𝕂) is LG-rigid (see Chapter 2 for
the definitions). In this manuscript we show that the rigidity of these buildings is even
stronger by proving that only a partial local information is enough to reconstruct such
graphs. We introduce the notion of print of a vertex in the building which corresponds
to the intersection of the 1-neighbourhood of the vertex with a given PSLn(𝕂)-orbit
and prove that this print characterizes the vertex (see Proposition 8). We then use this
property to extend this LG-rigidity property to a new class of graphs quasi-isometric to
the building (see Theorem 7) including the torsion free-lattices of SLn(𝕂).

MAIN rESULTS

We gather here the main results of this manuscript. Their statements and a more com-
plete contextualisation can be found in Chapter 1 (for the Local-to-Global rigidity) and
Chapter 6 (for orbit and measure equivalences).

Local-to-Global rigidity and buildings

The main result of Part i is Theorem 1.2.6 which we recall below.

Theorem 7

Let n ≠ 3 and 𝕂 be a non-Archimedean local skew field of characteristic zero. Let
𝒳 be the Bruhat-Tits building of PSLn(𝕂) and X a transitive graph. If X verifies that

• There is an injective homomorphism ρ from Isom(X) to Isom(𝒳) such that
ρ(Isom(X)) is of finite index in Isom(𝒳);

• There is a Isom(X)-equivariant injective quasi-isometry q from X to 𝒳;
then X is SLG-rigid.

In particular we deduce from this result the LG-rigidity of torsion free lattices in SLn(𝕂)
(seeTheorem 1.2.5). The proof of the above theorem relies on a detailed study of the local
structure of buildings. If 𝒞 is a PSLn(𝕂)-orbit in 𝒳, we define the print of type 𝒞 of a
vertex x as

𝒫𝒞(x) ∶= B𝒳(x, 1) ∩ 𝒞.

We show in Proposition 2.3.4 (which we recall below) that this print characterizes the
vertex.

Proposition 8

Let 𝒳 be the Bruhat-Tits building of PSLn(𝕂) and 𝒞 be a PSLn(𝕂)-orbit of 𝒳. Denote
by x and y two vertices of 𝒳. If 𝒫𝒞(x) = 𝒫𝒞(y) then x = y.
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Orbit and measure equivalences

The second part of this memoir deals with the contruction of orbit or measure equiva-
lences with prescribed integrability and contains two main results. The first one (Theo-
rem 6.3.1) concerns the existence of a measure equivalence with ℤ.
Theorem 9

For all non-decreasing function ρ ∶ [1,+∞[→ [1,+∞[ such that ρ(1) = 1 and x/ρ(x)
is non-decreasing, there exists a group G such that

• IG ≃ ρ ∘ log ;
• there exists an orbit equivalence coupling from G to ℤ that is (φε, exp ∘ρ)-
integrable for all ε > 0, where φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

The second result gives the existence of ameasure subgroup coupling (see Definition 6.1.1)
with prescribed integrability with the lamplighter group Lq ∶= ℤ/qℤ ≀ ℤ.
Theorem 10

For all α > 0 there exists a group G such that
• IG(x) ≃ (log(x))

1/(1+α) ;
• for all ε < 0 if we define φε(x) ∶= x 1

1+α+ε then there exists a φε-integrable
measure subgroup coupling from G to Lq.

OrGANISATION OF THE MANUScrIPT

After this short historical introduction, this manuscript is composed of two parts which
have been thought and written to be read independently. Each part has its own detailed
introduction and ends with a conclusion on open problems. Part i concerns buildings
and problems of Local-to-Global rigidity: this is whereTheorem 7 and Proposition 8 are
proved. These results lead to an article [Esc20] to appear in Annales de l’Institut Fourier.
Part ii is devoted to orbit and measure equivalences. In particular we prove Theorems 9
and 10. This second part concerns an ongoing work; the expected outcomes are detailed
in conclusion. Finally an appendice gather some results on diagonal products and a
notations index.
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Part I

LOCAL -TO -GLOBAL R IG ID ITY AND
BU ILD INGS

“ En essayant continuellement on finit toujours par
réussir. Donc plus ça rate, plus on a de chance que ça
marche.

— Proverbe Shadock





1AN INTRODUCT ION TO LOCAL -TO -GLOBAL
R IG ID ITY

“ The door was the way to.. . to. . . The Door was The
Way. Good. Capital letters were always the best way
of dealing with things you didn’t have a good answer
to.

— Douglas Adams
Dirk Gently’s Holistic Detective Agency

A recurring theme in geometric group theory is that local properties of an object can
have global implication for its geometry. A classical example is given by Lie groups and
their locally defined Lie algebras. Another striking illustration is provided by the work
of Tits [Tit81] who gave a local characterization of a particular family of graphs called
“buildings of type Ãd−1” (see Section 2.1 for a definition). The example that inspires our
work here is given by Riemannian geometry. Indeed, a well known fact in this field stip-
ulates that a complete Riemannian manifold which is locally isometric to a symmetric
space is covered by a symmetric space. In this Part i we focus on a discrete version of
that property. Precisely, graphs and their local-to-global properties are the objects we
focus on. All graphs will be equipped with the usual metric, fixing the length of an edge
to one.

A natural local condition to impose on a graph is to be d-regular for some d ∈ ℕ,
which means that all the vertices must have degree d. A well-known result about such
a graph is that the d-regular tree is its universal convering. This is a first example of a
global information deduced only by a local knowledge of the graph.
One can now ask what happens if we impose a local condition which is stronger than

d-regularity. We formalize this in the next definition.

Definition 1.0.1

Let R > 0 and let X and Y be two graphs.
We say that Y is R-locally X if every ball of radius R in Y is isometric to a ball of
radius R in X.
If Y is R-locally X and X is R-locally Y then we say that they are R-locally the same.
We will say that Y locally the same as X (resp. Y and X are locally the same) if there
exists R such that Y is R-locally X (resp. Y and X are R-locally the same).

Example 1.0.2. In Figure 1.1 BX(x0, 2) is isometric to BY(y0, 2).
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X

x0

Y

y0

Figure 1.1.: Two graphs 2-locally the same.

Since being d-regular means being 1-locally the same as the d-regular tree, we can thus
say that every graph that is 1-locally the same as a regular tree is covered by it. Hence
we only need information on a very small scale to know if we can cover a graph with a
regular tree: it reflects a form of rigidity, something we formalize in the next paragraph.

1.1 rIGIDITIES

1.1.1 Local-to-Global rigidity

We saw that for a graph, being 1-locally the same as the d-regular tree is enough to be
covered by it. Now if we are allowed to draw information from a larger scale —that is to
say from balls of radius R > 1— can we have a smilar covering result? In other words: are
there graphs that cover all graph R-locally the same as them? We formalise that property
by defining Local-to-Gobal rigidity, also named LG-rigidity.

Definition 1.1.1

Let R > 0.We say that X is Local-to-Global-rigid at scale R (or R-LG-rigid for short)
if every graph Y which is R-locally X is covered by X.
We say that a graph X is LG-rigid if there exists R > 0 such that X is R-LG-rigid.

Example 1.1.2. Benjamini and Ellis [BE16] showed that for any d ≥ 2 the Cayley graph
of ℤd endowed with its usual generating set is 3-LG-rigid. They also proved that 3 was
optimal showing that ℤ3 is not LG-rigid at scale 2.

Example 1.1.3. De la Salle et Tessera [dlST19, Theorem C] proved that every graph quasi-
isometric to a tree is LG-rigid.

Benjamini [Ben13] and Georgakopoulos [Geo17] conjectured that any Cayley graph of
a finitely presented group is LG-rigid at some scale R > 0. That conjecture was proven to
be false in [dlST19, Theorem B], where the authors built counter-examples using groups
with torsion elements.

Counter-example 1.1.4. The groups F2 × F2 ×ℤ/2ℤ and SL4(ℤ) admit Cayley graphs that
are not LG-rigid.

Remark here that we do not state that every Cayley graph of these groups is non-
LG-rigid, but that each group admits a non-LG-rigid Cayley graph. Indeed, in [dlST19,
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Theorem J] the authors also showed that every finitely presented group with an element
of infinite order has a Cayley graph which is LG-rigid. Hence, LG-rigidity for a Cayley
graph depends on the generating set. In particular LG-rigidity is not invariant under
quasi-isometries.
With a little bit more of material, we will be able to give a topological interpretation

of Local-to-Global rigidity. To do so we need to define the notion of large scale simple
connectedness.

1.1.2 Large scale simple connectedness

For a graph 𝒢 and k ∈ ℕ we define a 2-complex noted Pk(𝒢) such that:
• Its 1-skeleton is given by 𝒢 ;
• Its 2-skeleton is composed of m-gons (for m ∈ [0, k]) defined by the simple loops
of length m in 𝒢 (up to cyclic permutations).

Example 1.1.5. Figure 1.2 represents a complex Pk(𝒢) for a graph 𝒢 composed of a hexagon
and six triangles. On the left P3(𝒢) is represented: only the triangles are filled. On the
right triangles and hexagons are filled. Remark that in that case P3(𝒢) is the same as
P4(𝒢) and P5(𝒢) since the graph has no squares or pentagons.

(a) P3(𝒢) (b) P6(𝒢)

Figure 1.2.: Examples of Pk(𝒢) for k = 3 and k = 6

Definition 1.1.6

We say that 𝒢 is k-simply connected or simply connected at scale k if Pk(𝒢) is simply
connected.

Example 1.1.7. The graph represented in Figure 1.2 is 6-simply connected, since the com-
plex P6(𝒢) (on the right of the figure) is simply connected. However, it is not k-simply
connected for k < 6, since 𝒢 is composed of an hexagon.

Example 1.1.8. LetG be a finitely generated group and T a finite symmetric generating set.
The Cayley graph (G, T) is simply connected at scale k if and only if G has a presentation
⟨T ,ℛ⟩ with relations of length at most k.

Example 1.1.9. Let 𝕂 be a non-Archimedean local skew field. The one skeleton of the
Bruhat-Tits building of PSLn(𝕂) is simply connected at scale 3.

Remark 1.1.10. If k ≤ k’, then every k-simply connected graph is k′-simply connected.
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The following proposition allows us to restrict the study of the LG-rigidity of a graph
𝒢 to some smaller class of graphs.

Proposition 1.1.11 (de la Salle, Tessera, [dlST16, Proposition 1.5])

Let k ∈ ℕ and 𝒢 be a k-simply connected graph, with cocompact isometry group.
Then 𝒢 is LG-rigid if and only if there exists R such that every k-simply connected
graph which is R-locally 𝒢 is isometric to 𝒢.

To apply this result to our proofwewill need to show that the studied graphX is simply
connected. The following proposition shows that being simply connected is invariant
under quasi-isometry.

Proposition 1.1.12 (de la Salle, Tessera, [dlST16, Theorem 2.2])

Let k ∈ ℕ∗ and let 𝒢 be a k-simply connected graph. If ℋ is quasi-isometric to 𝒢,
then there exists k′ ∈ ℕ∗ such that ℋ is simply connected at scale k′.

Before moving to the next section, let us mention a consequence of that last property.
Indeed, this result allows us to look at the LG-rigidity notion with a topological point
of view. Let’s denote 𝔊k the set of isometry classes of locally finite k-simply connected
graphs. We can define a distance on this set by:

d𝔊k(X, Y) ∶= inf{2−r ∶ X and Y are r-locally the same} ,

which endows 𝔊k with a topology. The above proposition implies that a graph is LG-
rigid if and only if its isometry class in 𝔊k is isolated for this topology.

1.1.3 Strong-Local-to-Global rigidty

Our rigidity notion can be refined in what is called the Strong Local-to-Global rigidity,
also named SLG-rigidity.

Definition 1.1.13

Let r,R > 0. We say that X is SLG-rigid at scale (r,R) if for all Y which is R-locally
X and for all isometry f from BX(x,R) to BY(y,R), the restriction of f to BX(x, r)
extends to a covering of Y by X.
We say that X is SLG-rigid if there exist two radii r and R such that X is SLG-rigid
at scale (r,R).

Such a refinement is far more than just a subtlety: it actually proves necessary to obtain
our main result (see page 42 for more details).
The following proposition gives us many examples of SLG-rigid graphs.

Proposition 1.1.14 (de la Salle, Tessera [dlST19, Proposition 3.8])

A graph with cocompact isometry group is LG-rigid if and only if it is SLG-rigid.

For example, any LG-rigid Cayley graph is actually SLG-rigid. In the same article,
de la Salle and Tessera proved a powerful condition relating to the isometry group of a
Cayley graph. We will refer to the isometry group of a Cayley graph (Γ ,S) as Isom(Γ ,S).
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Theorem 1.1.15 (de la Salle, Tessera [dlST19, Theorem E])

Let Γ be a finitely presented group and S be a symmetric generating set and denote
by (Γ ,S) the corresponding Cayley graph. If Isom(Γ ,S) is discrete, then (Γ ,S) is
SLG-rigid.

As stated in [dlST19, Corollary F], we can deduce two new classes of examples from
the above theorem. But before, let us introduce what we call LG-rigid groups.

Definition 1.1.16

We say that a finitely presented group is LG-rigid (resp. SLG-rigid) if all its Cayley
graphs are LG-rigid (resp. SLG-rigid).

Example 1.1.17. Torsion-free groups of polynomial growth are SLG-rigid.

Example 1.1.18. Torsion-free, non-virtually free lattices in connected simple real Lie
groups are SLG-rigid.

1.2 TOWArDS OUr MAIN rESULTS

Let us now turn to our main results. We state our main theorem and discuss the hypoth-
esis in the second subsection and we detail the structure of the proof in the third one.
But first, let us start by giving more context and motivations.

1.2.1 From buildings to quasi-buildings

So far the graphs chosen as examples are mostly Cayley graphs, but these are not the only
LG-rigid ones. Indeed, besides the case of quasi-trees seen above, another interesting
example is given by Bruhat-Tits buildings (see Section 2.1 for a definition).

Theorem 1.2.1 (de la Salle, Tessera, [dlST16, Theorem 0.1])

Let 𝕂 be a non-Archimedean local skew field. If 𝕂 has positive characteristic and
n ≥ 3, then the Bruhat-Tits building of PSLn(𝕂) is not LG-rigid.
If 𝕂 has characteristic zero and n ≥ 4, then the Bruhat-Tits building of PSLn(𝕂) is
SLG-rigid.

Keeping inmind the above theorem, consider the following question asked in [dlST19].

Question 1.2.2. Among lattices in semi-simple Lie groups, which ones are LG-rigid?

This question concerns real Lie groups but one can also wonder what happens for the
p-adic case. Indeed, by a well known result of Svarc and Milnor, any lattice of SLn(𝕂) is
quasi-isometric to the associated building (see Lemma 4.1.1 for more details). The fact
that such a lattice is “almost” a building encouraged us to study the p-adic version of
Question 1.2.2.

Question 1.2.3. Among lattices in p-adic Lie groups, which ones are LG-rigid?

De la Salle and Tessera showed [dlST16] that if 𝕂 has positive characteristic, then there
exist p-adic lattices that are torsion-free, cocompact but not LG-rigid.
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Counter-example 1.2.4. Let n ≥ 3. There exists in PGLn(𝔽p((T))) a torsion-free cocom-
pact lattice that is not LG-rigid.

But when 𝕂 has characteristic zero, the situation is quite different…

1.2.2 Main results

When 𝕂 is a non-Archimedean local skew field of characteristic zero, an element of
response to Question 1.2.3 is provided by our first result hereunder.

Theorem 1.2.5

Let n ≠ 3 and 𝕂 be a non-Archimedean local skew field of characteristic zero.
The torsion-free lattices of SLn(𝕂) are SLG-rigid.

This result is actually a corollary of our main theorem below which goes beyond the
lattices framework and gives a rigidity result in a more general case.

Theorem 1.2.6

Let n ≠ 3 and 𝕂 be a non-Archimedean local skew field of characteristic zero. Let
𝒳 be the Bruhat-Tits building of PSLn(𝕂) and X be a transitive graph. If X verifies
that

• There is an injective homomorphism ρ from Isom(X) to Isom(𝒳) such that
ρ(Isom(X)) is of finite index in Isom(𝒳);

• There is a Isom(X)-equivariant injective quasi-isometry q from X to 𝒳;
then X is SLG-rigid.

Let us discuss the hypothesis, starting with the assumption made on n. If n = 2 then
𝒳 is the (p + 1)-regular tree, thus by Example 1.1.3 any graph quasi-isometric to 𝒳 is LG-
rigid which proves the theorem. Now, as we will see in the sketch of the proof, the main
tool of our demonstration is the LG-rigidity of the building. But if n = 3 the question of
the rigidity of 𝒳 is still open. Indeed in that case a lot of flexibility seems to be allowed
(see [BP07]). Thus our demonstration deals mainly with the case where n ≥ 4.
Then, let us look at the hypothesis made on the characteristic of 𝕂. According to

Theorem 0.4 of [dlST16] and more precisely according to its proof, we get Counter-
example 1.2.4 above. It implies in particular that if we omit the characteristic zero hy-
pothesis, then Theorems 1.2.5 and 1.2.6 are not true.
Finally, before moving to the sketch of the proof let us discuss the hypothesis made

on the torsion in Theorem 1.2.5. First, introducing torsion in a group is in some case a
useful way to build non-LG-rigid graphs. Indeed the Counter-example 1.1.4 is built this
way. Second, in order to link (Γ ,S) to 𝒳 we will need an injection of Isom(Γ ,S) into
Isom(𝒳). Using a famous result of Kleiner and Leeb we will show that Isom(Γ ,S) acts
on the buildings by isometries. The injection into Isom(𝒳) will then be allowed by the
following proposition.

Proposition 1.2.7 (de la Salle, Tessera [dlST19, Proposition 6.2])

Let Γ be an infinite, torsion-free, finitely generated group and let S be a finite sym-
metric generating subset of Γ . Then the isometry group of (Γ ,S) has no non-trivial
compact normal subgroup.

For more details on how we use this proposition, see the proof of Lemma 4.1.2.
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1.2.3 Idea of the proof and structure of Part i

As stated in the discussion below Theorem 1.2.6, the proof deals mainly with the case
where n ≥ 4. So, Let n ≥ 4 and 𝕂 be non-Archimedean local skew field of characteristic
zero and denote by 𝒳 the Bruhat-Tits building of PSLn(𝕂). Let X be the studied graph
and Y be a graph R-locally the same as X and denote by q a quasi-isometry from X to 𝒳.
The main idea of the proof is to use the rigidity of 𝒳 to build the wanted covering from X
to Y (see Figure 1.3), thus we need to build a graph locally the same as 𝒳. We will denote
such a graph 𝒴.

X

Y

R-loc

𝒴

𝒳

covering

q.i.

R𝒳-loc

Goal:
induce a convering from X to Y

Figure 1.3.: Sketch of the proof

Moreover, for the rigidity of the building to induce a covering between X and Y, we
want 𝒴 to contain a copy of the vertices of Y. Hence the goal is to define the vertices
of 𝒴 to be composed of the vertices of Y and a copy of each vertex in 𝒳\q(X) and define
the edges to correspond to edges in X. With such a description 𝒴 is a “hybrid” graph
and to define its edges we might need to understand how to link a vertex coming from
Y to a vertex coming from 𝒳. Hence, to avoid such a hybridation we chose to define the
vertices only with informations encoded in Y. That is why we introduce the notion of
print in the building (see Definition 2.3.1). It allows us to characterize a vertex in 𝒳 by a
set of neighbouring vertices in im(q) and, using a well chosen set of isometries from Y to
X, to transfer this print notion to Y. Each print in Y corresponds to a vertex in 𝒳\q(X).
The vertices of the wanted graph 𝒴 will be composed of the vertices of Y and of prints
in Y. It will now be easier to build edges between these vertices; the key argument to
construct such edges is presented in Section 3.1.1.
Using the rigidity of the building we will obtain an isometry between 𝒳 and 𝒴. To

conclude the proof we will show that this isometry induces the wanted covering between
Y and X.

OrGANIZATION OF PArT 1 After that first introducing chapter, the second one
is devoted to Bruhat-Tits buildings. We recall all the necessary material and study the
aforementioned prints. The third section is devoted to the proof of Theorem 1.2.6. We
develop in it the necessary engineering to build a graph locally the same as the building
and conclude using the rigidity of the building to prove the rigidity of the studied graph.
We proveTheorem 1.2.5 in the fourth chapter where we check that the lattice verifies the
hypothesis of our main theorem.
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2BRUHAT-T ITS BU ILD INGS

“ En mathématiques, les noms sont arbitraires. Libre à
chacun d’appeler un opérateur auto-adjoint un
« éléphant » et une décomposition spectrale une
« trompe ». On peut alors démontrer un théorème
suivant lequel « tout éléphant a une trompe ». Mais
on n’a pas le droit de laisser croire que ce résultat a
quelque chose à voir avec de gros animaux gris.

— Ivar Ekeland
Le Calcul, l’Imprévu

2.1 DEFINITION OF BUILDINGS

Let n ≥ 2. We recall here the description of the Bruhat-Tits building associated to
PSLn(𝕂) for some non-Archimedean local skew field 𝕂. See [AB18] for more details.

2.1.1 Non-Archimedean local skew fields

Let 𝕂 be a field (not necessarily commutative). A discrete valuation on 𝕂 is a surjective
homomorphism v ∶ 𝕂∗ → ℤ satisfying v(x + y) ≥ min{v(x), v(y)} for all x,y ∈ 𝕂∗ such
that x+y ≠ 0. If 𝕂 is endowed with such a valuation, we can extend v on all 𝕂 by setting
v(0) = +∞. We say that 𝕂 is a non-Archimedean local skew field if it is locally compact for
the topology associated to a discrete valuation.

Example 2.1.1. If 𝕂 = ℚ and p is a prime, then every x ∈ 𝕂 can be written as x = pna/b
where a and b are integers non-divisible by p. The map defined by v(pna/b) ∶= n is a
discrete valuation over 𝕂. The field ℚp is the completion of ℚ with respect to the p-adic
absolute value defined by |x|p = p−v(x).

Example 2.1.2. Let 𝕂 = 𝔽p((T)), the field of formal Laurent series over 𝔽p. Denote by
f = ∑k∈ℤ akTk an element in 𝔽p((T)) then the map defined by v(f) ∶= min {k ∶ ak ≠ 0} is
a valuation over 𝕂.

Let 𝒪 denote the ring of integers of 𝕂 with respect to v, that is to say 𝒪 ∶= {x ∈ 𝕂 ∶
v(x) ≥ 0}. This ring has a unique prime ideal 𝔪 ∶= {x ∈ K ∶ v(x) > 0}. Finally, let π be a
generator of 𝔪 as an 𝒪-module.

23



Example 2.1.3. If 𝕂 = ℚp then its ring of integers is 𝒪 = ℤp. Moreover 𝔪 = pℤp and
π = p.

Example 2.1.4. If K = 𝔽p((T)) then 𝒪 = 𝔽p[[T ]]. Moreover 𝔪 = X𝔽p[[T ]] and π = X.

2.1.2 Buildings

Let 𝕂 be a non-Archimedean local skew field endowed with a valuation v. An 𝒪-lattice
of 𝕂n is an 𝒪-submodule which generates 𝕂n as a 𝕂 vector space. Such a lattice can be
written as 𝒪e1+⋯+𝒪en for a basis (e1,… , en) of 𝕂n. Since for any a ∈ 𝕂∗ and any lattice
L, the module aL is also a lattice, we can define the equivalence relation of lattices modulo
homothety. We denote by [L] the class of a lattice L.
The Bruhat-Tits building of PSLn(𝕂) is a simplicial complex of dimension n−1 denoted
by 𝒳̂ whose 1-skeleton (denoted by 𝒳) is described as follows. The vertices are the classes
of 𝒪-lattices modulo homothety. Two vertices x1 and x2 are linked by an edge if there
exists representatives L1 of x1 and L2 of x2 such that:

pL1 ⊂ L2 ⊂ L1.

Example 2.1.5. One can show that the building of PSL2(ℚp) is a (p + 1)-regular tree.
Figure 2.1a gives a representation of the building when p = 2.

(a) The building has two SL2(ℚ2)-orbits (b) Representation of one apartment

Figure 2.1.: The building of PSL2(ℚ2)

A representation of the building of PSL3(ℚ2) can be found in the Building Gallery
developped by Bekker and Solleveld. For details on the employed method see [BS20].

2.2 STrUcTUrAL PrOPErTIES

2.2.1 Orbits and types

The building is endowed with a natural action of GLn(𝕂). Indeed let L = ⊕ni=1𝒪ei be a
lattice in 𝕂n, the action of g ∈ GLn(𝕂) on L is defined by gL ∶= ⊕ni=1𝒪g(ei). Since GLn(𝕂)
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acts transitively on the bases, the aforedefined action is transitive. Now let x be a vertex
in 𝒳 and L be a representative of x and define for g ∈ GLn(𝕂)

g ⋅ x ∶= [gL] .

Since g ⋅ (aL) = a(g ⋅L) for all a ∈ 𝕂∗, the above definition does not depend on the choice
of representative L. ThusGLn(𝕂) acts transitively on𝒳 by isometry. Moreover this action
induces a transitive action of PGLn(𝕂) on 𝒳 by isometry.
If L = ⊕i𝒪ei is a lattice we define its type to be v (det(e1,… , en)). Since:

∀a ∈ 𝕂∗ v (det(ae1,… ,aen)) = v (det(e1,… , en)) mod n,

one can define the type of a vertex x in 𝒳 to be the value modulo n of the type of one of
its representatives. We denote by τ(x) the type of x.
If L′ is a second lattice, we can choose our basis e1,… , en for L in such a way that L′
admits a basis of the form a1e1,… ,anen for some ai ∈ 𝕂∗. The scalars ai can be taken to
be powers of π. The incidence relation defined above implies that if the classes of L and
L′ are linked by an edge in 𝒳, then they have different types.

Remark 2.2.1. Remark that if L = ⊕i𝒪ei and

L′ = 𝒪πe1 ⊕⋯⊕𝒪πej ⊕ ej+1 ⊕⋯⊕ en,

then τ([L′]) = τ([L]) + j mod n.

The action of SLn(𝕂) on 𝒳 preserves the determinant and is transitive on the pairs of
vertices of the same type. So there are exactly n orbits under the action of SLn(𝕂) (see
Figure 2.1a and Figure 2.2 for examples).

2.2.2 Apartments

If 𝐞 is a basis of 𝕂n then the set of vertices {⊕ni=1𝒪πkiei | ki ∈ ℤ} induces a sub-complex
denoted by 𝒜, which is isometric to a (n−1)-dimensional Euclidean space tiled by regu-
lar (n− 1)-simplices. We call such sub-complexes apartments. For example an apartment
in the building of PSL2(ℚ2) is isometric to ℝ1 tiled with segments of length 1 (see Fig-
ure 2.1b), whereas for PSL3(ℚ2) the apartment are isometric to ℝ2 and tiled with triangles
(see Figure 2.2).

Figure 2.2.: Apartment in the building of PSL3(ℚ2). Colors correspond to SL3(ℚ2)-orbits.

For any two points in 𝒳̂ there exists an apartment containing them. If x,y ∈ 𝒳̂ let
𝒜 be an apartment containing x and y and define d𝒳̂(x,y) to be equal to the euclidean
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distance d𝒜(x,y). This definition does not depend on the choice of apartment 𝒜 and
thus endows 𝒳̂ with a well defined distance. Moreover, this distance verifies the negative
curvature inequality: for all x,y, z ∈ 𝒳̂ and t ∈ [0, 1]

d2𝒳̂(z, tx + (1 − t)y) ≤ td
2
𝒳̂(z, x) + (1 − t)d

2
𝒳̂(z,y) − t(1 − t)d

2
𝒳̂(x,y). (2.1)

Denote by d𝒳 the distance on the 1-skeleton 𝒳 assigning length 1 to an edge. Then
d𝒳(x,y) is greater than d𝒳̂(x,y) for all vertices x and y in 𝒳.

2.2.3 Contractibility

Using the above inequality one can show that the building is contractible (see [AB18] for
more details). We can actually show that convex sets in 𝒳̂ are themselves contractible.

Claim 2.2.2. Let r > 0. Any convex set in 𝒳̂ is contractible.

Proof. Let r > 0 and 𝒞 a convex set in 𝒳̂ and endow it with the distance induced by d𝒳̂.
Take x0 ∈ 𝒞 and define,

ℋ ∶
⎧
⎨⎩

[0, 1] × 𝒞 → 𝒞,
(t, x) ↦ tx + (1 − t)x0.

Since 𝒞 is convex, the map ℋ is well-defined. Moreover ℋ(0, ⋅) = id𝒞 and ℋ(1, x) = x0
for all x in 𝒞. Let us show that ℋ is continuous. Take x, x′ ∈ 𝒞 and t, t′ ∈ [0, 1] and let
z = t′x′ + (1 − t′)x0. By eq. (2.1)

d2𝒳̂(z, tx + (1 − t)x0) ≤ td
2
𝒳̂(z, x) + (1 − t)d

2
𝒳̂(z, x0) − t(1 − t)d

2
𝒳̂(x, x0). (2.2)

But if𝒜 is a an apartment containing z and x0, then by property of the Euclidean distance
d𝒜

d𝒳̂(z, x0) = d𝒜(t′x′ + (1 − t′)x0, x0) = t′d𝒜(x′, x0) = t′d𝒳̂(x′, x0),

which tends to td𝒳̂(x, x0) as (t′, x′) tends to (t, x). Similarly

d𝒳̂(z, x) ≤ d𝒳̂(z, x′) + d𝒳̂(x′, x) = d𝒳̂(t′x′ + (1 − t′)x0, x′) + d𝒳̂(x′, x),
= (1 − t′)d𝒳̂(x′, x0) + d𝒳̂(x′, x),

which converges to (1 − t)d𝒳̂(x, x0) + d𝒳̂(x′, x) as (t′, x′) tends to (t, x). Thus the right
term of eq. (2.2) converges to 0 as (t′, x′) tends to (t, x). Hence the continuity of ℋ and
the contractibility of 𝒞.

2.3 PrINTS

In this section we show that a vertex in the building 𝒳 can be determined by a part of
its 1-neighbourhood. More precisely, if i belongs to {0,… ,n} we prove that a vertex in
the building is entirely determined by its type and the vertices in its 1-neighbourhood
having type i.
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2.3.1 Definition and examples

Recall that if 𝒞 is an SLn(𝕂)-orbit in 𝒳 then 𝒞 is exactly the set of vertices having type i
for some i ∈ {1,… ,n}, viz. there exists i ∈ {0,… ,n} such that 𝒞 = τ−1(i).

Definition 2.3.1

Let x be a vertex of 𝒳 and 𝒞 be an SLn(𝕂)-orbit in 𝒳. We define the print of type
𝒞 of x, denoted by 𝒫𝒞(x) (or 𝒫(x) if there is no ambiguity), to be the intersection of
the 1-neighbourhood of x with 𝒞, viz. 𝒫(x) ∶= B𝒳(x, 1) ∩ 𝒞.

Example 2.3.2. Figure 2.3 represents a ball of radius 1 in two different cases. The case
when n = 2 and |𝒪/π𝒪| = 2 (for example when 𝕂 = ℚ2) is represented on the left figure.
The case when 𝕂 = ℚ2 and n = 3 is represented on the right figure. In each case, the
print of type 0 of x corresponds to the set of blue vertices. In the second case, the print
of type 2 of x corresponds to the orange vertices.

x1

x3

x2

x

𝒫(x) = {x1, x2, x3}

B(x, 1) for n = 2 and 𝕂 = ℚ2

Type 0 vertices
Type 1 vertices
Type 2 vertices

x

B(x, 1) for 𝕂 = ℚ2 and n = 3

Figure 2.3.: Prints and 1-neighbourhood of a vertice in 𝒳

Remark 2.3.3. If x ∈ 𝒞 then B𝒳(x, 1) ∩ 𝒞 = {x} thus 𝒫𝒞(x) = {x}.

2.3.2 Tracking vertices through their prints

The following result proves that a vertex in 𝒳 is uniquely determined by its print.

Proposition 2.3.4

Let 𝒞 be a SLn(𝕂)-orbit and x and y be two vertices in 𝒳.
If 𝒫𝒞(x) = 𝒫𝒞(y) then x = y.

Before showing the above property, let us recall (and prove) a useful fact concerning the
choice of representative of a vertex.

Claim 2.3.5. For any vertex in 𝒳, we can always find a representative ⊕i𝒪πkiei of the
vertex such that

⎧
⎨⎩

∀i ∈ {1,… ,n} ki ≥ 0,
∃i0 ∈ {1,… ,n} ki0 = 0.

(2.3)
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Proof of the claim. Indeed, let x ∈ 𝒳 and let (l1,… , ln) be a representative of x and let i0
be such that li0 = mini li, then

[⊕ni=1𝒪πliei] = π−li0 [⊕ni=1𝒪πli−li0 ei] = [⊕ni=1𝒪πli−li0 ei] .

Thus (l1 − li0 ,… , l1 − li0) is a representative of x and verifies eq. (2.3).

Now, let us prove that the print determines the vertex.

Proof of Proposition 2.3.4. Let 𝒞 be a SLn(𝕂)-orbit and denote by 𝒫(z) the print of type 𝒞
of a vertex z. Let x and y be two vertices in 𝒳 such that 𝒫(x) = 𝒫(y).
First remark that if x ∈ 𝒞 then 𝒫(x) = {x} which implies that 𝒫(y) = 𝒫(x) = {x}. But

then y has only one neighbour of type 𝒞, which is something that is only possible if y
belongs to 𝒞. Thus {y} = 𝒫(y) = {x} and so x = y.
Now assume that x does not belong to 𝒞 and take 𝒜 to be an apartment containing

x and y. Let t ∈ {0,… ,n − 1} such that 𝒞 is exactly the set of vertices of type t. Define
P ∶= 𝒫(x) ∩ 𝒜 and let 𝐞 be a basis such that

𝒜 = {⊕ni=1𝒪πkiei | ki ∈ 𝒪} and x = (0,… , 0).

By Claim 2.3.5, we can chose a representative (k1,… , kn) of y such that ki ≥ 0 for all
i and there exists i0 such that ki0 = 0. Now define the sequence i1,… , in such that
ki1 ≥ ⋯ ≥ kin = 0 and let

li1 = ⋯ = liτ(x)−t = 0 liτ(x)−t+1 = ⋯ = lin = 1.

In other words we want the vertex defined by (l1,… , ln) to have coordinates zero where
the coordinates of y take their greatest values and have a coordinate 1 where y has a
zero (namely in position in). The number of coordinates equal to 1 in (l1,… , ln) is then
determined by the condition that the vertex has to belong to 𝒞.
By remark 2.2.1 the vertex z = (l1,… , ln) has type t, indeed

τ(z) = τ(x) + n − (τ(x) − t) = n + t = t mod n.

That is to say z belongs to 𝒞. Moreover it is at distance 1 from x, so z belongs to P. But
if ki1 > 0, then d(z,y) > 1 thus z cannot belong to 𝒫(y). Hence ki1 ≤ 0, that is to say
ki = 0 for all i and thus y = x.

This proves that a vertex in 𝒳 is uniquely determined by its print. Thus, we can intro-
duce the following definition without ambiguity.

Definition 2.3.6

Let x to be a vertex in 𝒳. We say that x is the source of 𝒫(x).

To conclude this section, let us look at the behaviour of prints under the action of
PSLn(𝕂). Let x ∈ 𝒳 and let α ∈ PSLn(𝕂). Since α is an isometry and is type-preserving,
we get

α(𝒫𝒞(x)) = α(B(x, 1) ∩ 𝒞) = α(B(x, 1)) ∩ α(𝒞) = B (α(x), 1) ∩ 𝒞.

We deduce the following lemma.

Lemma 2.3.7

Let x ∈ 𝒳. If α belongs to PSLn(𝕂), then α (𝒫(x)) = 𝒫 (α(x)).
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3QUAS I - BU I LD INGS

“ Ma thèse n’est qu’une succession d’erreurs
mathématiques.

—Mario Gonçalves

Reinforced with all the knowledge on buildings exposed in the last chapter, we can
now turn to the study of graphs quasi-isometric to a building (or quasi-buildings for short).
Indeed, the aim of this chapter is to prove Theorem 1.2.6 which we recall below.

Theorem 1.2.6

Let n ≠ 3 and 𝕂 be a non-Archimedean local skew field of characteristic zero. Let
𝒳 be the Bruhat-Tits building of PSLn(𝕂) and X be a transitive graph. If X verifies
that

• There is an injective homomorphism ρ from Isom(X) to Isom(𝒳) such that
ρ(Isom(X)) is of finite index in Isom(𝒳);

• There is a Isom(X)-equivariant injective quasi-isometry q from X to 𝒳;
then X is SLG-rigid.

As stated in Chapter 1, the proof —and subsequently this chapter— deals mainly with
the case where n ≥ 4. Recall that the main idea of the proof is to define a “hybrid” graph
that will be locally the same as the building 𝒳, in order to exploit the LG-rigidity of 𝒳.
This construction is done in the second section of this chapter and relies on the notion of
print introduced in Chapter 2. We then show in the third section that the covering from
the building to our hybrid graph induces a covering from X to Y. But before entering
the heart of the matter, we show and recall some useful material concerning extension
of isometries and the isometry group of our studied graph Isom(X).

3.1 PrELIMINArY rESULTS

Before diving into the core of the proof, let us state some necessary material.

3.1.1 Isometries extension

To build the “hybrid” graph mentionned above, we will first define vertices and edges
locally. That is to say we will first define a (finite) graph that will be isometric to a ball
in 𝒳 and part of which will be composed of the vertices of a ball of radius R in Y. In order
to extend that definition of a graph locally the same as the building to the definition of
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one globally the same as 𝒳, we will need to be able to extend local isometries. We recall
here the result of de la Salle and Tessera [dlST19, Lemma 4.1] that will serve our purpose.

Proposition 3.1.1 (de la Salle, Tessera)

Let 𝒢 be a graph with cocompact discrete isometry group. Given some r1 ≥ 0, there
exists r2 ≥ r1 such that: for every g ∈ 𝒢, the restriction to B𝒢(g, r1) of an isometry f
: B𝒢(g, r2) → 𝒢 coincides with the restriction of an element of Isom(𝒢).

We illustrate the above proposition in Figure 3.1. The local isometry f is defined on
B𝒢(g, r2) which is represented by the dark blue disc. When restricted to B𝒢(g, r1) (rep-
resented by the light blue disc), the isometry f coincides with a global isometry of 𝒢
denoted by a.

B𝒢(g, r2)

fB𝒢(g, r1) B𝒢(f(g), r1)

fB𝒢(g,r1) = aB𝒢(g,r1)

Figure 3.1.: Extension of a local isometry

It is however not necessarily true that f coincides on the whole B(g, r2) with an isom-
etry of 𝒢. Indeed, truncating the entire graph to some ball might allow some kind of
flexibility near the boundary of the ball (see Example 3.1.2 and Figure 3.2). Hence, in
order to coincide with a global isometry we need to restrict the local isometry f to a
smaller ball which do not contain the flexible area.

Counter-example 3.1.2. Let 𝒢 be the Cayley graph of ℤ2 endowed with its usual gen-
erating part. We consider in Figure 3.2 an isometry f defined on B((0, 0), 1) such that
f fixes (0, 0), (−1, 0) and (0,−1) (represented by the blue vertices) and exchange (1, 0)
with (0, 1) (the orange and brown vertices). Then f is an isometry from B((0, 0), 1) to
B((0, 0), 1), but can not coincide with a global isometry of 𝒢 on that ball. Indeed, if such
a global isometry existed, then it should send the vertex (−1, 1) (represented by the light
brown vertex on the left part of the figure) at distance 1 from both f(−1, 0) = (−1, 0) and
f(0, 1) = (1, 0). Which is impossible since the only point at distance 1 from (1, 0) and
(−1, 0) is (0, 0) and it is already the image of (0, 0).

3.1.2 Preliminary results on X

We saw that the building can be partitioned into types (or PSLn(𝕂)-orits). We now prove
that if im(q) intersects with a given PSLn(𝕂)-orbit then it contains the entire orbit.
Lemma 3.1.3

If X verifies the hypothesis ofTheorem 1.2.6, then PSLn(𝕂) is included in ρ(Isom(X)).
Moreover, if q(X) contains a vertex of a certain type i, then q(X) contains all the
vertices of type i.
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f

Figure 3.2.: Local isometry that can not coincide with a global one on its entire domain
of definition

Proof. Since ρ (Isom(X)) is of finite index in the isometry group of the building 𝒳, the
same goes for its normal core⋂g∈Isom(𝒳) gρ (Isom(X)) g−1. Then, by simplicity of PSLn(𝕂),
the normal core of ρ (Isom(X)) contains PSLn(𝕂). Hence the result.
Then, the second part of the lemma follows from the equivariance of q and the tran-

sitivity of PSLn(𝕂) on vertices of the same type.

Without loss of generality, we can assume that im(q) contains type 0 vertices, that is
to say τ−1(0) ⊂ im(q). Moreover, using Proposition 1.1.12 we obtain that X is simply
connected at some scale k > 0.

3.1.3 Hypothesis

The aim of the next two sections is to prove Theorem 1.2.6 for n ≥ 4. For the sake of
clarity we recapitulate here the needed assumptions for the proof.

Hypothesis (H)
1. Let X be a k-simply-connected transitive graph;
2. Let Y be a graph R-locally X and k-simply connected;
3. Let n ≥ 4 and 𝕂 a non-Archimedean local skew field of characteristic
zero and denote by 𝒳 the Bruhat-Tits building of PSLn(𝕂);

4. Let ρ : Isom(X) → Isom(𝒳) be an injective homomorphism and q be an
Isom(X)-equivariant injective quasi-isometry from X to 𝒳;

5. Assume that ρ(Isom(X)) is of finite index in Isom(𝒳) and that q(X)
contains τ−1(0).

Unless otherwise stated we will assume from now on that (H) is verified. We can now
define our hybrid graph 𝒴.

3.2 DEFINING OUr HYBrID GrAPH

This section is dedicated to the definition of a graph locally the same as 𝒳 which we will
call 𝒴. Beforemoving to the detailed definition let us explain the idea of the construction.
Recall that the vertices of 𝒳 are partitioned into different types (see Section 2.1) denoted
by integers in {0,… ,n − 1}. By Lemma 3.1.3 if q(X) contains a vertex of a certain type
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then it contains all the vertices of that type. Denote by Τ the set of types that are not
contained in q(X), namely Τ = {0,… ,n − 1}\τ(q(X)). We have the following partition

𝒳 = q(X)⊔ (⊔i∈T τ−1(i)) . (3.1)

Example 3.2.1. Take 𝕂 = ℚ2 and assume that im(q) is composed only of type zero vertices.
When n = 2 we have T = {1} and the building is represented in Figure 2.1a. The partition
in eq. (3.1) corresponds to the partition of vertices in two different colors.
When n = 3, we get T = {1, 2}. An apartment of 𝒳 is represented in Figure 2.2 and the
partition of this part of 𝒳 corresponds to the partition in three different colors.
Example 3.2.2. Let n = 4 and 𝕂 = ℚ2 and assume that im(q) contains type zero and type
2 vertices. Then T = {1, 3}. We will not try to represent 𝒳 or an apartment but recall
that it is tiled by tetrahedrons. The partition is illustrated on a tetrahedron in Figure 3.3,
where im(q) corresponds to the two blue vertices.

Type 3

Type 1

im(q) (Type 0 and 2)

Figure 3.3.: Partition of a simplex

The idea of the construction of 𝒴 is to take the vertices of Y and add to them vertices of
the missing types, ie. vertices with type in Τ (see Figure 3.6 for an example). But we want
to build this vertices only with informations encoded in V(Y). That is why we introduced
the notion of print of a vertex in the building (see Definition 2.3.1).
The construction of 𝒴 is organised as follows. Using a well chosen set of isometries

from Y to X (see Section 3.2.1), we transfer this print notion to Y, each print in Y corre-
sponding to a vertex of amissing type (see Section 3.2.2). We concludewith the definition
of our graph 𝒴.

3.2.1 Atlas of local isometries

To build our graph locally the same as 𝒳, we need to restrict ourselves to a particular set
of local isometries from Y to X. More precisely, if y1 and y2 are close in Y and f1 (resp.
f2) is an isometry from BY(y1,R) (resp. BY(y2,R)) to X, we want the transition map f2f−11
to coincide with an element in ρ−1PSLn(𝕂) on a small ball. This is what we formalize
here and schematize in Figure 3.4.
In order to avoid any ambiguity regarding the notion of center of a ball, let us precise

our definition of ball in a graph. What we mean when we talk of “a ball of radius R” is
actually a pointed ball of radius R that is to say, a couple (ℬ,y) such that y is a vertex in
Y and ℬ = BY(y,R). We will abuse notation by denoting such a pointed ball BY(y,R)
(instead of (BY(y,R),y)). This way, the center of a ball is always well defined.

32



Definition 3.2.3

Let 𝔄 be a set of isometries from balls of radius R in Y to X, We say that 𝔄 is an atlas
of local isometries from Y to X if the map that associates to each isometry in 𝔄 the
center of its ball of definition is a bijection from 𝔄 to Y. That is to say, we can write

𝔄 ∶= {fy ∶ BY(y,R) → X | y ∈ Y} ,

where the map that associates fy to y is bijective.
We say that fy is the isometry associated to y in 𝔄.

LetH0 ∶= ρ−1PSLn(𝕂). Now, we show that we can construct an atlas of local isometries
from Y to X such that the transition maps between two isometries defined on balls with
neighbouring centers coincide with elements of H0. We will note a path between two
vertices v1 and v2 as a sequence (v1,… , vl) of adjacent vertices.

Lemma 3.2.4

Let rA > 0 and let H0 ∶= ρ−1PSLn(𝕂). For R large enough, if Y is R-locally X, then
there exists an atlas 𝔄 such that for any two neighbours y and z in Y

∃a ∈ H0 fy ⋅ f−1z |B(fz(z),rA) = a|B(fz(z),rA). (3.2)

Before proving it, let us schematize the framework of this lemma. In Figure 3.4 we rep-
resent two isometries fy and fz with z neighbour to y. The larger discs correspond to
balls of radius R and the smaller ones to balls of radius rA. The map fyf−1z restricted to
B(fz(z), rA) takes fz(z) to fy(z) which is a neighbour of fy(y) and coincides on this ball
with and element in H0. Let us discuss the idea of the proof. First, for two neighbours

Y
y

X

fz(z)

fy(z)

fy(y)

fyf−1z

z

fy

fz

f−1z

fy

Figure 3.4.: Composition of isometries with neighbouring centers

y and z we use Proposition 3.1.1 to prove that fyf−1z coincides on a small ball with an
element a in Isom(X). This isometry corresponds to the “default” of belonging to H0 we
want to correct. Hence, we consider in our atlas the new isometry defined on B(z,R)
by afz. Finally, we extend this construction along paths in Y and prove that the wanted
property for 𝔄 does not depend on the choice of path.
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Proof of Lemma 3.2.4. Let rA > 0 and let H0 ∶= ρ−1PSLn(𝕂). Now, let y ∈ Y and fy be an
isometry from B(y,R) to X. Let z be a neighbour of y in Y and ̃fz be an isometry from
B(z,R) to X. Then the map

fy ⋅ ̃f−1z ∶ BX( ̃fz(z),R − 1) → BX (fy(z),R − 1)

is a well defined local-isometry of X. By Proposition 3.1.1 if R is large enough, there exists
a in Isom(X) such that fy ⋅ ̃f−1z coincides with a on BX ( ̃fz(z), rA + k), where we recall that
k refers to the scale at which Y is simply connected. We will see below why we need to
consider such a radius.
Now let fz ∶= a ̃fz. By definition we have

fz ∶
⎧
⎨⎩

BY(z,R) → BX (fy(z),R) ,
z ↦ a ̃fz(z) = fy(z),

thus the transition map fyf−1z is well defined on BX(fz(z),R−1). Moreover, by choice of
fz we get that fyf−1z restricted to B(fy(z), rA + k) coincides with the identity and thus
belongs to H0.
Extending this construction along paths in Y we get an atlas 𝔄 of local isometries from

Y to X.
Now if y ∈ Y and fy is the associated isometry in 𝔄, we want to show that (up to a

multiplication by an element in PSLn(𝕂)) this isometry does not depend on the choice
of path. So let y ∈ Y and (y0 = y,y1,… ,yl = y) be a loop of length l. Take f0 to be an
isometry from BY(y0,R) to X and using the process detailed above, build a sequence of
isometries f1,… , fl such that fi is defined on BY(yi,R) and

∀i ∈ {1,… , l} ∃ai ∈ H0 | (fi−1f−1i )|B(fi(yi),rA+k) = ai|B(fi(yi),rA+k).

We have to prove that the restrictions to B(y0, rA) of f0 and fl are equal up to a multi-
plication by an element in H0. Since Y is simply connected at scale k, we only have to
prove this for loops of length smaller than k. Hence, we assume that l ≤ k.
First, remark that for all i ∈ {0,… , l − 1}

⎧
⎨⎩

fi−1f−1i ∶ BX (fi(yi), rA + k) → BX (fi−1(yi), rA + k) ,
fif−1i+1 ∶ BX (fi+1(yi+1), rA + k) → BX (fi(yi+1), rA + k) .

Now since yi and yi+1 are at distance 1, the ball BX (fi(yi+1), rA + k − 1) is included in
BX(fi(yi), rA + k). Hence the map (fi−1f−1i ) (fif−1i+1) is well defined and coincides with
aiai+1 on BX (fi+1(yi+1), rA + k − 1).
By induction we get that for all x in BX (fi+1(yi+1), rA + k − l + 1)

f0f−1l (x) = (f0f−11 )⋯ (fl−1f−1l ) (x) = a1⋯al(x).

Since ∏l
i=1 ai belongs to H0 and l is smaller than k, it implies that f0 is equal to fl on

BY(y0, rA) up to multiplication by an element in H0.

The atlas is defined such that a transition map between two isometries defined on
balls with neighbouring centers belongs to H0. But in fact, this property is also true
when the centers are at a slightly bigger distance.
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Lemma 3.2.5

Let r > 0 and 𝔄 be an atlas verifiying the conditions of Lemma 3.2.4 with rA > 3r.
Let y and z in Y be at distance less than 2r and fy, fz the associated isometries in 𝔄.
Then

∃a ∈ H0 (fyf−1z )|BY(z,r) = a|BY(z,r). (3.3)

Proof. Let r > 0 and assume rA > 3r. Let y, z ∈ Y be at distance l ≤ 2r and let fy, fz be
two elements of 𝔄 such that

fy ∶ BY(y,R) → X fz ∶ BY(z,R) → X.

Take (y0 = y,y1,… ,yl = z) to be a geodesic between y and z, and for all i ∈ {0,… , l}, let
fi ∈ 𝔄 be the isometry associated to yi. Remark that by definition of an atlas, it implies
f0 = fy and fl = fz and

∀i ∈ {0,… , l − 1} ∃ai ∈ H0 (fif−1i+1)|B(fi+1(yi+1),rA) = ai|B(fi+1(yi+1),rA).

Now, if rA > 3r and l ≤ 2r, thenBY(z, r) is contained inBY(y, rA). Hence the composition
of transition maps (f0f−11 )⋯ (f−1f−1r ) is well defined on BY (fl(yl), rA − l) and verifies on
that ball

f0f−1l = (f0f−11 )⋯ (fl−1f−1l ) = a0⋯al−1. (3.4)

Hence the result.

3.2.2 Prints in Y

Using the atlas built above, we can now transfer this print notion to the graph Y. Let
r𝒫 > 0 and assume that Y is endowedwith an atlas of isometries𝔄 as given by Lemma 3.2.4
with rA > 3r𝒫. Hence, we have

R > rA > 3r𝒫 > r𝒫.

Definition 3.2.6

Let P be a set of vertices in Y. We say that P is a print if there exists y in Y and f ∈ 𝔄
an isometry from BY(y,R) to X such that

• The set P is contained in BY(y, r𝒫);
• There exists x ∈ 𝒳\im(q) such that 𝒫(x) = qf(P).

Remark 3.2.7. Note that in the definition above we ask that x does not belong to im(q).
The definition would also make sense if x belonged to im(q) but the purpose of these
prints is to reconstruct the ”missing” vertices, namely vertices that are not in the image
of q. Thus to simplify formalism in the next pages, we chose to restrict now the definition
to prints of vertices in 𝒳\im(q).

Example 3.2.8. If n = 3 and p = 2 there are exactly 3 types of vertices, each represented in
Figure 3.5 by a different color. The 1-neighbourhood of a vertex x in 𝒳 is then composed
of fourteen vertices, represented on the right side of the aforementioned figure (where
x is the brown vertex at the center). If x ∈ 𝒳\im(q) then seven of these fourteen vertices
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are in im(q) (the blue vertices). On the left side of the figure is represented P (the black
dots) inside B(y, r𝒫) (the darker disc). The set qf(P) is exactly the set of blue vertices.
Hence P is a print.

Y
qf

𝒳

B(y,R)
B(y, r𝒫)
Elements of P

qf(B(y,R))
qf(B(y, r𝒫))
qf(P) = 𝒫(x)

x
B(x, 1)\qf(P)

Figure 3.5.: Definition of a print in 𝒴

For now, let’s say that P verifying the definition above is a print associated to y and f.
We are going to show that this definition depends neither on y nor f.

Lemma 3.2.9

Let y1,y2 ∈ Y and f1, f2 be the associated isometries in𝔄. Let P be a print associated
to y1 and f1. If P ⊂ B(y2, r𝒫) then P is a print associated to y2 and f2.

Proof. First, remark that since P ⊂ B(y2, r𝒫) ∩ B(y1, r𝒫), then taking any y in P we get

dY(y1,y2) ≤ dY(y1,y) + dY(y,y2) ≤ 2r𝒫.

Applying Lemma 3.2.5 with r = r𝒫, we get that there exists a ∈ H0 such that

(f1f−12 )|BX(f2(y2),r𝒫) = a|BX(f1(y2),r𝒫).

Now let x ∈ 𝒳 be such that 𝒫(x) = qf1(P). Using the equivariance of q and Lemma 2.3.7,
we get

qf2(P) = ρ(a)−1qf1(P) = ρ(a)−1𝒫(x) = 𝒫 (ρ(a)−1(x)) .

Hence P is a print associated to y2 and f2.

This last lemma proves that being a print does not depend on the choice of local
isometry.

Remark 3.2.10. In the above proof ρ(a)−1(x) has same type as x since ρ(a) is type pre-
serving. Thus, once we have taken our atlas in PSLn(𝕂), the type of the source of qf(P)
does not depend on the choice of local isometry f.
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3.2.3 Definition of 𝒴: a building’s replica

The following property defines the graph 𝒴 we will demonstrate to be locally the same
as 𝒳.

Proposition 3.2.11

Let r𝒫 > 0 and 𝔄 be the atlas given by Lemma 3.2.4 for rA > 3r𝒫. If R is large enough,
then the following graph is well defined.
Let 𝒴 be the graph whose vertices are given by

V(𝒴) ∶= V(Y)⊔ {P ∶ ∃x ∈ 𝒳\im(q), 𝒫(x) = P} ,

and edges are given by:
• If y1,y2 ∈ V(𝒴), then (y1,y2) is an edge if there exists z in Y and f ∈ 𝔄 defined
on BY(z,R) such that y1,y2 ∈ B(z, r𝒫) and d𝒳(qf(y1),qf(y2)) = 1.

• If y ∈ V(𝒴) and P is a print, then (y,P) is an edge if there exists z in Y and f ∈ 𝔄
defined on BY(z,R) cointaining y and P and such that qf(y) is at distance 1
from the source of qf(P).

• If P1 and P2 are two prints, then (P1,P2) is an edge if there exists z in Y and
f ∈ 𝔄 defined on BY(z,R) such that P1,P2 ⊂ BY(z, r𝒫) and such that the source
of qf(P1) is at distance 1 from the source of qf(P2).

Before looking at the proof of this property, let us sketch some part of this graph.

Example 3.2.12. If n = 4 then 𝒳 is composed of vertices of type 0, 1, 2 and 3. Assume that
q(X) is composed of vertices of type 0 and 2, then T = {1, 3} and we saw the corresponding
partition of 𝒳 in Example 3.2.2 and Figure 3.3. The appearance of the corresponding V(𝒴)
is represented in Figure 3.6.

Prints

V(Y)

Figure 3.6.: Schematic view of V(𝒴) in the case of Example 3.2.12

Proof. Let 𝒴 be as in Proposition 3.2.11 and let us show that the definition of the edges
does not depend on the choice of f in the atlas.
First, let y1,y2 ∈ Y and y, z ∈ Y such that y1 and y2 belong to B(y, r𝒫)∩B(z, r𝒫). Then,

take two local maps fy, fz in 𝔄 associated to y and z respectively. Then d(y, z) ≤ 2r𝒫
and by Lemma 3.2.5 there exists a ∈ Isom(X) verifying eq. (3.3). Hence, by Isom(X)-
equivariance of q we get

d𝒳(qfz(y1),qfz(y2)) = d𝒳(ρ(a)qfz(y1), ρ(a)qfz(y2))
= d𝒳(q (afz(y1)) ,q (afz(y2)) ) = d𝒳(qfy(y1),qfy(y2)).

Thus d𝒳(qfz(y1),qfz(y2)) = 1 if and only if d𝒳(qfy(y1),qfy(y2)) = 1 and the definition
of edges between two vertices of Y does not depend on the choice of local isometry.
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Now take y ∈ Y and let P ⊂ Y be a print. Let z and z′ such that y and P are contained
in B(z, r𝒫) ∩ B(z′, r𝒫) and take f (resp. f′) in 𝔄 defined on B(z,R) (resp. B(z′,R)). Then
d(z, z′) ≤ 2r𝒫 and by Lemma 3.2.5 there exists a ∈ Isom(X) verifying eq. (3.3). Hence,

d𝒳(qf(y), x) = d𝒳(ρ(a)qf(y), ρ(a)(x))
= d𝒳(q (af(y)) , ρ(a)(x)) = d𝒳(qf′(y), ρ(a)(x)).

If x is the source of qf(P) then, by Lemma 2.3.7 we get

𝒫(ρ(a)(x)) = ρ(a) (𝒫(x)) = ρ(a)qf(P) = qf′(P).

Thus, the existence of en edge between y and P in 𝒴 does not depend of the choice of
map in 𝔄.
Finally, take P1,P2 ⊂ Y two prints and let z, z′ in Y and f ∈ 𝔄 (resp. f′) defined on

BY(z,R) (resp. B(z′,R)) such that P1,P2 ⊂ BY(z, r𝒫) ∩ BY(z′, r𝒫). Again d(z, z′) ≤ 2r𝒫 and
by Lemma 3.2.5 there exists a ∈ Isom(X) verifying eq. (3.3). Hence if x1 is the source of
qf(P1) and x2 the source of qf(P2), then d(x1, x2) = 1 if and only if d(ρ(a)(x1), ρ(a)(x2)) =
1. Moreover, by Lemma 2.3.7

∀i = 1, 2 𝒫(ρ(a)(xi)) = ρ(a) (𝒫(x1)) = ρ(a)qf(Pi) = qf′(Pi).

Hence the existence of en edge between P1 and P2 in 𝒴 does not depend of the choice of
map in the atlas 𝔄.

3.3 FrOM ONE GrAPH TO THE OTHEr

In this section we prove the isometry between the graph 𝒴 built and the Bruhat-Tits
building and show that it induces an isometry between X and Y.

3.3.1 Isometry with the building

We can now prove that 𝒴 is isometric the Bruhat-Tits building. Recall that rA is the
radius used to define our atlas 𝔄 (see Lemma 3.2.4) and r𝒫 is the radius used to define
prints in 𝒴 (see Definition 3.2.6). These constants verify R > rA > 3r𝒫 > r𝒫.

Lemma 3.3.1

Let R𝒳 > 0. If r𝒫 (and hence R) is large enough, then 𝒴 is R𝒳-locally 𝒳.

To prove this lemma, we define explicitely the local isometries on balls of radius R𝒳
and prove that these maps are well defined injections. Then, we compute the minimal
value of r𝒫 necessary for these applications to be surjective on balls of radius R𝒳. We
conclude by showing that these maps preserve the distance.

Proof. Let v ∈ V(𝒴). If v ∈ V(Y) let f ∈ 𝔄 be the isometry defined on BY(v,R). If v is a
print P let y and f ∈ 𝔄 be such that P is a print associated to y and f. Our goal is to show
that the map

ϕf ∶
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

B𝒴(v,R𝒳) → 𝒳,
z ∈ Y ↦ qf(y),
Q ↦ x where 𝒫(x) = qf(Q),
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is an isometry.
By Proposition 2.3.4, it is a well defined map. Moreover, using the injectivity of q and

Proposition 2.3.4 and eq. (3.1) we get that ϕf is an injective map.
Now, recall that since q is a quasi-isometry, two elements q(x1) and q(x2) joined by

an edge in 𝒳 might be at distance greater than 1 in X. If we want to prove that ϕf is
surjective on B𝒳(ϕf(v),R𝒳) and preserves the distance, we have to show that there exists
a radius r𝒫 allowing us to “reconstruct” all the edges of B𝒳(ϕf(v),R𝒳) in B𝒴(v,R𝒳). Let
L, ε > 0 be such that q is a (L, ε)-quasi-isometry. We distinguish three cases, represented
in Figure 3.7.
If χ1,χ2 ∈ im(q), then let x1, x2 ∈ X such that q(xi) = χi. They verify dX(x1, x2) ≤
Ld𝒳(χ1,χ2) + ε. This case is represented in Figure 3.7a.
If χ1 ∈ im(q) and χ2 ∉ im(q), let x1 = q−1(χ1). For all x2 ∈ X such that q(x2) ∈ 𝒫(χ2), we
have (see Figure 3.7b)

d𝒳(q(x1),q(x2)) ≤ 1 + d𝒳(χ1,χ2) ⇒ dX(x1, x2) ≤ Ld𝒳(χ1,χ2) + L + ε.

If χ1,χ2 ∉ im(q), let xi ∈ X such that q(xi) ∈ 𝒫(χi) for i = 1, 2. Then (see Figure 3.7b)

d𝒳(q(x1),q(x2)) ≤ 2 + d𝒳(χ1,χ2) ⇒ dX(x1, x2) ≤ Ld𝒳(χ1,χ2) + 2L + ε.

Hence, assume r𝒫 > LR𝒳 + 2L + ε and let us show that ϕf is an isometry.

χ2

χ1

(a) First case

χ2

q(x2)

χ1

𝒫(χ2)

(b) Second case

χ2

q(x2)

χ1

𝒫(χ1) q(x1)

𝒫(χ2)

(c) Third case

Figure 3.7.: The three cases (im(q) is represented by the blue vertices)

Let χ ∈ B𝒳(ϕf(v),R𝒳), by choice of r𝒫 either χ ∈ im(q) and then there exists z ∈
BY(y, r𝒫) such that qf(z) = χ or χ ∉ im(q) and then there exists P ⊂ BY(y, r𝒫) such
that qf(P) = 𝒫(χ). Hence, in both cases χ ∈ im(ϕf) and thus, ϕf is a bijection from
B𝒴(v,R𝒳) to B𝒳(ϕf(v),R𝒳). Now take v1, v2 in B𝒴(v,R𝒳) at distance l in 𝒴 and let (w0 =
v1,w1,… ,wl = v2) be a geodesic in 𝒴. By definition of 𝒴 and choice of r𝒫, for all i ∈
{0,… , l−1} if there is an edge betweenwi andwi+1, then d(ϕf(wi),ϕf(wi+1)) = 1. Hence
d𝒳(ϕf(v1),ϕf(v2)) ≤ l. To get the reversed inequality, take χ1,χ2 in B𝒳(ϕf(v),R𝒳). Since
ϕf is bijective there exists v0,… , vl in 𝒴 such that (ϕf(v0),… ,ϕf(vl)) is a geodesic between
χ1 and χ2. Again, by definition of 𝒴 and choice of r𝒫, an edge betweenϕf(vi) andϕf(vi+1)
gives an edge between vi and vi+1 in 𝒴 and thus d𝒴(v1, v2) ≤ l.
Hence, if r𝒫 > LR𝒳 + 2L + ε then ϕf is an isometry.
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The LG-rigidity of the building will give us a covering from 𝒳 to 𝒴. In order to obtain
an isometry we need to prove (by Proposition 1.1.11) that 𝒴 is simply connected at the
same scale as 𝒳.
Lemma 3.3.2

If R𝒳 (and hence R) is large enough, then 𝒴 is simply connected at scale 3.

We first prove that 𝒴 is quasi-isometric to Y and use it to show that 𝒴 is simply connected
at some scale k′. We conclude using the contractibility of the building and the fact that
𝒴 is locally the same as the building. But before looking at the detail of the proof, let us
make a remark.

Remark 3.3.3. Let P be a print associated to some z ∈ Y and f ∈ 𝔄 and let y ∈ P. If x is
the source of qf(P), then d𝒴(P,y) = d𝒳(x,qf(y)) = 1.

Proof of Lemma 3.3.2. Let us show that 𝒴 is quasi-isometric to Y. Define π ∶ 𝒴 → Y such
that if y ∈ V(Y) then π(y) = y and if P is a print then π(P) = y for some y ∈ P arbitrarily
chosen. Let (v0,… , vm) be a geodesic in 𝒴 and for all i ∈ {0,… ,m} define yi ∶= π(vi) and
fi to be the isometry of 𝔄 associated to yi. Using that q is a (L, ε)-quasi-isometry, we get

dY (π(v0),π(vm)) = dY(y0,ym) ≤
m

∑
i=0

dY (yi,yi+1) ,

≤
m

∑
i=0

[Ld𝒳 (qfi(yi),qfi(yi+1)) + ε] .

Now let i ∈ {0,… ,m}. If vi is a print, denote by xi the source of qf(vi) and if vi belongs
to the copy of V(Y) contained in 𝒴 let xi ∶= qfiπ(vi). Then d𝒴 (vi, vi+1) = d𝒳(xi, xi+1) for
all i. Thus, using remark 3.3.3, we get

d𝒳 (qfi(yi),qfi(yi+1)) ≤ d𝒳 (qfi(yi), xi) + d𝒳(xi, xi+1) + d𝒳 (qfi(yi+1), xi+1) ,
≤ 2 + d𝒳(xi, xi+1) = 2 + d𝒴 (vi, vi+1) .

Since d𝒴 (vi, vi+1) = 1, we obtain

dY (π(v0),π(vm)) = dY(y0,ym) ≤
m

∑
i=0

[L2 + Ld𝒴 (vi, vi+1) + ε] ,

= (3L + ε)m = (3L + ε)d𝒴 (v0, vm) .

Now let v, v′ ∈ 𝒴 and let (π(v) = z0,… ,π(v′) = zl) be a geodesic in Y. For all i ∈ {0,… , l}
take f′i ∈ 𝔄 the isometry associated to zi. Then

d𝒴(v, v′) ≤ d𝒴(v, z0) +
l−1

∑
i=0

d𝒴(zi, zi+1) + d𝒴(zl, v′).

But by remark 3.3.3 if v (resp. v′) is a print then d𝒴(v, z0) = 1 (resp. d𝒴(v′, zl) = 1). And if
v (resp. v′) belongs to V(Y) then v = z0 (resp. v′ = zl). Thus both d𝒴(v, z0) and d𝒴(v′, zl)
are always smaller than 1. Hence,

d𝒴(v, v′) ≤ 2 +
l−1

∑
i=0

d𝒴(zi, zi+1) = 2 +
l−1

∑
i=0

d𝒳 (qf′i(zi),qf′(zi+1)) ,

≤ 2 +
l−1

∑
i=0

[LdY(zi, zi+1) + ε] ,

= 2 + (L + ε)l = 2 + (L + ε)dY(π(v),π(v′)).
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Thus π is a quasi-isometry between 𝒴 and Y. Hence Proposition 1.1.12 implies that there
exists k′ ∈ ℕ∗ such that 𝒴 is simply-connected at scale k′.
Finally, let ℓ be loop in 𝒴 of length less than k′. If R𝒳 is large enough then ℓ is contained

in some ball B in 𝒴. By Lemma 3.3.1 there exists a local isometry ϕ from B to some ball
ℬ in 𝒳. But ϕ(ℓ) is contractible inside its convex hull, by Claim 2.2.2. In particular it is
simply-connected. Since 𝒳 is 3-simply-connected and if R𝒳 is large enough, the convex
hull of ϕ(ℓ) is contained in the complex obtained by gluing triangles on all the loops of
length 3 in ℬ. Which, by local isometry with B, proves the wanted assertion.

Thanks to the previous lemma, we can now use the rigidity of the Bruhat-Tits building.

Proposition 3.3.4

If R𝒳 (and hence R) is large enough, then 𝒴 is isometric to 𝒳.

Proof. Recall that we have R > rA > 3r𝒫 > r𝒫 > 3R𝒳 + 2L + ε > R𝒳.
ByTheorem 1.2.1, the building 𝒳 is LG-rigid. Moreover, since its isometry group is transi-
tive Proposition 1.1.11 gives us the existence of some radius Rsc > 0 such that every graph
which is 3-simply connected and Rsc-locally 𝒳 is isometric to 𝒳.
By definition of the edges on 𝒴, this graph is simply connected at scale 3. Taking r𝒫
(and hence R) large enough so that R𝒳 ≥ Rsc the preceding paragraph combined with
Lemma 3.3.1 give us the existence of an isometry between 𝒳 and 𝒴.

3.3.2 Change of local map, change of global isometry

Let y ∈ Y and fy ∈ 𝔄 be the isometry defined on B(y,R). Let

ϕy ∶
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

B𝒴(y,R𝒳) → 𝒳
z ∈ Y ↦ qfy(z)
Q ↦ x where 𝒫(x) = qfy(Q).

(3.5)

Lemma 3.3.5

Let y and z be neighbours in Y and a ∈ H0 such that fyf−1z coincide with a on
BX(f(z), rA). If R𝒳 is large enough, then ϕyϕ−1z coincide with ρ(a) on B𝒳(ϕz(z), 2).

Proof. Let y and z be neighbours in Y and a ∈ H0 such that fyf−1z coincide with a on
BX(f(z), rA). If R𝒳 (and hence R) is large enough, then B𝒴(z, 2) is contained in B𝒴(y,R𝒳).
Thus, ϕyϕ−1z is well defined on B𝒳(ϕz(z), 2).
Let v ∈ B𝒴(z, 2). If v ∈ V(Y), then

ϕy(v) = qfy(v) = qafz(v) = ρ(a)qfz(v) = ρ(a)ϕz(v).

If v = P with P ⊂ Y a print, then

𝒫(ϕy(v)) = qfy(P) = qafz(P) = ρ(a)qfz(P) = 𝒫(ρ(a)ϕz(v)),

Thus ϕy(v) = ρ(a)ϕz(v), since the print determines the vertex. Hence the result.
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Now let r𝒳 > 0. If R𝒳 is large enough then, by SLG-rigidity of 𝒳 there exists an
isometry ιy from 𝒴 to𝒳 that coincides withϕy on B(y, r𝒳). Thus, the lemma above allows
us to work with a set of isometries from 𝒴 to 𝒳 that differs only by a multiplication by
an element of PSLn(𝕂).
Lemma 3.3.6

If y and z belong to Y and R𝒳 is large enough, then ιyι−1z ∈ PSLn(𝕂). Hence for
all y ∈ Y, the isometry ιy sends the copy of V(Y) contained in 𝒴 to im(q) and sends
prints contained in 𝒴 to vertices in 𝒳\im(q).

Proof. Let y and z be neighbours in Y. Since ιyι−1z is an isometry of 𝒳 it permutes the
PSLn(𝕂)-orbits. Recall that ιy coincides with ϕy on B(y, r𝒳). Hence, if r𝒳 (and hence R)
is large enough, then B𝒴(z, 2) is contained in B𝒴(y, r𝒳), thus

(ιyι−1z )|B𝒳(ιz(z),2) = ϕyϕ
−1z .

Butϕyϕ−1z coincides with an element of PSLn(𝕂) on B𝒳(ϕz(z), 2), by Lemma 3.3.5. Hence
ιyι−1z restricted to a ball of radius 2 preserves the PSLn(𝕂)-orbits. Since such a ball con-
tains a vertex of each type, it implies that ιyι−1z preserves the PSLn(𝕂)-orbits and thus
belongs to PSLn(𝕂).
Now take y and z in Y (not necessarily neighbours), denote by (y0 = y,y1… ,yl = z) a

geodesic in Y. By the preceding paragraph, there exists a sequence α1, …, αl of elements
in PSLn(𝕂) such that

∀i ∈ {1,… , l} ιyi ι−1yi−1 = αi.

Thus, recalling that z = yl and y = y0, we get ιz = αl⋯α1ιy. Which proves the first
assertion of the lemma.
Let us now prove the second part of the lemma. Let y ∈ Y and v ∈ 𝒴. There exists z ∈ Y

such that v ∈ B𝒴(z, 2), and using the paragraph above, there exists α ∈ PSLn(𝕂) such that
ιy = αιz. In particular, since v belongs to B𝒴(z,R𝒳),

ιy(v) = αιz(v) = αϕz(v).

By definition of ϕz, if v ∈ V(Y) then ϕz(v) belongs to im(q) and if v = P with P ⊂ Y a
print, then ϕz(v) belongs to 𝒳\im(q). This finish the proof of the lemma.

Now we have all the tools we need to prove the isometry between Y and X.

3.3.3 Isometry from Y to X

Let κ be the natural injection of Y in 𝒴Z and ι an isometry given by Proposition 3.3.4.
With the objects constructed so far we get the diagram in Figure 3.8.
The aim of this section is to prove the following result.

Proposition 3.3.7

For R𝒳 large enough, the graphs Y and X are isometric.

Let us discuss the strategy of the proof. Using the preceding section, we chose an isom-
etry ι from 𝒴 to 𝒳 that coincides with a ϕy on a small ball. Then, we show that κιq−1 is
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a

ρ

H0

(b) Relations between groups

Figure 3.8.: Relations between the different graphs and groups

locally an isometry, viz. there exists a radius rY such that q−1ικ restricted to any ball of
radius rY preserves the distance. We conclude by showing that it forces κιq−1 to be an
isometry.

Proof of Proposition 3.3.7. By Lemma 3.3.6, for any y ∈ Y the map q−1ιyκ is well defined.
Now fix y0 ∈ Y and consider ι ∶= ιy0 . We want to prove that q−1ικ restricted to small
balls preserves the distance. Then we will show that it is an isometry from Y to X.

Claim 3.3.8. Let y ∈ Y and rY ≥ 1. If R is large enough, then q−1ικ restricted to BY(y, rY)
preserves the distance.

Proof of the claim. Let rY ≥ 1 and recall that we have R > rA > 3r𝒫 > r𝒫 > 3R𝒳 + 2L+ ε >
R𝒳 > r𝒳. Let y ∈ Y and recall that L and ε are constants such that q is a (L, ε)-quasi-
isometry. If r𝒳 ≥ LrY +ε (and hence if R is large enough) then κ(BY(y, rY)) is included in
B𝒴(y, r𝒳). Indeed if z ∈ BY(y, rY) then

d𝒳(qfy(y),qfy(z)) ≤ LdX(fy(y), fy(z)) + ε = LdY(y, z) + ε ≤ LrY + ε ≤ r𝒳.

Thus ϕy(κ(z)) = qfy(z) and

d𝒴(κ(y), κ(z)) = d𝒳 (ϕy(κ(y)),ϕy(κ(z))) = d𝒳(qfy(y),qfy(z)) ≤ R𝒳

Now, recall that H0 = ρ−1PSLn(𝕂). Then, by Lemma 3.3.6 there exists ay ∈ H0 such that
ιyι−1 = ρ(ay). Hence, using the equivariance of qwe get that for all z1 and z2 in BY(y, rY)

dX(q
−1ικ(z1),q−1ικ(z1)) = dX(ayq

−1ικ(z1),ayq−1ικ(z1))
= dX(q

−1ρ(ay)ικ(z1),q−1ρ(ay)ικ(z1))
= dX(q

−1ιyκ(z1),q−1ιyκ(z1)).

But z1 and z2 belong to BY(y, rY), hence for i = 1, 2 we have ιyκ(zi) = qfy(zi). Thus,

dX(q
−1ικ(z1),q−1ικ(z1)) = dX(q

−1qfy(z1),q−1qfy(z2))
= dX(fy(z1), fy(z2)) = dY(z1, z2).

Thus q−1ικ restricted to BY(y, rY) preserves the distance.
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Let’s show that the claim forces q−1ικ to be an isometry from Y to X. Take rY ≥ 2 and
let y,y′ ∈ Y and (y0 = y,y1,… ,yl = y′) be a geodesic in Y. Since for all i the vertices
yi and yi+1 are adjacent, then Claim 3.3.8 implies that dX(q−1ικ(yi),q−1ικ(yi+1)) = 1.
Hence

dX(q
−1ικ(y),q−1ικ(y′)) ≤

l−1

∑
i=0

dX(q
−1ικ(yi),q−1ικ(yi)) = l.

Moreover, if (x0 = q−1ικ(y), x1,… , xm = q−1ικ(y′)) is a geodesic in X, then by bijectivity
of q−1ικ there exists zi ∈ Y such that q−1ικ(zi) = xi for all i in {1,… ,m − 1}. Denote
z0 = y and zm = y′. Since for all i the vertices xi and xi+1 are adjacent, then Claim 3.3.8
implies that dX(zi, zi+1) = d𝒳(q−1ικ(zi),q−1ικ(zi+1)). Thus

dY(y,y′) ≤
m−1

∑
i=0

dY(zi, zi+1) =
m−1

∑
i=0

dX(q
−1ικ(zi),q−1ικ(zi+1)) =

m−1

∑
i=0

dX(xi, xi+1) = m.

We conclude by the proof of Theorem 1.2.6.

Proof of Theorem 1.2.6. Let n ≠ 3 and X verifying the hypothesis of Theorem 1.2.6. If n = 2
then 𝒳 is the (p + 1)-regular tree, thus by Example 1.1.3 if X is quasi-isometric to 𝒳 then
X is LG-rigid. If n ≥ 4, let k ∈ ℕ such that X is simply connected at scale k. Then by
Proposition 3.3.7 for R large enough, any k-simply-connected graph Y being R-locally the
same as X is isometric to X. Thus X is LG-rigid. Finally for any n ≠ 3, since X is assumed
transitive it is actually SLG-rigid by Proposition 1.1.14.
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4RIG ID ITY OF LATT ICES

“ — Qu’est-ce que tu sais sur les réseaux cocompacts ?
— Les risottos trop compacts ? Il faut les délayer avec
du bouillon.

— Conversation téléphonique avec F. Caron

In this chapter we prove Theorem 1.2.5 which we recall hereunder.

Theorem 1.2.5

Let n ≠ 3 and 𝕂 be a non-Archimedean local skew field of characteristic zero.
The torsion-free lattices of SLn(𝕂) are SLG-rigid.

Let n ≠ 3, let𝕂 be a non-Archimedean skewfield of characteristic zero and Γ ≤ SLn(𝕂)
be a lattice without torsion. Denote by (Γ ,S) one of its Cayley graphs. Recall that any
lattice in SLn(𝕂) is uniform (i.e. cocompact).

4.1 QUASI-ISOMETrY BETWEEN BUILDING AND LATTIcE

To show the theorem, we first check that the lattice is quasi-isometric to the building.
Then, using a famous result of Kleiner and Leeb we show that the isometry group of the
lattice acts on the building and that the quasi-isometry can be chosen to be equivariant
under this action.

Lemma 4.1.1

Let Λ be a lattice of SLn(𝕂). Then Λ is quasi-isometric to 𝒳.

Proof. First, recall that any lattice in SLn(𝕂) is uniform, viz. cocompact (see for example
[BQ14]).
Since Λ is a lattice of SLn(𝕂), there is a natural action on the Bruhat-Tits building

induced by the action of PSLn(𝕂). Moreover, since Λ is cocompact and the PSLn(𝕂)
action has exactly n orbits, the Λ action is also cocompact. Hence by the Svarc-Milnor’s
lemma Λ is quasi-isometric to X.

By a result of Kleiner and Leeb [KL97] and Cornulier [Cor18, Theorem 3.B.1] ap-
plied to our lattice Γ , this quasi-isometry implies the existence of a homomorphism
from Isom(Γ ,S) to Isom(X) and a quasi-isometry from (Γ ,S) to X which is Isom(Γ ,S)-
equivariant. Since Γ is assumed to be torsion-free, we can refine the informations about
these two applications.
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Lemma 4.1.2

Let Λ be a lattice of SLn(𝕂) and T a symmetric generating set. If Λ is torsion-free,
then there exists an injective homomorphism

ρ ∶ Isom(Λ, T) → Isom(X),

and an injective quasi-isometry which is Isom(Λ, T)-equivariant

q ∶ (Λ, T) → X.

Proof. Since we assumed thatΛ has no torsion element, by Proposition 1.2.7 the isometry
group of (Λ, T) contains no non-trivial compact normal subgroup. Hence the morphism
ρ given by Kleiner-Leeb’s theorem is injective.
Assume that there exist λ1, λ2 ∈ Λ such that λ1 ≠ λ2 and q(λ1) = q(λ2). Then, the

equivariance of q implies that

q({(λ1λ
−1
2 )

n ∶ n ∈ ℕ}) = {q (e)} ,

which contradicts the fact that q is a quasi-isometry.

4.2 rELATION BETWEEN THE ISOMETrY GrOUPS

To applyTheorem 1.2.6, we still need to check that Isom(Γ ,S) is of finite index in Isom(𝒳).
As stated in the lemma below, this is not always the case: the lattice’s isometry group
can also be discrete. But as we will see in Section 4.3 we will be able to prove the rigidity
of the lattice in that case too.

Lemma 4.2.1

Using the previous notations,
• Either Isom(Γ ,S) is discrete.
• Or Isom(Γ ,S) is of finite index in Isom(X) and contains PSLn(𝕂).

Before proving this lemma, let us recall a useful consequence of a theorem of Benoist and
Quint. The original and more general statement can be found in [BQ14, Corollary 4.5].

Proposition 4.2.2 (Benoist, Quint [BQ14])

Let G be p-adic Lie group and H be a finite covolume closed subgroup of G, with
Lie algebra 𝔥. If G has no proper cocompact normal subgroup, then G normalizes 𝔥.

Proof of Lemma 4.2.1. Let G = PSLn(𝕂) and H = Isom(Γ ,S) ∩ G and note 𝔥 =∶ Lie(H)
and 𝔤 ∶= Lie(G) their respective Lie algebras. Since Γ is a lattice in SLn(𝕂), we get that
ρ(Γ) ∩ PSLn(𝕂) is a lattice in PSLn(𝕂). Hence H contains the uniform lattice ρ(Γ) ∩ G of
G, thus H has finite covolume in PSLn(𝕂).
If 𝕂 is a non-Archimedean local skew field of characteristic zero then it is an extension
of ℚp for some prime p (see for example [dlST16, Section 1]). In particular G is a p-adic
Lie group. Thus the above property applied to G and H implies that G normalises 𝔥, in
other words 𝔥 is an ideal of 𝔤. Since 𝔤 is simple, we get that 𝔥 is either trivial or the full
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Lie algebra 𝔤. If Isom(Γ ,S) isn’t discrete, then it is a closed subgroup of Isom(X). Hence
H is a closed subgroup of G and its Lie algebra is non-trivial. By the previous point it can
only be 𝔤. Hence, it implies that H is an open subgroup of G. Since it is also cocompact,
it is necessarily of finite index in G. Thus, we get that ρ (Isom(Γ ,S)) is of finite index in
Isom(X).
Let’s show that PSLn(𝕂) ≤ ρ (Isom (Γ ,S)). First assume that ρ(Isom(Γ ,S)) is strictly

contained in PSLn(𝕂). Since these two groups are of finite index in Isom(X), we get that
ρ (Isom(Γ ,S)) is of finite index in PSLn(𝕂). But then the core:

∩
g∈PSLn

g ⋅ ρ (Isom(Γ ,S)) ⋅ g−1

of ρ (Isom(Γ ,S)) is itslef of finite index in PSLn(𝕂) (and different from PSLn(𝕂)), which
contradicts the simplicity of PSLn(𝕂).
Let us now go back to the general case. Assume that PSLn(𝕂) is not included in

ρ(Isom(Γ ,S)) and remark that:

𝔥 = Lie (Isom(X)) = Lie (PSLn(𝕂)) .

In particular ρ(Isom(Γ ,S)) is “locally” PSLn(𝕂) so, up to apply what precedes to an open
set centered on eΓ sufficiently small of ρ(Isom(Γ ,S)), we obtain a contradiction.
Hence PSLn(𝕂) is contained in ρ(Isom(Γ ,S)).

4.3 rIGIDITY OF LATTIcES

We conclude by the proof of Theorem 1.2.5.

Proof of Theorem 1.2.5. Let n ≠ 3 and p be a prime. Let Γ be a torsion-free lattice of
PSLn(𝕂) and S be a symmetric generating part.
If n = 2, then 𝒳 is the (p + 1)-regular tree. Since by Lemma 4.1.1, the graph (Γ ,S) is
quasi-isometric to 𝒳, Example 1.1.3 implies that (Γ ,S) is LG-rigid.
Assume now that n > 3. If Isom(Γ ,S) is discrete the LG-rigidity of the lattice is given

by Theorem 1.1.15.
If Isom(Γ ,S) is non-discrete, then by Lemma 4.2.1 it has finite index in Isom(X) and in
this case the hypothesis of Theorem 1.2.6 are satisfied, hence the rigidity of the lattice.
Finally, for all n ≠ 3 the lattice Γ acts transitively on (Γ ,S) thus, by Proposition 1.1.14,

it is SLG-rigid.
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5CONCLUS ION AND OPEN PROBLEMS

“ Maintenant nous savons ce que nous ne savons pas
comment faire !

— Buck
Dans L’Âge de glace 5 : Les Lois de l’Univers de

M.Thurmeier et G.T.Chu

Our main result is proved for graphs quasi-isometric to the Bruhat-Tits building of
PSLn(𝕂) and the key idea of the proof is to use the rigidity of this building to “transfer
it” to the graph quasi-isometric thereto. One can ask wether we can generalize this idea
to other LG-rigid graphs.

Question 5.0.1. Let 𝒢 be quasi-isometric to a LG-rigid graph ℋ, both having cocompact
isometry group. If the quasi-isometry is Isom(𝒢)-equivariant, is 𝒢 LG-rigid?

Remark that if ℋ and 𝒢 are two Cayley graphs of the same group, we can chose ℋ to
be LG-rigid and 𝒢 to be non-rigid (see the discussion below Counter-example 1.1.4 for
more details). In that case the hypothesis of the preceding question are satisfied without
𝒢 being LG-rigid. Thus, more restrictive hypothesis will be needed to get the rigidity of
our graph 𝒢.

Our result on lattices is proved for n ≠ 3; when n = 3 we don’t know (yet) the answer.
Indeed, our proof is based on the rigidity of the Bruhat-Tits building of PSLn(𝕂), a result
known to be true only for n ≠ 3. In the n = 3 case, a lot of flexibility seems to be allowed
(see for example [BP07]) obstructing any local recognizability result. Hence the following
question:

Question 5.0.2. Are torsion-free lattices of SL3(𝕂) LG-rigid?

Lattices in p-adic Lie groups can be viewed as particular cases of S-arithmetic lattices.

Definition 5.0.3

Let S be a set of prime.
We say that Γ is an S-arithmetic lattice if it’s a lattice in a product of the form∏iGi
where Gi is either a real Lie group or a p-adic Lie group for p ∈ S.

Hence, one we can ask what happens in that more general case.

Question 5.0.4. Are torsion-free S-arithmetic lattices LG-rigid?
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A result by Bader, Furman and Sauer [BFS20,TheoremB] can be used to deal with irre-
ducible torsion-free S-arithmetic lattices. Indeed, if the product∏iGi contains at least
a non-compact real factor, then the aforementioned theorem implies that the isometry
group of a Cayley graph of Γ is discrete. Thus, by Theorem 1.1.15 the lattice is LG-rigid.
Now, if the product contains a compact real factor then the isometry group of the Cayley
graph might not be discrete and in that case, the problem is still open.
When the lattice is reducible, we now know that the projection on the p-adic factors

gives LG-rigid lattices. Moreover, if we suppose the real factors to be simple and con-
nected, then a result by de la Salle and Tessera [dlST19] shows that the projection on
these factors are also LG-rigid. Hence it remains to understand how to combine these
results on the factors in order to get a result on the product.
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Part II

ORB IT AND MEASURE EQUIVALENCE

“ It’s better to fail while striving for something
wonderful, challenging, adventurous, and uncertain,
than to say, “I don’t want to try because I may not
succeed completely.”

— Jimmy Carter





6AN INTRODUCT ION TO MEASURE AND
ORB IT EQUIVALENCE

“ Qui a fait l’expérience de penser dans un autre
domaine l’emporte toujours sur celui qui ne pense pas
du tout ou très peu.

— A. Einstein
Comment je vois le monde

A recurring theme in group theory is the description of large-scale behaviour of groups
and their geometry. Awell known example is the study of groups up to quasi-isometry: it
describes the large-scale (or “coarse”) geometry from the metric point of view. A measure
analogue of quasi-isometry was introduced by Gromov in [GNR93] and is called measure
equivalence. A first illustration of measure equivalent groups is given by lattices in a
common locally compact group. Another impressive example is given by a famous result
of Ornstein and Weiss (see Theorem 6.1.7) which implies that all amenable groups are
measure equivalent. In particular —unlike quasi-isometry— measure equivalence does
not preserve coarse geometric invariants.
To overcome this issue it is therefore natural to look for some refinements of this mea-

sure equivalence notion. Assume for example that G and H are two finitely generated
measure equivalent groups over a probability space (X,μ). Recall that if a finitely gener-
ated group K acts on X and SK is a finite generating set of K, we can define the Schreier
graph associated to this action by being the graph whose set of vertices is X and set of
edges is {(x, s⋅x) | s ∈ SK}. So let us consider the Schreier graph associated to the action of
G (resp. H) on X and equip it with the usual metric dSG (resp. dSH), fixing the length of
an edge to one. A first way to refine the measure equivalence is to quantify how close the
two actions are by studying for all g ∈ G and h ∈ H the integrability of the two following
maps

x ↦ dSG(x,h ⋅ x) x ↦ dSH(x,g ⋅ x).

When these two maps are Lp we say that the groups are Lp-measure equivalent (see
[BFS13] for more details). This refinement allowed for example Bowen to prove in the
appendix of [Aus16] that volume growth was invariant under L1-measure equivalence.
Delabie, Koivisto, Le Maître and Tessera offered in [DKLMT20] to extend this quantifi-
cation to a family of functions larger than {x ↦ xp, p ∈ [0,+∞]} (see Definition 6.1.8).
They furthermore showed themonotonicity of the isoperimetric profile under this quan-
tifiedmeasure equivalence definition (seeTheorem 6.1.16). In [BZ21] Brieussel and Zheng
managed to construct amenable groups with prescribed isoperimetric profile. Consid-
ering the monotonicity of the isoperimetric profile, the striking result of Brieussel and
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Zheng thus triggers a new question: instead of trying to quantify the measure equiva-
lence relation between two given groups, can one find a group that is measure equivalent
to a prescribed group with a prescribed quantification?
This is the problem we address in this article. Using Brieussel-Zheng’s groups we first

exhibit a group that is measure equivalent to ℤ with a prescribed quantification (see
Theorem 6.3.1). In a second time we construct a measure-subgroup coupling (which is
a relaxed version of measure equivalence, see Definition 6.1.1 for a definition) with the
lamplighter group ℤ/qℤ ≀ ℤ with prescribed integrability. In both cases we compare
the obtained couplings to the constraints given by Theorem 6.1.16 and show that our
couplings are close to being optimal in a sense that we precise in Section 6.3. Before
looking at these results, we recall some material about quantitative measure equivalence
couplings in Section 6.1 and expose tools to build such couplings in Section 6.2.

6.1 QUANTITATIVE MEASUrE AND OrBIT EQUIVALENcE

Let us recall some material of [DKLMT20]. A standard measure space is a couple (X,μ)
where X is a measurable space endowed with a measure μ on the σ-algebra ℬ(X) given
by the Borel σ-algebra of some separable and completely metrizable topology on X. The
elements of ℬ(X) are called Borel. We say that (X,μ) is a standard Borel probability space
if μ(X) = 1. A measure-preserving action of a discrete countable group G on (X,μ) is an
action of G on X such that the map (g, x) ↦ g ⋅ x is a Borel map and μ(E) = μ(g ⋅ E) for
all E ⊆ ℬ(X) and all g ∈ G. We will say that a measure-preserving action of G on (X,μ) is
free if for almost every x ∈ X we have g ⋅ x = x if and only if g = eG.
We recall below the definitions of measure and orbit equivalence and their quanti-

fied version as introduced by Delabie, Koivisto, Le Maître and Tessera. We conclude by
studying the relation between isoperimetric profile and measure equivalence.

6.1.1 Measure and orbit equivalence

Let G be a countable group acting on a standard measure space (X,μ). A fundamental
domain for the action of G on (X,μ) is a Borel XG ⊆ X which intersects almost every
G-orbit at exactly one point. We say that the action is smooth if it admits a fundamental
domain. Before giving the definition of measure equivalence let us introduce a relaxed
version of this notion.

Definition 6.1.1 ([DKLMT20, Def. 2.4])

Let G and H be two countable groups. A measure subgroup coupling from G to H is a
triple (X,XH,μ) such that:

• (X,μ) is a standard measure space equipped with commuting smooth free
measure-preserving actions of G and H,

• XH is a fundamental domain of finite measure for the action of H on X.

Example 6.1.2. If G ≤ H then (H, {eH},μ) is a measure subgroup coupling where μ is the
counting measure and G (resp. H) acts by left (resp. right) translation on H.

Remark that this definition does not require G to admit a fundamental domain of
finite measure, in particular this coupling notion is asymmetric. If we add the condi-
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tion that G must admit a fundamental domain of finite measure we obtain a measure
equivalence coupling..

Definition 6.1.3 ([DKLMT20, Def. 2.3])

Let G and H be two countable groups. A measure equivalence coupling from G to H
is a quadruple (X,XG,XH,μ) such that:

• (X,μ) is a standard measure space equipped with commuting free actions
measure-preserving smooth of G and H,

• XG (resp. XH) is a fundamental domain of finite measure for the action of G
(resp H) on X.

We say that G and H are measure equivalent if there exists a measure equivalence
coupling from G to H.

Example 6.1.4. Let G and H be two lattices in the same locally compact group 𝒢 and let
λ𝒢 be the Haar measure of 𝒢. Remark that 𝒢 is unimodular since it admits a lattice. Then
G (resp. H) acts freely on 𝒢 by left (resp. right) translation with fundamental domain XG
(resp. XH) of finite measure. These two actions commute and preserve the Haar measure
thus (𝒢 , XG , XH , λ𝒢) is a measure equivalence coupling from G to H.

More examples will be given in Section 6.2. Remark that our definition is asymmet-
ric, we talk indeed of a coupling from one group to another. This asymmetry might be
unsettling for now since it is called measure equivalence but it will make sense when we
introduce the quantification of the coupling (see Definition 6.1.8). Let us now introduce
a stronger equivalence relation between groups which comes from ergodic theory.

Definition 6.1.5

LetG andH be twofinitely generated groups. We say thatG andH are orbit equivalent
if there exists a probability space (X,μ) and a measure-preserving free action of G
(resp. H) on (X,μ) such that for almost every x ∈ X we have G ⋅ x = H ⋅ x. We call
(X,μ) an orbit equivalence coupling from G to H.

We called this equivalence relation stronger than measure equivalence because orbit
equivalence implies measure equivalence. But the converse is not always true. To ensure
that two measure equivalent groups are orbit equivalent we need the two fundamental
domains XG and XH to be equal. This is what we formalise below.

Proposition 6.1.6

Two countable groups G and H are orbit equivalent if and only if there exists a
measure equivalence coupling (X,XG,XH,μ) from G to H such that XH = XG.

Although this orbit equivalence relation is stronger than measure equivalence, it does
not distinguish amenable groups. Indeed by the Ornstein Weiss theorem [OW80, Th. 6]
below, all infinite amenable groups are in the same equivalence class.

Theorem 6.1.7 ([OW80])

All infinite amenable groups are orbit equivalent to ℤ.

To refine these equivalence relations and “distinguish” amenable groups we introduce
quantification of measure and orbit equivalence relations.
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6.1.2 Quantification

Recall that if a finitely generated groupG acts on a space X and if SG is a finite generating
set of G, we can define the Schreier graph associated to that action as being the graph
whose set vertices is X and set of edges is {(x, s ⋅ x) | s ∈ SK}. This graph is endowed with
a natural metric dSG fixing the length of an edge to one. Remark that if S′G is another
generating set of G then there exists C > 0 such that for all x ∈ X and g ∈ G

1
CdSG(x,g ⋅ x) ≤ dS′G(x,g ⋅ x) ≤ CdSG(x,g ⋅ x).

Finally if (X,XG,XH,μ) is a measure equivalence coupling from G to H we have a natural
action of G on XH (seeFigure 6.1 for an illustration) denoted by ∙ were for all x ∈ XH and
g ∈ G we define g ∙ x to be the unique element of H ⋅ g ⋅ x contained in XH viz.

{g ∙ x} = H ⋅ g ⋅ x ∩ XH.

xH ⋅ x g ∙ xH ⋅ (g ⋅ x)

g ⋅ xg

g ⋅ x Elements of XH Other elements of the corresponding orbit

Figure 6.1.: Definition of g ∙ x

Definition 6.1.8 ([DKLMT20, Def. 2.18])

Let φ ∶ ℝ+ → ℝ+ be a non-decreasing map. Let G and H be two finitely generated
groups and SH be a generating set of H. We say that a measure subgroup coupling
(X,XH,μ) from G to H is φ-integrable if for all s ∈ SG there exists cs > 0 such that

∫XH
φ(

1
cs
dSH(s ⋅ x, s ∙ x)))dμ(x) < +∞.

We say that the coupling is L∞-integrable if the map x ↦ dSH(s ⋅ x, s ∙ x) is essentially
bounded.

We introduce the constant cs in the definition for the φ-integrability to be independent
of the choice of generating set SH. If no integrability assumption is made we will say
that the coupling is L0-integrable. Finally if φ(x) = xp we will sometimes talk of Lp-
integrability instead of φ-integrability. Finally, note that every L∞ measure subgroup
coupling is φ-integrable for any increasing map φ ∶ ℝ+ → ℝ+.
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Definition 6.1.9 ([DKLMT20, Def. 2.18])

We say that a measure equivalence coupling (X,XG,XH,μ) from G to H is (φ,ψ)-
integrable if the coupling (X,XH,μ) from G to H is φ-integrable and the coupling
(X,XG,μ) from H to G is ψ-integrable. We say that an orbit equivalence coupling is
(φ,ψ)-integrable if it is (φ,ψ)-integrable as a measure equivalence coupling.

When φ = ψ we will say that the coupling is φ-integrable instead of (φ,φ)-integrable.

Example 6.1.10. Delabie et al. [DKLMT20] showed that there exists an orbit equivalence
coupling betweenℤ4 and theHeisenberg groupHeis(ℤ) that is Lp-integrable for all p < 1.

Example 6.1.11. Let k ∈ ℕ∗ and BS(1, k) ∶= 〈a,b | a−1ba = bk〉. The same authors showed
[DKLMT20, Th. 8.1] that their exists an orbit equivalence coupling from Lq to BS(1, k)
that is (L∞, exp)-integrable.

We will see more examples in Section 6.2 where we develop tools to build couplings.
But before adressing these constructions, a natural question to ask is whether there ex-
ists obstructions for finding φ-integrable couplings between two amenable groups, for a
given function φ. A first answer —and thus a first obstruction— is given by the isoperi-
metric profile.

6.1.3 Isoperimetric profile

As stated in the inroduction the measure equivalence notion introduced by Gromov
does not preserve the coarse geometric invariants. But the quantified measure equiv-
alence defined above allowed Delabie et al. [DKLMT20] to get a relation between the
isoperimetric profiles of two measure equivalent groups which we describe below.
Let C > 0. If f and g are two real functions we denote f ≼C g (or f ≼ g for short) if

f(x) = 𝒪(g(Cx)) as x tends to infinity. We write f ≃C g (or f ≃ g for short) if f ≼C g and
g ≼C f.

Definition 6.1.12

Let G be a finitely generated group and S a finite generating set. The isoperimetric
profile of G is defined as

IG(n) ∶= sup
|A|≤n

|A|
|∂A| .

We chose to adopt the convention of [DKLMT20]. Note that in [BZ21], the isoperimetric
profile is defined asΛG = 1/IG. Remark that due to Følner criterion, a group is amenable
if and only if its isoperimetric profile is unbounded. Hence we can see the isoperimetric
profile as a way to measure the amenability of a group: the faster IG tends to infinity,
the more amenable G is.

Example 6.1.13. The isoperimetric profile of ℤ verifies Iℤ(x) ≃ x.

A famous result of Erschler [Ers03] gives the two following examples.

Example 6.1.14. Let q ≥ 2 and d ≥ 1. If G ∶= ℤ/qℤ ≀ ℤd then IG(x) ≃ (log(x))1/d.

Example 6.1.15. If G ∶= ℤ ≀ ℤ then IG(n) ≃ log(n)/ log ∘ log(n).

57



The behaviour of the isoperimetric profile under measure equivalence coupling is
given by the following theorem.

Theorem 6.1.16 ([DKLMT20, Th.1])

Let G and G′ be two finitely generated groups admitting a (φ,L0)-integrable mea-
sure equivalence coupling. If φ and t/φ(t) are increasing then

φ ∘ IG′ ≼ IG.

This theorem provides an obstruction for finding φ-integrable couplings with certain
functions φ between two amenable groups. For example we can deduce from the pre-
ceding examples that there is no L1 measure equivalence coupling from ℤ ≀ℤ to ℤ/2ℤ ≀ℤ.
On the other hand given a groupG and a functionφ one can ask whether there exists a

group G′ which is (φ,L0)-measure equivalent to G. This is the question we try to answer
in this paper for G = ℤ or G = ℤ/qℤ ≀ ℤ. Our construction is based on the powerful
machinerie developped by Brieussel and Zheng in [BZ21] to construct amenable groups
with a prescribed isoperimetric profile (see Chapter 7 for a definition of these groups
and appendix A.1 for the technical construction from the isoperimetric profile). This
machinerie builds the wanted group G′, we now have to construct the coupling.

6.2 BUILDING cOUPLINGS

To obtain and quantify couplings we will use two different constructions which we recall
below. The first one is based on Følner tiling sequences described in [DKLMT20, Section
6] and the second one using Sofic approximations is described in [DKT21].

6.2.1 Følner tiling sequences

A first way of building an orbit equivalence between two groups is to build Følner tiling
sequences. These sequences are Følner sequences that are defined recursively: the term of
rank (n+1) is composed of a finite number of translates of the n-th term of the sequence.

Definition 6.2.1

LetG be an amenable group and (Σn)n∈ℕ be a sequence of finite subsets ofG. Define
by induction the sequence (Tn)n∈ℕ by T0 ∶= Σ0 and Tn+1 ∶= TnΣn+1. We say that
(Σn)n∈ℕ is a (left) Følner tiling sequence if

• (Tn)n∈ℕ is a left Følner sequence, viz.

(∀g ∈ G) lim
n→∞

|gTn\Tn|
|Tn|

= 0,

• Tn+1 = ⊔σ∈Σn+1σTn.
We call Σn the set of shifts and (Tn)n∈ℕ the tiles.
Let finally S be a generating part of G. We say that (Σn)n∈ℕ is a (Rn, εn)-Folner

tiling sequence if for all n we have

diam (Tn) ≤ Rn, |sTn\Tn| ≤ εn|Tn| (∀s ∈ S).
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Delabie et al. showed in [DKLMT20] the two following examples.

Example 6.2.2. If G = ℤ the sequence defined by Σn+1 ∶= {0, 2n} is a (2n, 21−n)-Følner
tiling sequence and the sequence (Tn) thus defined verifies Tn = [0, 2n−1]. We represent
the tiling of Tn+1 by Tn in Figure 6.2.

0 2n
2n+1

Tn+1 = Σn+1Tn = {0, 2n}Tn

0+[0, 2n − 1] 2n+[0, 2n − 1]

Figure 6.2.: A tiling for ℤ.

Example 6.2.3. If G = (ℤ/2ℤ) ≀ ℤ then the sequence (Σn)n∈ℕ defined by

⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

Σ0 ∶= {(f, 0) ∈ G | supp(f) ⊆ {0, 1}} ,
Σn+1 ∶= {(f, 0) ∈ G | supp(f) ⊆ [2n, 2n+1 − 1]}

∪ {(f, 2n) ∈ G | supp(f) ⊆ [0, 2n − 1]} ,

is a right (3 ⋅ 2n, 2−n)-Følner tiling sequence. Moreover the tiling (Tn)n∈ℕ thus defined
verifies Tn = {(f,m) ∈ G | supp(f) ⊆ [0, 2n − 1], m ∈ [0, 2n − 1]}.

Delabie et al. [DKLMT20] gave a condition for two amenable groups admitting both a
Følner tiling sequence to be orbit equivalent. Indeed ifG admits a Følner tiling sequence
(Σn)n∈ℕ then we can define X ∶= ∏n∈ℕ Σn and endow it with an action of G. Up to
measure zero, two elements of X will be in the same orbit under that action if and only
if they differ from a finite number of indices. The equivalence relation thus induced is
called the cofinite equivalence relation. Now if G′ admit a Følner tiling sequence (Σ′n)n∈ℕ
verifying |Σn| = |Σ′n| for all integer n, then there exists a natural bijection between X and
X′ ∶= ∏n∈ℕ Σ′n which preserves the cofinite equivalence relation. That is to say G and
G′ are orbit equivalent. Furthermore they showed that if we know the diameter and the
ratio of elements in the boundary of each tile then we can deduce the integrability of the
coupling. This is what the following proposition sums up.

Theorem 6.2.4 ([DKLMT20, Prop. 6.6])

Let G and G′ be two discrete amenable groups and let (Σn)n be an (εn,Rn)-Følner
tiling sequence for G and (Σ′n)n be an (ε′n,R′n)-Følner tiling sequence for G′.
If |Σn| = |Σ′n|, then the groups are orbit equivalent.
Moreover if φ ∶ ℝ+ → ℝ+ is a non-decreasing function such that the sequence

(φ(2R′n) (εn−1 − εn))n∈ℕ is summable, then the coupling from G to G′ is (φ,L0)-
integrable.

Using this tiling technique and the above theorem, Delabie et al. [DKLMT20] showed
Example 6.1.10 stated before and the two following examples.
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Example 6.2.5. For all n andm there exists an orbit equivalence coupling from ℤm to ℤn
which is (φε,ψϵ)-integrable for every ε > 0 where

φε(x) =
xn/m

log(x)1+ε ψε(x) =
xm/n

log(x)1+ε .

Remark that in particular if n < m then for all p < n/m there exists a (Lp,L1/p)-orbit
equivalence coupling from ℤm to ℤn.

Example 6.2.6. Let m ≥ 2. There exists an orbit equivalence coupling between ℤ and
ℤmℤ ≀ ℤ that is (exp,φε)-integrable for all ε > 0 where

φε(x) =
log(x)

log(log(x))1+ε .

Given two finitely generated groups G and H, Theorem 6.1.16 gives an upper bound
for the integrability of a coupling from G to H. As we will see in Chapter 10 Følner
tiling sequences do not always induce couplings with a “good” integrability: the map φ
quantifying the coupling obtained with Følner tiling sequence can grow much slower
than the one suggested by Theorem 6.1.16. Moreover, given two amenable groups it is
not always easy (or even possible) to find Følner tiling sequences verifying |Σn| = |Σ′n|.
Hence this tiling technique does have its limitations and we thus need other tools to
build couplings.

6.2.2 Sofic approximations

Another technique to build measure equivalence couplings is given by Sofic approxi-
mations. In this paragraph G will be a finitely generated group endowed with a finite
generating set SG and (𝒢n)n∈ℕ will be a sequence of finite, directed, labeled graphs. Let
r > 0 and denote by 𝒢(r)n the set of elements x ∈ 𝒢n such that B𝒢n(x, r) is isomorphic to
BG(eG, r) seen as directed labeled graphs, viz. 𝒢(r)n = {x ∈ 𝒢n | B𝒢n(x, r) ≃ BG(eG, r)}.

Definition 6.2.7

We say that (𝒢n)n∈ℕ is a Sofic approximation if for every r > 0

lim
n→∞

|𝒢(r)n |
|𝒢n|

= 1.

Example 6.2.8. Any Følner sequence in an amenable group G is a Sofic approximation.

In [DKT21] Delabie, Koivisto and Tessera proved a condition for a measure subgroup
to be φ-integrable using Sofic approximations.

Theorem 6.2.9

Let G and H be two finitely generated groups with Sofic approximations (𝒢n)n
and (ℋn)n and let ιn ∶ 𝒢n → ℋn be an injective map. Let φ ∶ ℝ+ → ℝ+ be a non-
decreasing map. If for every s ∈ SG there exists δ > 0 such that

lim
R→∞

sup
n

R

∑
r=0

φ(δr) |{
x ∈ 𝒢(s)n ∣ dℋn(ιn(x), ιn(x.s)) = r}|

|𝒢n|
< +∞ (6.1)
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then there exists a φ-integrable measure subgroup coupling from G to H.

We will use this theorem to obtain a measure subgroup with the Lamplighter with
prescribed integrability (see Theorem 6.3.3). But before that, let us state its analogue for
measure and orbit equivalence couplings.

Theorem 6.2.10 ([DKT21])

Let φ,ψ∶ ℝ+ → ℝ+ be two non-decreasing maps. Let G and H be two finitely
generated groups with Sofic approximations (𝒢n)n and (ℋn)n. Let ιn ∶ 𝒢n → ℋn
and ι′n ∶ ℋn → 𝒢n be two injective maps that satisfy the following:

1. There exists C > 0 such that the image ιn is C-dense for all n ∈ ℕ;
2. For every s ∈ SG there exists δ > 0 such that

lim
R→∞

sup
n

R

∑
r=0

φ(δr) |{
x ∈ 𝒢(s)n ∣ dℋn(ιn(x), ιn(x.s)) = r}|

|𝒢n|
< ∞;

3. For every h ∈ H there exists δ > 0 such that the following limit is finite

lim
R→∞

sup
n

R

∑
r=0

ψ(δr) |{
y ∈ ι′n(𝒢n) ∩ ℋ(h)

n ∣ diam (ι′−1n (y) ∪ ι′−1n (y ⋅ h)) = r}|
|𝒢n|

.

Then there exists a (φ,ψ)-integrable measure equivalence coupling from G to H.
Moreover if the maps ιn are bijective then there is an (φ,ψ)-integrable orbit equiv-
alence coupling from G to H.

Given two finitely generated amenable groups, we now have tools to build and quantify
couplings between them. But we can also address the problem the other way round.

6.3 BUILDING PrEScrIBED EQUIVALENcES

Instead of looking for a quantification for a given coupling from one group to another,
one can ask if given a group G and a non-decreasing function φ we can find a group H
and a measure (or orbit) equivalence coupling from G to H that is (φ,L0)-integrable. As
we saw before, given G and φ as above, Theorem 6.1.16 gives obstructions to find such a
group H: it provides a bound on the growth of the isoperimetric profile of H.
Considering the work of Brieussel and Zheng [BZ21] giving an engineering to build

groups with prescribed isoperimetric profile, we exhibit groups orbit equivalent to ℤ
with prescribed integrability. In a second result we build a measure subgroup coupling
with the Lamplighter group with prescribed integrability. We discuss the case of the
measure equivalence coupling with the Lamplighter group belowTheorem 6.3.3.

6.3.1 Main results

In this part we show the two following theorems and their three corollaries.

Theorem 6.3.1

For all non-decreasing function ρ ∶ [1,+∞[→ [1,+∞[ such that ρ(1) = 1 and x/ρ(x)
is non-decreasing, there exists a group G such that
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• IG ≃ ρ ∘ log ;
• there exists an orbit equivalence coupling from G to ℤ that is (φε, exp ∘ρ)-
integrable for all ε > 0, where φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

Let us discuss the optimality of this result. Consider a (φ,L0)-integrable orbit equiv-
alence coupling from some group G to ℤ. By Theorem 6.1.16 it verifies φ ∘ Iℤ ≼ IG. In
particular since Iℤ(x) ≃ x, we can not have a better integrability than φ(x) ≃ IG. Since
IΔ ≃ ρ ∘ log our above theorem is optimal up to a logarithmic error.
Let us now consider the possible generalisations of this result to other groups than

the group of integers. To do so we can use the composition of couplings described in
Appendix B. We also refer to Figure B.1 in this last appendix wich sums up the our main
results and illustrates the discussion to come.
Given the above theorem, once we have a measure subgroup coupling from ℤ to a

group Hwe can compose the two couplings to obtain a measure subgroup coupling from
G to H. If the growth of the isoperimetric profile of H is close from the one of ℤ, the
integrability of the obtained coupling will be close to the optimal one given by Theo-
rem 6.1.16. It is for example the case when H = ℤd.
Corollary 6.3.2

Let d ∈ ℕ∗. For all non-decreasing function ρ ∶ [1,+∞[→ [1,+∞[ such that ρ(1) = 1
and x/ρ(x) is non-decreasing, there exists a group G such that

• IG ≃ ρ ∘ log ;
• there exists an orbit equivalence coupling fromG toℤd that is (φε,L0)-integrable
for all ε > 0, where φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

Now if the growth of IH is quite slower than the one of Iℤ (it is for example the case
when H is the lamplighter group) the coupling obtained by composition will not have
the optimal integrability: by using ℤ as an intermediary to build our coupling we lose
information about the geometry of G and H and thus lose precision in the integrability.
To obtain a coupling with a finer quantification it is thus necessary to construct a cou-
pling without making a “detour” by ℤ. It is what our second main result offers to do in
the case of the lamplighter.
We denote by Lq the lamplighter group with q lamp configurations, that is to say

Lq = ℤ/qℤ ≀ ℤ.
Theorem 6.3.3

For all ε > 0 and all α > 0 there exists a group G such that
• IG(x) ≃ (log(x))

1/(1+α) ;
• if we define φε(x) ∶= x

1
1+α+ε then there exists a φε-integrable measure sub-

group coupling from G to Lq.

Let us discuss the conclusion of this theorem. First remark that it implies the existence
of a measure subgroup coupling. Indeed our demonstration is based on the construction
of Sofic approximations (𝒢n)n∈ℕ of Δ and (ℋn)n∈ℕ of Lq, but the construction we make
allows us to obtain an injective map between 𝒢n and ℋn, not an injective and C-dense
one. The hypothesis of Theorem 6.2.10 implying the existence of a measure equivalence
coupling are thus not verified. However, we can applyTheorem 6.2.9 to obtain a measure
subgroup. Nonetheless, let us mention that even though the result is not present in this
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manuscript, we worked on the construction of Sofic approximations and injective C-
dense maps between them in order to obtain a measure equivalence coupling between Δ
and Lq. The (quite technical) proof could not be written before rendering this thesis.
Second, note that the integrability is almost optimal. Indeed, consider a (φ,L0)-

integrable orbit equivalence coupling from some group G to Lq. By Theorem 6.1.16 it
verifies φ ∘ ILq ≼ ILq . In particular since ILq(x) ≃ log(x) we can not have a better in-
tegrability than φ ≃ IG ∘ exp. Since IΔ(x) ≃ log(x)1/(1+α), our above theorem is thus
optimal up to a small error.
Finally, let us remark that the above theorem applies to a map ρ of the form ρ(x) =

x1/(1+α) while Theorem 6.3.1 worked for a larger family of functions ρ. As we will see in
Section 9.2, the construction we make require us to estimate the ratio l𝔏(p(n+1))/l𝔏(pn)
in order to get the integrability of the coupling. But in a general case we have no control
on that last ratio: there exists diagonal product such that the sequence (lm)m∈ℕ grows as
fast as possible. That is why we restrict ourselves to the case where lm = καm for some
κ ≥ 2 and α > 0 and thus only obtain diagonal product Δ with isoperimetric profile
IΔ(n) ≃ log(x)1/(1+α).
We can deduce from the above theorem two corollaries. First define H ∶= ℤ2 ⋊A ℤ

where A is the matrix
A ∶=

(
2 1
1 1)

.

Using once more the composition of couplings we will deduce from Theorem 6.3.3 the
following result.

Corollary 6.3.4

For all ε > 0 and all α > 0 there exists a group G such that
• IG(x) ≃ (log(x))

1/(1+α) ;
• if we define φε(x) ∶= x

1
1+α+ε then there exists a measure subgroup coupling

from G to H that is φε-integrable.

Second consider k ∈ ℕ∗ and the Baumslag-Solitar group defined by

BS(1, k) = 〈a,b | a−1ba = bk〉 .

Using Example 6.1.11 and Theorem 6.3.3 we will also show this last corollary.

Corollary 6.3.5

For all ε > 0 and all α > 0 there exists a group G such that
• IG(x) ≃ (log(x))

1/(1+α) ;
• if we define φε(x) ∶= x

1
1+α+ε then there exists a measure subgroup coupling

from G to BS(1, k) that is φε-integrable.

6.3.2 Idea of the proofs

Let us discuss the idea of the above theorems proofs.
The proof of Theorem 6.3.1 is based on Følner tiling sequences and on the criterion

given by Theorem 6.2.4. What we actually show is that a Brieussel-Zheng’s diagonal
product Δ admits a coupling with ℤ satisfying Theorem 6.3.1. Hence, we first compute
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a Følner tiling sequence (Tn)n for Δ and estimate the value of the tiles diameter and the
value of |∂Tn|/|Tn| in Section 8.1. In Section 8.2 we build a tiling of ℤ and compute (R′n)n
and (ε′n)n such that the tiling gives a (R′n, ε′n)-Følner tiling sequence. As we will see,
the values of (R′n)n and (ε′n)n depend on the cardinality of the tiles (Tn)n of Δ. Thus
—in order to use the criterion given by Theorem 6.2.4— we compute bounds to ln |Tn|.
We conclude by showing the integrability of the orbit equivalence coupling obtained
and use it to prove that Δ thus considered satisfies Theorem 6.3.1.
The main tools of the proof of Theorem 6.3.3 are Sofic approximations and Theo-

rem 6.2.9. Analogous to the proof of the theorem with ℤ, we prove that G satisfying
Theorem 6.3.3 can be taken to be a Brieussel-Zheng’s diagonal product Δ. We thus start
by defining Sofic approximations (𝒢n)n∈ℕ of Δ and (ℋn)n∈ℕ of ℤ (see Section 9.1) start-
ing from the following observation: given two Følner tiling sequences (Σn)n of Δ and
(Σ″n)n of Lq such that |Σn| ≤ |Σ″n| for all n, one can define an embedding νn from Σn
to Σ″n. Then denote Tn = ∏n

i=0 Σi and T″n ∶= ∏n
i=0 Σ″i and let x = σn⋯σ0 such that

σi ∈ Σi for all i. We can define without ambiguity a map ιn from Tn to T″n such that
ιn(x) = ∏n

i=0 νi(σi). Since (Σn)n and (Σ″n)n are Følner tiling sequences this map is in-
jective. We are thus going to take sequences of tiles as Sofic approximations. Moreover,
in order to obtain a coupling with the wanted integrability we need the embedding ιn
to preserve the geometry of the groups. As we will see in Section 9.1 we will have to
consider subsequences of the tiles sequences for the hypothesis ofTheorem 6.2.9 to be ver-
ified. Once our Sofic approximations are defined we compute some useful bounds on
ln |Σn|, show the integrability of the coupling thus obtained and use it to prove that Δ
thus considered satisfies Theorem 6.3.3.

6.3.3 Structure of Part ii

We first describe Brieussel-Zheng’s diagonal product and recall all necessary material in
Chapter 7. Theorem 6.3.1 is shown in Chapter 8 using Følner tiling sequences. Chapter 9
is devoted to the proof of Theorem 6.3.3 which involves Sofic approximations. We first
define the desired Sofic approximations of Δ and Lq, compute some useful inequalities
regarding these two sequences and show the integrability of the measure subgroup cou-
pling using Theorem 6.2.9. More details on the proofs of Theorems 6.3.1 and 6.3.3 will
be given in the related chapters. We finally conclude this part with Chapter 10 were we
discuss unachieved proofs, work in progress and open problems.
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7DIAGONAL PRODUCTS OF LAMPL IGHTER
GROUPS

“ Avec un escalier prévu pour la montée on réussit
souvent à monter plus bas qu’on ne serait descendu
avec un escalier prévu pour la descente.

— Proverbe Shadok

We recall here necessary material from [BZ21] concerning the definition of Brieussel-
Zheng’s diagonal products. We give the definition of such a group, recall and prove some
results concerning the range (see Definition 7.2.1) of an element in such a group and
conclude by identifying a Følner sequence.

7.1 DEFINITION OF DIAGONAL PrODUcTS

Recall that the wreath product of a group G with ℤ denoted G ≀ ℤ is defined as G ≀ ℤ ∶=
⊕m∈ℤG ⋊ ℤ. An element of G ≀ ℤ is a pair (f, t) where f is a map from ℤ to G with finite
support and t belongs to ℤ. We refer to f as the lamp configuration and t as the cursor.

7.1.1 General definition

Let A and B be two finite groups. Let (Γm)m∈ℕ be a sequence of finite groups such that
each Γm admits a generating set of the form Am ∪ Bm where Am and Bm are finite sub-
groups of Γm isomorphic respectively to A and B. For a ∈ A we denote am the copy of
a in Am and similarly for Bm. Finally let (km)m∈ℕ be a sequence of integers such that
km+1 ≥ 2km for all m. We define Δm = Γm ≀ ℤ and endow it with the generating set

SΔm ∶= {(id,+1)} ∪ {(amδ0, 0) | am ∈ Am} ∪ {(bmδkm , 0) | bm ∈ Am}.

Definition 7.1.1

The Brieussel-Zheng’s diagonal product associated to (Γm)m∈ℕ and (km)m∈ℕ is the sub-
group Δ of (∏m Γm) ≀ ℤ generated by

SΔ ∶= {((id)m,+1)} ∪ {((amδ0)m, 0) | a ∈ A} ∪ {((bmδkm)m, 0) | b ∈ B}.

The group Δ is uniquely determined by the sequences (Γm)m∈ℕ and (km)m∈ℕ. Let us give
an illustration of what an element in such a groups looks like.
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Example 7.1.2. We represent in Figure 7.1 the element ((gm)m∈ℕ, t) of Δ verifying

((gm)m∈ℕ, t) = ((amδ0)m, 0)((bmδkm)m, 0)(0, 3),

when km = 2m. The cursor is represented by the blue arrow at the bottom of the figure.
The only value of g0 different from the identity is g0(0) = (a0,b0). Now if m > 0 then
the only values of gm different from the identity are gm(0) = am and gm(km) = bm.

…
0 2 4 2n1 3

Cursor

(a0,b0)g0

a1 b1g1

a2 b2g2

⋮
an bngn

Figure 7.1.: Representation of ((gm)m, t) = ((amδ0), 0)((bmδkm), 0)(0, 3) when km = 2m.

7.1.2 The expanders case

In this part we will restrict ourselves to a particular familiy of groups (Γm)m∈ℕ called
expanders. Recall that (Γm)m∈ℕ is said to be a sequence of expanders if the sequence of
diameters (diam (Γm))m∈ℕ is unbounded and if there exists c0 > 0 such that for allm ∈ ℕ
and all n ≤ |Γm|/2 the isoperimetric profile verifies IΓm(n) ≤ c0.
Consider a family (Γn)n∈ℕ of expanders for which there exists c > 0 such that for all

l ≥ 1 there exists Γ𝔭(l) such that diam (Γ𝔭(l)) ≃c l (for an example see Example 7.1.3). We
can thus define a “parametrization” by fixing a map l ↦ Γ𝔭(l). Consider now two non-
decreasing sequences (km)m∈ℕ and (lm)m∈ℕ of real numbers greater than 1 and denote Δ
the diagonal product associated to (Γ𝔭(lm))m∈ℕ and (km)m∈ℕ. Then Δ is uniquely deter-
mined by the data of (lm)m∈ℕ and (km)m∈ℕ. In what follows, we will abuse notations and
denote Γm instead of Γ𝔭(lm). Moreover we will always make the following assumptions
when talking about diagonal products.

Hypothesis (H)
• (km)m and (lm)m are sub-sequences of geometric sequences.
• km+1 ≥ 2km for all m ∈ ℕ;
• (Γm)m∈ℕ is a sequence of expanders such that Γm is a quotient of A ∗ B
and diam (Γm) ≃ lm;

• k0 = 0 and Γ0 = A0 × B0;
• Γm/⟨⟨[Am,Bm]⟩⟩ ≃ Am × Bm where ⟨⟨[Am,Bm]⟩⟩ denotes the normal
closure of [Am,Bm].

We recall below an example of such expanders (Γm)m∈ℕ and refer to [BZ21, Example
2.3] for more details.
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Example 7.1.3. Assume (km)m∈ℕ and (lm)m∈ℕ given and consider the sequence (Λn)n∈ℕ
defined by Λn ∶= SL3 (𝔽p[X]/(Xn − 1)) and let

A ∶=
〈
⎛⎜
⎝

1 1 0
0 1 0
0 0 1

⎞⎟
⎠
, ⎛⎜
⎝

1 X 0
0 1 0
0 0 1

⎞⎟
⎠〉

≃ 𝔽2p B ∶=
〈
⎛⎜
⎝

0 1 0
0 0 1
1 0 0

⎞⎟
⎠〉

≃ ℤ/3ℤ.

Now we need the last assertion of (H) to be verified, so define Γn to be the diagonal
product of Λn with A× B, that is to say Γn is the subgroup of Λn ×A× B generated by

{(an, (a, e)) | a ∈ A} ∪ {(bn, (e,b)) | b ∈ B}.

Finally, denote by Γm ∶= Γ𝔭(lm), then (Γm)m∈ℕ verifies (H).

Recall (see [BZ21, page 9]) that in this case there exist c1, c2 > 0 such that, for all m

c1lm − c2 ≤ ln |Γm| ≤ c1lm + c2. (7.1)

7.1.3 Relative commutators subgroups

For all m ∈ ℕ let θm ∶ Γm → Γm/⟨⟨[Am,Bm]⟩⟩ ≃ Am × Bm be the natural projection. Let
θAm and θBm denote the composition of θm with the projection toAm and Bm respectively.
Now letm ∈ ℕ and define Γ ′m ∶= ⟨⟨[Am,Bm]⟩⟩. If (gm, t) belongs to Δm then there exists
a unique g′m ∶ ℤ → Γ′m such that gm = θm(gm)g′m.

Example 7.1.4. Let (𝐠, 3) be the element described in Section 7.1.1. Then the only non-
trivial value of θ0(g0) is θ0(g0(0)) = (a0,b0). If m > 0 then the only non trivial values
of θm(gm) are θm(gm(0)) = (am, e) and θm(gm(km)) = (e,bm). Finally for allm we have
g′m = id since there are no commutators appearing in the decomposition of (𝐠, 0).

Example 7.1.5. Assume that km = 2m and consider first the element (𝐟, 0) of Δ defined
by (𝐟, 0) ∶= (0, k1)((amδ0)m, 0)(0,−k1). Now define the commutator

(𝐠, 0) = (𝐟, 0) ⋅ ((bmδkm)m, 0) ⋅ (𝐟, 0)−1 ⋅ ((b−1m δkm)m, 0)

and let us describe the values taken by 𝐠 and the induced maps θm(gm) and g′m (see
Figure 7.2 for a representation of 𝐠). The only non-trivial commutator appearing in
the values taken by 𝐠 is g1(k1) which is equal to a1b1a−11 b−11 . In other words g0 is the
indentity, thus θ0 = id. Moreover when m = 1 we have θ1 = id and the only value
of g′1(x) different from e is g′1(k1) = a1b1a−11 b−11 (on a blue background in Figure 7.2).
Finally if m > 1 then gm is the identity thus θm = id and g′m = id.

Let us study the behaviour of this decomposition under product of lamp configura-
tions.

Claim 7.1.6. If gm, fm ∶ ℤ → Γm then (gmfm)′ = (θm(fm))
−1g′mθm(fm)f′m.

Proof. Since gm = θm(gm)g′m and fm = θm(fm)f′m we can write

(gmfm)′ = θm(gm)g′m ⋅ θm(fm)f′m = θm(gm)θm(fm) ⋅ (θm(fm))
−1
g′mθm(fm)f′m.

But θm(gm)θm(fm) takes values in Am ×Bm and Γ ′m is a normal subgroup thus the map
(θm(fm))

−1g′mθm(fm) takes values in Γ ′m. Hence the claim.

Finally let 𝐠 ∶= (gm)m∈ℕ. Combining Lemma 2.7 and Fact 2.9 of [BZ21], we get the
following result.
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(e,b0b−10 ) a0a−10 = e

(e,e)

g0
a1b1a−11 b−11g1
a2a−12 = e b2b−12 = eg2

0 1 k1 = 2 3 k2 = 4

Cursor

Figure 7.2.: Representation of (𝐠, 0) defined in Example 7.1.5

Lemma 7.1.7

Let (𝐠, t) ∈ Δ. For all m ∈ ℕ and x ∈ ℤ

gm(x) = θAm(g0(x))θBm(g0(x − km))g′m(x).

In particular the sequence 𝐠 = (gm)m∈ℕ is uniquely determined by g0 and (g′m)m∈ℕ.

In the next section we are going to prove that we actually need only a finite number of
elements of the sequence (g′m)m∈ℕ to characterize 𝐠.

7.2 rANGE AND SUPPOrT

In this section we introduce the notion of range of an element (𝐠, t) in Δ and link it to
the supports of the lamp configurations (gm)m∈ℕ.

7.2.1 Range

We denote by π2 ∶ Δ → ℤ the projection on the second factor and for all n ∈ ℕ denote
by 𝔩(n) the integer such that k𝔩(n) ≤ n < k𝔩(n)+1.

Definition 7.2.1

If w = s1…sm is a word over SΔ we define its range as

range(w) ∶=
{
π2
(

i

∏
j=1

sj
)
| i = 1,… ,n

}
.

The range is a finite subinterval of ℤ. It represents the set of sites visited by the cursor.
Definition 7.2.2

The range of an element δ ∈ Δ is defined as the minimal diameter interval obtained
as the range of a word over SΔ representing δ.

When there is no ambiguity we will sometimes denote range(δ) the diameter of this
interval.

Example 7.2.3. Let (𝐠, 0) ∈ Δ such that range(𝐠, 0) = [0, 6], that is to say: the cursor can
only visit sites between 0 and 6. Then the map gm can “write” elements of Am only on
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sites visited by the cursor, that is to say from 0 to 6, and we can write elements of Bm only
from km to 6 + km. Thus g0 is supported on [0, 6], since k0 = 0. Moreover, commutators
(and hence elements of Γ ′m) can only appear between km and 6, thus supp(g′m) ⊆ [km, 6].
Such a (𝐠, 0) is represented in Figure 7.3 for km = 2m.

g1

k1

g2

k2

g3

k3

g0

gn

70

⋮⋮

kn

gm(x) belongs to…

A0 × B0 Am Γm Bm

Figure 7.3.: An element of Δ

The element gm of 𝐠 is the function gm : ℤ → Γm. If m ≤ 𝔩(6), then gm(x) belongs to Am if
x ∈ [0, km − 1], it belongs to Γm if x ∈ [km, 6] and to Bm if x ∈ [7, 6 + km] and equals e elsewhere.
If m > 𝔩(6) then gm(x) belongs to Am if x ∈ [0, 6] and to Bm if x ∈ [km, 6 + km] and equals e

elsewhere.

Let us now recall a useful fact proved in [BZ21]. In order to emphasize the behaviour
of Γm we also recall its proof.

Claim 7.2.4 ([BZ21, Fact 2.9]). An element (𝐠, t) ∈ Δ is uniquely determined by t, g0 and
the sequence (g′m)m≤𝔩(range(𝐠,t)).

To illustrate this proof we refer to Figure 7.3 which represents the support and values
taken by 𝐠 and to Figure 7.4 which pictures the corresponding characterizing data given
by the claim.

Proof. If m > 𝔩(range(𝐠)), then km > range(𝐠, t) which means that the map gm takes
values in Am ∪ Bm, in particular g′m ≡ e. Thus, using Lemma 7.1.7 we get gm(x) =
θAm(g0(x))θBm(g0(x − km)). Hence gm is uniquely determined by g0.
Finally, if m ≤ 𝔩(range(𝐠)) then gm is uniquely determined by g0 and (g′m)m∈ℕ, by

Lemma 7.1.7. Hence the result.

Example 7.2.5. Consider again (𝐠, 0) ∈ Δ such that range(𝐠, 0) = [0, 6], which was illus-
trated in Figure 7.3. Since k3 = 8 > 6, the element (𝐠, 0) is uniquely determined by the
data g0 (that is to say, the values read in the bottom line) and the values of g′i for i = 1, 2
(namely, the value taken in the blue area). Figure 7.4 represents the aforementioned
characterizing data.
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Figure 7.4.: Data needed to characterized 𝐠 such that range(𝐠) ⊂ [0, 6] when km = 2m

7.2.2 Relation between range and support

Recall that for all m ∈ ℕ we can write

gm(x) = θAm(g0(x))θBm(g0(x − km))g′m(x).

To work with the Følner sequence we compute in Section 7.3 and deduce a Følner
tiling sequence from it, we will need to link the range of (𝐠, t) in Δwith the support of g0
and the sequence of supports of (g′m)m∈ℕ. This is what the following lemma formalises.

Lemma 7.2.6

Let n ∈ ℕ and take (𝐠, t) ∈ Δ. Then range(𝐠, t) is included in [0,n] if and only if

⎧⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪
⎩

t ∈ [0,n]
supp(g0) ⊂ [0,n]
supp(g′m) ⊆ [km,n] ∀1 ≤ m ≤ 𝔩(n)
g′m ≡ e ∀m > 𝔩(n).

Proof. Let n ∈ ℕ and let (𝐠, t) = ∏l
i=0 si be a decomposition in a product of elements of

SΔ of minimal length.
First assume that range(𝐠, t) ⊆ [0,n], that is to say: the cursor can only visit sites

between 0 and n. Letm ∈ ℕ, then by definition of SΔ an element si can “write” elements
ofAm only between 0 and n, and it canwrite elements of Bm only between km and n+km.
Thus g0 is supported on [0,n], since k0 = 0. And commutators can only appear between
km and n, hence supp(g′m) ⊆ [km,n]. In particular if km > n then g′m ≡ e. Finally we
obtain that t belongs to [0,n] by noting that t = π2 (∏

l
j=1 sj).

Now let us prove the other way round. Takem ∈ [1, 𝔩(n)], then km ≤ n and supp(g′m) is
contained in [km,n]. Now let x ∈ supp(g′m) ⊆ [km,n]. Since Γ ′m ⊆ Γm which is generated
by Am × Bm we can decompose g′m as

g′m(x) =
|g′m(x)|

∏
i=1

aibi.

Let i ∈ [1, |g′m(x)|]. If the cursor is at some u ∈ [0,n] then, to write ai at the position
x it needs to visit sites from u to x. Since x belongs to [km,n], the cursor stays in [0,n]
all along. Now, to write bi it will need to go from x to x − km. But since x ∈ [km,n],
it will only visit sites between [0, x] and will therefore always stay in [0,n]. Hence, to
write∏|g′m(x)|

i=1 aibi at the position g′m(x) the cursor will only visit values between [0,n].
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Finally, for all x the cursor needs only to visit position x in order to write g0(x). Since
supp(g0) is contained in [0,n] then the cursor needs only to visit sites between 0 and n.
Combining what precedes with Lemma 7.1.7 we get that the cursor needs only to visit

cites between [0,n] to write (gm)m∈ℕ. Hence the lemma.

7.3 FØLNEr SEQUENcES

In this section we describe a Følner sequence (Fn)n∈ℕ for Δ. Recall that 𝔩(n) denotes the
integer such that k𝔩(n) ≤ n < k𝔩(n)+1.

Proposition 7.3.1

The following sequence is a Følner sequence of Δ

Fn ∶= {(𝐟, t) | range (𝐟, t) ⊆ {0,… ,n − 1}} .

Proof. Let n ∈ ℕ and δ ∈ Fn and let s1,… , sl ∈ SΔ such that δ = s1⋯sl. Now take
sl+1 ∈ SΔ. If sl+1 = ((amδ0), 0) for some a ∈ A or if sl+1 = ((bmδkm), 0) for some b ∈ B
then

range(δsl+1) =
{
π2
(

i

∏
j=1

sj
)
| i = 1,… , l + 1

}
= range(δ),

since the cursor of sl+1 equals 0. Thus δsl+1 ∈ Fn. Finally denote by [x,y] the range of δ,
then using the same formula as above we get

range(δ ⋅ (id, 1)) ⊆ [x,y + 1]if t < y,
range(δ ⋅ (id, 1)) ⊆ [x,y]if t = y.

Hence for all t < n−1we have range(δ⋅(id, 1)) ⊆ [x,y+1] ⊆ [0,n−1]. Now if t = n−1 then
the cursor of δ(id, 1) visits the site n, thus range(δ ⋅ (id, 1)) is not included in [0,n−1] and
therefore δ(id, 1) does not belong to Fn. A similar argument shows that δ(0,−1) belongs
to Fn if and only if t ≠ 0. Hence ∂Fn = {(𝐟, t) ∈ Fn ∶ t = 0,n} and thus

|∂Fn|
|Fn|

= 2
n ⟶

n→∞
0.

Since we will need an estimation of the diameter of Fn in our proofs to come, let us
conclude this section by computing an upper bound for that diameter.

Lemma 7.3.2

There exists Cdiam > 0 depending only on Δ such that diam (Fn) ≤ Cdiamnl𝔩(n−1) for
all n ∈ ℕ. In particular if km = κm and lm = καm for some κ ≥ 2 and α > 0, then
diam (Fn) ≤ Cdiamn1+α.

To show this result, we use Proposition A.2.2.
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Proof. Let n ∈ ℕ and (𝐟, t) ∈ Fn. First, take m ≤ 𝔩(n − 1) and let us bound Em by above.
Recall that Imj = [jkm/2, (j + 1)km/2 − 1]. Since (f, t) belongs to Fn its range is included
in [0,n − 1], thus

|{j ∈ ℤ ∶ range(fm, t) ∩ Imj ≠ ∅}| ≤ |{j ∈ ℤ ∶ [0,n − 1] ∩ [jkm/2, (j + 1)km/2 − 1] ≠ ∅}| ,

≤ |{j ∈ ℤ ∶ jkm/2 ≤ n − 1 and (j + 1)km/2 ≥ 1}| ,

≤ 2(n − 2)
km

+ 1.

Moreover remark that |fm(x)|Γm ≤ diam (Γm) = lm for all x, thus

Em(fm) = km ∑
j:range(fm,t)∩Imj ≠∅

max
x∈Imj

(|fm(x)|Γm − 1)+ ,

≤ km ∑
j:range(fm,t)∩Imj ≠∅

lm,

≤ kmlm (
2(n − 2)
km

+ 1) = lm(2(n − 2) + km).

Thus, applying the second part of Proposition A.2.2 we get

|(fm, t)|Δm ≤ 9 (range(fm, t) + Em(fm)) ,
≤ 9 (n + lm(2(n − 2) + km)) .

But if m ≤ 𝔩(n − 1) then km ≤ n − 1 ≤ n thus we can bound |(fm, t)|Δm by above
by 9n(3lm + 1). Now remark that 𝔩 (range(𝐟, t)) ≤ 𝔩(n − 1). Thus, using the preceding
inequality and the first part of Proposition A.2.2, we get

|(𝐟, t)|Δ ≤ 500
𝔩(range(𝐟,t))

∑
m=0

|(fm, t)|Δm ,

≤ 500
𝔩(n−1)

∑
m=0

9n (3lm + 1) ,

≤ 4500n
𝔩(n−1)

∑
m=0

(3lm + 1)

Thus diam (Fn) ≤ 4500n∑𝔩(n−1)
m=0 (3lm + 1). Finally, since lm is a subsequence of a geo-

metric sequence, there exists Cr > 0 such that∑𝔩(n−1)
m=0 (3lm + 1) ≤ Crl𝔩(n−1). Hence the

first part of the lemma.
Now let κ ≥ 2 and α > 0 and assume that km = κm and lm = καm. Then diam (Fn) ≤

Cdiamnκα𝔩(n−1). But by definition of 𝔩(n − 1) we have κ𝔩(n−1) ≤ n − 1 thus κα𝔩(n−1) ≤ nα.
Hence the second part.
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8ORB IT EQUIVALENCE COUPL ING WITH THE
GROUP OF INTEGERS

“ Actually it’s very simple, but simple things are always
the hardest to explain

— David Eddings
Belgariade, Book 3 : Magician’s Gambit

Our aim in this chapter is to showTheorem 6.3.1 which we recall below.

Theorem 6.3.1

For all non-decreasing function ρ ∶ [1,+∞[→ [1,+∞[ such that ρ(1) = 1 and x/ρ(x)
is non-decreasing, there exists a group G such that

• IG ≃ ρ ∘ log ;
• there exists an orbit equivalence coupling from G to ℤ that is (φε, exp ∘ρ)-
integrable for all ε > 0, where φε(x) ∶= ρ ∘ log(x)/(log ∘ρ ∘ log(x))

1+ε.

What we actually show is that the groupΔ built in appendix A.1 is the wanted groupG.
To do so we first exhibit a Følner tiling sequence for Δ in Section 8.1. Then in Section 8.2
we define an appropriate Følner tiling sequence for ℤ, compute some useful inequalities
for the quantification and show the theorem using Theorem 6.2.4.

8.1 TILING OF Δ

Let us define a Følner tiling sequence for our group Δ. Our goal is to obtain a tiling
verifying Tn = Fκn . After defining the shifts sets Σn we prove that the sequence (Σn)n∈ℕ
is actually a Følner tiling sequence. Finally we precise this last statement by computing
(Rn)n∈ℕ and (εn)n∈ℕ such that (Σn)n∈ℕ is a (Rn, εn)-Følner tiling sequence (see Defini-
tion 6.2.1).

8.1.1 Definition of the shifts

For any n ∈ ℕ, let 𝔏(n) = 𝔩(κn − 1), that is to say 𝔏(n) is the integer such that k𝔏(n) ≤
κn − 1 < k𝔏(n)+1.

Example 8.1.1. If kn ∶= κn for all n ∈ ℕ then 𝔏(n) = n − 1.
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Before defining our sequence (Σn)n∈ℕ, let us show some practical results on 𝔏. First
remark that since (kn)n∈ℕ is a subsequence of (κn)n∈ℕ, it verifies kn ≥ κn for all n ∈ ℕ.
Thus 𝔏(n) ≤ n and

k𝔏(n) < κn ≤ k𝔏(n)+1.

Claim 8.1.2. Let n ≥ 0, then either 𝔏(n + 1) = 𝔏(n) or 𝔏(n + 1) = 𝔏(n) + 1. Moreover in
this second case k𝔏(n+1) = κn.

Proof. Recall that by definition 𝔏(m) = max {i ∈ ℕ | ki ≤ κm − 1} for all m ∈ ℕ.
Let n ∈ ℕ, then 𝔏(n+1) ≥ 𝔏(n). Moreover if k𝔏(n)+1 ≥ κn+1 then 𝔏(n+1) < 𝔏(n)+1.

That is to say 𝔏(n + 1) ≤ 𝔏(n) and thus 𝔏(n + 1) = 𝔏(n).
On the contrary, if k𝔏(n)+1 < κn+1 then 𝔏(n+1) ≥ 𝔏(n)+1. But, by definition of 𝔏(n)

it verifies k𝔏(n)+1 ≥ κn and by construction of (km)m∈ℕ we also have k𝔏(n)+2 ≥ κk𝔏(n)+1
thus k𝔏(n)+2 ≥ κn+1. Hence 𝔏(n + 1) < 𝔏(n) + 2 and the first assertion.
Finally if 𝔏(n + 1) = 𝔏(n) + 1 then by definition of 𝔏

k𝔏(n) < κn ≤ k𝔏(n)+1 = k𝔏(n+1) ≤ κn+1 − 1.

But (km)m∈ℕ is a subsequence of κm thus the above inequality implies k𝔏(n+1) = κn.

Now, let us define the shifts sets. First let Σ0 ∶= F0, then if n ≥ 0 we distinguish two
cases depending on whether 𝔏(n+ 1) = 𝔏(n) or 𝔏(n+ 1) = 𝔏(n)+ 1 and in both cases we
split the set of shifts Σn+1 in κ parts.
If 𝔏(n + 1) = 𝔏(n), let for all j ∈ {0,… , κ − 1}

Σjn+1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(𝐠, jκn) ∈ Δ

||||||||||||||||||

|

supp (g0) ⊆ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1] ,
∀m ∈ [1,𝔏(n)]

supp (g′m) ⊆ [km, jκn + km − 1] ∪ [(j + 1)κn, κn+1 − 1] ,
∀m ∉ [0,𝔏(n)]

supp (g′m) = ∅.

⎫⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪
⎭

.

Now if 𝔏(n + 1) = 𝔏(n) + 1 we add the condition that g′𝔏(n)+1 has support contained
in [k𝔏(n+1), κn+1 − 1], namely

Σjn+1 ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

(𝐠, jκn) ∈ Δ

||||||||||||||||||||

|

supp (g0) ⊆ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1]
∀m ∈ [1,𝔏(n)]
supp (g′m) ⊆ [km, jκn + km − 1] ∪ [(j + 1)κn, κn+1 − 1] ,

supp(g
′
𝔏(n)+1) ⊆ [k𝔏(n)+1, κ

n+1 − 1] ,

∀m ∉ [0,𝔏(n + 1)] supp (g′m) = ∅.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎭

.

Finally, in both cases we define Σn+1 ∶= ∪κ−1j=0 Σjn+1.
Let (𝐠, t) be an element of some Σjn+1. We represent in Figure 8.1 the supports and the

sets where the maps g0,g′1,… ,g′𝔏(n+1) take their values. The light-blue rectangle with
dotted outline is in Σjn+1 if and only if 𝔏(n + 1) = 𝔏(n) + 1.
Now that we have the shifts sequence, let us turn to the definition of the tiles.
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g′1

g′2

g0

κn+1jκn (j + 1)κn0

⋮ ⋮

g′𝔏(n)

g′𝔏(n)+1

Present iff 𝔏(n + 1) = 𝔏(n) + 1

Figure 8.1.: Support and values taken by (𝐠, t) ∈ Σjn

8.1.2 Tiling

Recall that (Fn)n∈ℕ denotes the Følner sequence of Δ defined in Proposition 7.3.1. The
aim of this section is to show the theorem below.

Theorem 8.1.3

The sequence (Σn)n∈ℕ defined in Section 8.1.1 is a Følner tiling sequence of Δ.

Before showing that the sequence of tiles (Tn)n∈ℕ thus induced verifies indeed the con-
ditions of Definition 6.2.1, let us show the following lemma.

Lemma 8.1.4

The sequence (Tn)n∈ℕ defined by T0 ∶= F0 and Tn+1 ∶= Σn+1Tn for all n > 0 verifies

(∀n ∈ ℕ) Tn = Fκn .

Let us discuss the idea of the proof. We proceed by induction and use a double inclu-
sion argument to prove the induction step. To show that Σn+1Tn is included in Fκn+1

we rely on Lemma 7.2.6, that is to say we verify that every element of Σn+1Tn has range
included in [0, κn+1−1]. For the reversed inclusion we consider an element (𝐡, t) of Fκn+1

and explicit the elements (𝐠, jκn) of Σn+1 and (𝐟, t′) of Tn such that (𝐡, t) = (𝐠, jκn)(𝐟, t′).
To show this we have to split supp(𝐡) into smaller subintervals and show that last equal-
ity on each subintervals separately. Indeed for each m > 1 the supports of gm and fm
partly overlap (see Figure 8.2 for an illustration). We thus have to consider differently
subintervals where the two supports overlap from the ones where fm or gm equals e.
Mind the involved maps here: we study the values of gm and fm instead of the “de-

rived“ functions g′m, f′m usually considered.

Proof of the lemma. The assertion is true for T0. Now let n ≤ 0 and assume that Tn = Fκn .
We show the induction step by double inclusion.

FIrST INcLUSION

Let us show that Σn+1Tn ⊆ Fκn+1 . Recall that Σn+1 can be decomposed as Σn+1 =
∪κ−1j=0 Σjn+1.
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m = 1

m = 2

m = 0

m = 𝔏(n) + 1

κn+1jκn (j + 1)κnκn = k𝔏(n)+10

fm(x) belongs to…

gm(x) belongs to…

A0 × B0

A0 × B0

Am

Am

Γm

Γm

Bm

Bm

Figure 8.2.: Supports overlap

Let (𝐟, t) ∈ Tn and j ∈ {0,… , κ − 1}. Take (𝐠, jκn) ∈ Σjn+1, then the following product

(𝐠, jκn) (𝐟, t) = ((gmfm (⋅ − jκ
n) )m, t + jκn)

verifies t + jκn ∈ [jκn, κn − 1 + (κ − 1)κn] ⊂ [0, κn+1 − 1] and

g0(x)f0(x − jκn) =
⎧⎪⎪⎪
⎨⎪⎪⎪
⎩

g0(x) if x ∈ [0, jκn] ∪ [(j + 1)κn, κn+1 − 1]
f0(x − jκn) if x ∈ [jκn, (j + 1)κn − 1]
0 else.

Thus supp(g0f0(⋅ − jκn)) ⊆ [0, κn+1 − 1].
Moreover, for all m ∈ {1,… ,𝔏(n)}

supp(g′m) ⊂ [km, jκn + km − 1] ∪ [(j + 1)κn, κn+1 − 1]
supp (f′m (⋅ − jκn)) ⊆ [jκn + km, (j + 1)κn − 1],

hence by Claim 7.1.6 the support of (gmfm(⋅ − jκm))′ is contained in [km, κn+1 − 1].
Now if 𝔏(n + 1) = 𝔏(n) + 1 let us denotem = 𝔏(n) + 1. In that case f′m ≡ e sincem >

𝔏(n). Thus (gmfm(⋅ − jκm))′ = g′n whose support is contained in [k𝔏(n)+1, κn + 1 − 1].
Finally (gmfm(⋅ − jκm))′ ≡ 0 for all m ∉ [0,𝔏(n + 1)]. Hence by Lemma 7.2.6 the

product (𝐠, jκn) (𝐟, t) has range included in [0, κn+1 − 1] and thus belongs to Fκn+1 .

SEcOND INcLUSION

Let us show that Fκn+1 is contained in Σn+1Tn. Take (𝐡, t) ∈ Fκn+1 . We want to define
(𝐟, t′) ∈ Tn and (𝐠, jκn) ∈ Σn+1 such that (𝐠, jκn) (𝐟, t′) = (𝐡, t).
First remark that t < κn+1, since (𝐡, t) ∈ Fκn+1 . Thus there exists t0,… , tn in [0, κ − 1]

such that t = ∑n
i=0 tiκi. Let j = tn and t′ = ∑

n−1
i=0 tiκi. Then j does belong to [0, κ − 1]

and t′ to [0, κn − 1]. We now have to define 𝐟 and 𝐠 such that

((gmfm (⋅ − jκn)), t′ + jκn) = (𝐡, t).

Recall that the supports of gm and fm overlap. One can refer to Figure 8.2 for an illus-
tration of such overlaps. Let

f0(x) ∶=
⎧
⎨⎩

h0(x + jκn) if x ∈ [0, κn − 1],
e else,

g0(x) ∶=
⎧
⎨⎩

h0(x) if x ∈ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1],
e else.
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One can verify immediately that g0f0 (⋅ − jκn) = h0. Then take m ∈ [1,𝔏(n)] and let

f′m(x) ∶=
⎧
⎨⎩

h′m(x + jκn) if x ∈ [km, κn − 1],
e else,

g′m(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

h′m(x) if x ∈ [0, jκn − 1]
∪[(j + 1)κn + km, κn+1 − 1],

θA0 (h0(x)) h′m(x)θA0 (h0(x))
−1 if x ∈ [jκn, jκn + km − 1],

θB0 (h0(x − km)) h′m(x)θB0 (h0(x − km))
−1 if x ∈ [(j + 1)κn,

(j + 1)κn + km − 1] ,
e else.

Note that to define g′m on [jκn, jκn + km − 1] and [(j + 1)κn, (j + 1)κn + km − 1] we
need to conjugate h′m because these two intervals are included in the support of fm (see
Figure 8.2).
Now if 𝔏(n + 1) = 𝔏(n) + 1 then k𝔏(n+1) ≥ κn and in that case define

g′m(x) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎪⎪⎪⎪
⎩

h′m(x) if x ∈ [κn, jκn − 1]
∪ [(j + 2)κn, κn+1 − 1],

θA0 (h0(x)) h′m(x)θA0 (h0(x))
−1 if x ∈ [jκn, (j + 1)κn − 1],

θB0 (h0(x − km)) h′m(x)θB0 (h0(x − km))
−1 if x ∈ [(j + 1)κn, (j + 2)κn − 1],

e else.

Finally let f′𝔏(n+1) ≡ e and if m > 𝔏(n + 1) let g′m ≡ e ≡ f′m.
With the above definitions 𝐟 and 𝐠 are uniquely defined. Moreover, by definition

((gm)m, jκn) belongs to Σjn+1 and by Lemma 7.2.6 we have range(𝐟, t) ⊆ [0, κn − 1] thus
(𝐟, t′) belongs to Tn.
Now, using Lemma 7.1.7 we verify that gmfm(⋅ − jκn) = hm thus (𝐡, t) ∈ Σn+1Tn.
Hence, combining the first and second inclusion we get Fκn+1 = Tn.

We now know that (Tn)n∈ℕ is a Følner sequence. To prove Theorem 8.1.3 we have to
show that (Σn)n∈ℕ a Følner tiling sequence. We thus only have to verify that the set of
shifts (Σi)i≤n tiles Tn.

Proof of Theorem 8.1.3. The sequence (Tn)n∈ℕ is a Følner sequence, by the last lemma. Thus
we only have to show that for all σ ≠ σ̃ ∈ Σn+1, σTn ∩ σ̃Tn = ∅. So let us denote by (𝐡, t)
an element of σTn ∩ σ̃Tn. We distinguish two cases.
First if σ ∈ Σjn+1 and σ̃ ∈ Σin+1 for some i ≠ j, then the cursor of σ is equal to jκn and

the one of σ̃ to iκn. Thus

(𝐡, t) ∈ σTn ⇒ t ∈ [jκn, (j + 1)κn − 1],
(𝐡, t) ∈ σ̃Tn ⇒ t ∈ [iκn, (i + 1)κn − 1].

But since i ≠ j these two intervals are disjoint, thus σTn ∩ σ̃Tn = ∅.
Now fix j ∈ {0,… , κ − 1} and take σ, σ̃ ∈ Σjn+1. Let σ ∶= (𝐠, jκn) and σ̃ ∶= (𝐠̃, jκn).

Assume that there exists (𝐟, t) , ( ̃𝐟, ̃t) ∈ Tn such that (𝐠, jκn) (𝐟, t) = (𝐠̃, jκn) ( ̃𝐟, ̃t). Then

∀m ∈ ℕ gmfm(⋅ − jκn) = g̃m ̃fm(⋅ − jκn). (8.1)
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First remark that

σ, σ̃ ∈ Σjn+1 ⟹ supp(g0), supp(g̃0) ⊆ [0, jκn − 1] ∪ [(j + 1)κn, κn+1 − 1]
(𝐟, t) , ( ̃𝐟, ̃t) ∈ Tn ⟹ supp(f0(⋅ − jκn)), supp( ̃f0(⋅ − jκn)) ⊆ [jκn, (j + 1)κn − 1].

In other word the support of g0 (resp g̃0) is disjoint from the one of f0(⋅ − jκn) (resp
̃f0(⋅ − jκn)). Combining this with eq. (8.1) we obtain that g0 = g̃0 and f0 = ̃f0.
Now letm > 0 and let us show that gm = g̃m. Due to supports overlap (see Figure 8.2)

we need to decompose [0, κn+1 − 1] in five subintervals, namely

[0, κ
n+1 − 1] =[0, jκ

n − 1]⊔ [jκn, jκn + km − 1]⊔ [jκn + km, (j + 1)κn − 1],
⊔ [(j + 1)κn, (j + 1)κn + km − 1]⊔ [(j + 1)κn + km, κn+1 − 1].

If x ≤ jκn − 1 or x ≥ (j + 1)κn + km, then fm(x − jκn) = e = ̃fm(x − jκn) and thus
gm(x) = g̃m(x) by eq. (8.1).
If x ∈ [jκn, jκn + km − 1] then using Lemma 7.1.7 and the fact that on that subinterval

f0 = ̃f0, we get

fm(x − jκn) = θA0 (f0 (x − jκn)) = θA0 ( ̃f0 (x − jκn)) = ̃fm(x − jκn).

Hence by eq. (8.1) we get gm(x) = g̃m(x).
If x belongs to [jκn+km, (j+1)κn−1] then gm(x) = g̃m(x) = e and thus eq. (8.1) implies

that fm(x − jκn) = ̃fm(x − jκn), that is to say fm and ̃fm coïncide on [km, κn − 1].
Finally if x ∈ [(j + 1)κn, (j + 1)κn + km − 1] then using Lemma 7.1.7 and the fact that

f0 = ̃f0 on that subinterval, we get

fm(x − jκn) = θB0 (f0 (x − jκn − km)) = θB0 ( ̃f0 (x − jκn − km)) = ̃fm(x).

Hence by eq. (8.1), we have gm(x) = g̃m(x).
Thus 𝐠 = 𝐠̃ and then σ = σ̃. Which concludes the proof of the theorem.

We showed that (Σn)n∈ℕ is a Følner tiling sequence. Let us now compute the sequences
(Rn)n∈ℕ and (εn)n∈ℕ such that it is a (Rn, εn)-Følner tiling sequence.

8.1.3 Quantification

In order to build our orbit equivalence with ℤ we need to estimate the diameter of the
tiles and the value of |∂Tn|/|Tn|. Recall that we gave an estimation of the diameter of Fm
in Lemma 7.3.2.

Lemma 8.1.5

The sequence (Σn)n∈ℕ defined in Section 8.1.1 is a (Rn, εn)-Følner tiling sequence
for

Rn = CRκnl𝔏(n) εn =
2
κn ,

for some strictly positive constant CR.

Prof of Lemma 8.1.5. First remark that by the proof of Proposition 7.3.1 we have

εn =
|∂Tn|
|Tn|

= |∂Fκn |
|Fκn |

= 2
κn .

Now by Lemma 7.3.2 we have diam (Tn) = diam (Fκn) ≤ κnl𝔏(n).
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Example 8.1.6. Let α > 0. If kn ∶= κn and ln = καn for all n ∈ ℕ, then 𝔏(n) = n − 1 and
thus Rn = CRκ(1+α)n.

We can now use our Følner tiling sequence to build and quantify an orbit equivalence
coupling with ℤ.

8.2 cOUPLING

Our aim in this section is to show Theorem 6.3.1. The main tool is Theorem 6.2.4. We
thus start by defining an appropriate Følner tiling sequence forℤ in Section 8.2.1 and give
useful bounds for ln |Tn| in Section 8.2.2. Finally we prove in Section 8.2.3 that the orbit
equivalence coupling induced by the two built Følner tiling sequences is (ψε, exp ∘ρ)-
integrable. We conclude this chapter by showing that the orbit equivalence coupling
from Δ to ℤ thus obtained is satisfies Theorem 6.3.1.

8.2.1 Tiling sequence for Z

We will denote by (Σ′n)n∈ℕ a Følner tiling sequence of ℤ and by T′n the corresponding
tiles.
In order to use Theorem 6.2.4 to get an orbit equivalence coupling between ℤ and Δ

we need Σn+1 and Σ′n+1 to have the same number of elements. We thus define

⎧
⎨⎩

Σ′0 = [0, |T0| − 1]
∀n ∈ ℕ Σ′n+1 ∶= {0, |Tn|, 2|Tn|,… , (|Σn+1| − 1) |Tn|} .

(8.2)

It induces a sequence (T ′n)n∈ℕ defined by T′0 = Σ′0 and T′n+1 = Σ′n+1T′n for all n ≥ 0.
We are going to prove that (Σ′n)n∈ℕ is a Følner tiling sequence for ℤ. We represent in
Figure 8.3 the construction of T′n+1 from Σ′n+1 and T′n for |Σn+1| = 3.

0 |Tn| 2|Tn| 3|Tn|

T ′
n+1 = Σ′

n+1Tn = {0, |Tn|, 2|Tn|}Tn

0+[0, |Tn| − 1] |Tn|+[0, |Tn| − 1] 2|Tn|+[0, |Tn| − 1]

Figure 8.3.: Example of tiling of T′n+1 with T′n for Σ′n+1 = {0, |Tn|, 2|Tn|}
.

Proposition 8.2.1

The sequence (Σ′n)n∈ℕ defined by eq. (8.2) is a (R′n, ε′n)-Følner tiling sequence for
ℤ with

R′n = |Tn| ε′n =
2
|Tn|

.

Moreover the induced sequence (T ′n)n∈ℕ verifies T′n = [0, |Tn| − 1] for all n ∈ ℕ.
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Proof. Let (Σ′n)n∈ℕ be as defined by eq. (8.2) and recall that the induced tiling (T ′n)n∈ℕ
is the sequence defined by T′0 ∶= Σ′0 and T′n+1 = Σ′n+1T′n for all n ∈ ℕ. One can easily
prove that for all n ≥ 0

T′n = [0, |Tn| − 1] . (8.3)

It is now immediate to check that diam (T ′n) = |Tn| and |∂T ′n|/|T ′n| = 2/|Tn|. Further-
more note that if σ,σ′ ∈ Σ′n+1 such that σ ≠ σ′ then |σ − σ′| ≥ |Tn| = diam (T ′n). Thus
for such σ and σ′ we get σT′n ∩ σ′Tn = ∅. Therefore (Σn)n∈ℕ is a Følner tiling sequence
and the proposition follows from the above quantifications on Tn.

By the first part of Theorem 6.2.4 we now know that there exists an orbit equivalence
coupling between ℤ and Δ. To quantify the integrability of this coupling we need to
precise and bound the values of R′n and ε′n.

8.2.2 Useful inequalities

The integrability of the coupling between ℤ and Δ depends on (Rn, ϵn) and (R′n, ε′n)
but by the last proposition, that last couple depends on the value of the cardinality of
the tiles (Tn)n∈ℕ. The aim of this subsection is to give estimations of |Tn| involving only
terms of (km)m∈ℕ and (lm)m∈ℕ. First let us precise the value of |Tn|.

Lemma 8.2.2

The sequence (Tn)n defined in Theorem 8.1.3 verifies

|Tn| = κn(|A||B|)
κn 𝔏(n)

∏
m=1

|Γ ′m|
κn−km .

Proof. Recall that Tn = Fκn = {(𝐟, t) | range (𝐟, t) ⊆ {0,… , κn − 1}} for all n ∈ ℕ. Let
n ∈ ℕ and take (𝐟, t) ∈ Tn, then there are exactly κn values of t possible. Moreover 𝐟
is uniquely determined by f0 and f′1,… , f′𝔏(n) (see Lemma 7.1.7). But f0 is supported
on [0, κn − 1] which is set of cardinal κn so there are exactly (|A||B|)

κn possible values
for f0. Moreover if m > 0 then remark that f′m is supported on [km, κn − 1] which has
κn−km elements so there are exactly |Γ ′m|

κn−km
possible values for f′m. Thus the number

of elements in Tn is

κn(|A||B|)
κn 𝔏(n)

∏
m=1

|Γ ′m|
κn−km .

Now let us bound |Tn| such that the bounds depend only on (κm)m∈ℕ and (lm)m∈ℕ.

Proposition 8.2.3

There exists two constants C2,C3 > 0 such that for all n ∈ ℕ,

C2κn−1l𝔏(n) ≤ ln |Tn| ≤ C3κnl𝔏(n).

Remember that |Tn| is given by Lemma 8.2.2. Before showing the above proposition
let us give an estimation of the right factor of the expression of |Tn|.
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Lemma 8.2.4

There exists two constants C1,C2 > 0 such that for all n ∈ ℕ,

C2κn−1l𝔏(n) ≤ ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≤ C1κnl𝔏(n).

Proof. Recall that by eq. (7.1) there exists c1, c2 > 0 such that, for all m

c1lm − c2 ≤ ln |Γm| ≤ c1lm + c2.

Since Γ ′m ≤ Γm we thus have

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≤

𝔏(n)

∑
m=1

(κn − km) ln |Γm|,

≤
𝔏(n)

∑
m=1

(κn − km) (c1lm + c2) .

But we can bound κn − km from above by κn and since (lm)m∈ℕ is a subsequence of a
sequence having geometric growth, the sum∑𝔏(n)

m=1 (c1lm + c2) is bounded from above by
its last term up to a multiplicative constant. That is to say: there exists C1 > 0 such that

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≤ C1κnl𝔏(n).

Hence the upper bound. Now, using that [Γm ∶ Γ ′m] = |A||B| we have

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
=
𝔏(n)

∑
m=1

(κn − km) ln |Γ ′m| =
𝔏(n)

∑
m=1

(κn − km) ln(
|Γm|
|A||B|) .

Bounding the sum from below by its last term and using eq. (7.1), we get

ln
(

𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≥ (κn − k𝔏(n)) ln(

|Γ𝔏(n)|
|A||B| ) ,

≥ (κn − k𝔏(n)) (c1l𝔏(n) − c2 − ln (|A||B|)) ,
≥ C2(κn − k𝔏(n))l𝔏(n),

for some C2 > 0. We get the wanted inequality by noting that κn − k𝔏(n) ≥ κn−1.

Proof of Proposition 8.2.3. By Lemma 8.2.2 and Lemma 8.2.4

ln |Tn| = ln
(
κn(|A||B|)

κn 𝔏(n)

∏
m=1

|Γ ′m|
κn−km

)
≤ ln (κn) + κn ln (|A||B|) + C1κnl𝔏(n).

Thus, there exists C3 > 0 such that ln |Tn| ≤ C3κnl𝔏(n).
The minoration comes imediately from Lemma 8.2.4.

Equipped with these bounds on |Tn|we can now show the wanted integrability for the
coupling.
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8.2.3 Integrability and proof of Theorem 6.3.1

Let us now prove Theorem 6.3.1. So recall that ρ ∶ [1,+∞[→ [1,+∞[ is a non-decreasing
function such that ρ(1) = 1 and x/ρ(x) is non-decreasing and that Δ is the Brieussel-
Zheng’s diagonal product associated to ρ (see appendix A.1 for a defintion of Δ from the
map ρ). We will show thatΔ is the group satisfyingTheorem 6.3.1, but first let us quantify
the integrability of the orbit equivalence coupling with ℤ induced by the Følner tiling
sequences we built.

Theorem 8.2.5

Let ρ ∶ [1,+∞[→ [1,+∞[ be a non-decreasing function such that ρ(1) = 1 and x/ρ(x)
is non-decreasing and take Δ to be the Brieussel-Zheng’s diagonal product defined
from ρ. Let ε > 0 and Ψ ∶= exp ∘ρ and let

φε(x) ∶=
ρ ln(x)

(ln ρ ln(x))
1+ε .

There exists an orbit equivalence coupling from Δ to ℤ that is (φε,Ψ)-integrable.

Let us discuss the strategy of the proof. The demonstration is based on Theorem 6.2.4,
thus we first prove that (Ψ(2Rn)ε′n−1)n is summable and then that (φε(2R′n)εn−1)n is.
In both cases we use Proposition 8.2.3 to get majorations. So far, we have the following
quantifications.

Rn = CRκnl𝔏(n)

εn =
2
κn

R′n = |Tn| − 1

ε′n =
2
|Tn|

.

|Tn| = κn(|A||B|)
κn 𝔏(n)

∏
m=1

|Γ ′m|
κn−km .

Proof of Theorem 8.2.5. Let ρ ∶ [1,+∞[→ [1,+∞[ be a non-decreasing function such that
ρ(1) = 1 and x/ρ(x) is non-decreasing and take Δ to be the Brieussel-Zheng’s diagonal
product defined from ρ as described in appendix A.1.
To begin, let us recall some preliminary results about ρ. Remember that ρ ≃ ̃ρ where
̃ρ is defined below eq. (A.2). By definition of 𝔏(n) we have k𝔏(n)l𝔏(n) ≤ κnl𝔏(n) ≤
k𝔏(n)+1l𝔏(n), thus by eq. (A.2)

̃ρ(κnl𝔏(n)) = κn. (8.4)

Now let us show that the coupling from ℤ to Δ is Ψ-integrable. To do so we prove that
(Ψ(2Rn)ε′n−1) is summable. First note that by Proposition 8.2.3 we have the following
lower bound on |Tn−1|

|Tn−1| ≥ exp (C2κn−2l𝔏(n−1)) . (8.5)
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Moreover recall that Rn = CRκnl𝔏(n) and ε′n−1 = 2/|Tn−1| thus by the inequality above

Ψ(2Rn)ε′n−1 = exp [ρ(2CRκ
nl𝔏(n))]

2
|Tn−1|

,

≤ 2 exp [ρ (2CRκ
nl𝔏(n)) − C2κn−2l𝔏(n−1)].

But remember that ρ ≃ ̃ρ. Thus using eqs. (8.4) and (A.1) we get

ρ (2CRκnl𝔏(n)) ≃ ̃ρ (2CRκnl𝔏(n)) ≤ 2CR ̃ρ (κnl𝔏(n)) = 2CRκn. (8.6)

Combining the above result with the previous inequality, we get

Ψ(2Rn)ε′n−1 ≼ 2 exp [2CRκn − C2κn−2l𝔏(n−1)] ,
= 2 exp [κn−2 (2CRκ2 − C2l𝔏(n−1))] ,

which is summable. Indeed l𝔏(n) tends to infinity and thus (2CRκ2 − C2l𝔏(n−1)) < 0 forn
large enough. Hence byTheorem 6.2.4 the orbit equivalence from ℤ to Δ si Ψ-integrable.
Now, let us show that for all ε > 0 the coupling from Δ to ℤ is φε-integrable. Based

on Theorem 6.2.4 we only have to prove that φε(2R′n)εn−1 is summable. Recall that
R′n = |Tn| and εn−1 = 2/κn−2 and remark that by both the lower and upper bounds
given in Proposition 8.2.3 we have

φε(2R′n)εn−1 =
2ρ( ln(2|Tn|))

( ln ρ ln 2|Tn|)
1+ε

κn−1
≤ 2ρ(2C3κnl𝔏(n))

( ln ρ (2C2κn−1l𝔏(n)) )
1+ε

κn−1
.

Let us give a lower bound for ρ (2C2κn−1l𝔏(n)). Recall that ρ ≃ ̃ρ furthemore if 2C2 ≥ 1
then by eq. (8.4) and since ̃ρ is non-decreasing

κn−1 = ̃ρ (κn−1l𝔏(n)) ≤ ̃ρ (2C2κn−1l𝔏(n)) ,
≃ ρ (2C2κn−1l𝔏(n)) .

Now if 2C2 < 1 using Claim A.1.4 with c′ = 2C2 and x′ = κn−1l𝔏(n) we get (for n large
enough)

2C2κn−1 = 2C2 ̃ρ(κn−1l𝔏(n)) ≤ ̃ρ(2C2κn−1l𝔏(n)) ≃ ρ (2C2κn−1l𝔏(n))

Hence, in both cases κn−1 ≼ ρ(2C2κn−1l𝔏(n)). Finally replacing CR by C3 in eq. (8.6)
we can show that ρ (2C3κnl𝔏(n)) ≼ κn. Thus, combining the two preceding results we
obtain

φε(R′n)εn−1 ≤
2ρ(C3κnl𝔏(n))

( ln ρ (C2κn−1l𝔏(n)) )
1+ε

κn−1

≼ κn

( ln (κn−1) )
1+ε

κn−1
= κ
((n − 1) ln(κ))

1+ε ,

which is a summable sequence. Hence by Theorem 6.2.4 the orbit equivalence coupling
from Δ to ℤ si φε-integrable.
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Remark 8.2.6. This result is stated in the general case, that is to say for an abstract ρ.
Nonetheless, for some particular functions ρ the quantification can be improved. For
example the case where kn = 2n and ln = 2αn corresponds to ρ(x) ≃ x1/(1+α). In that
case 𝔏(n) = n − 1 and we can show that the coupling from ℤ to Δ is exp-integrable
(instead of exp ∘ρ-integrable). Indeed, let cφ < C2/(CR23+α) and Ψ(x) ∶= exp(cφx), then
by eq. (8.5)

Ψ(2Rn)ε′n−1 = exp [cφ2CRknln−1]
2

|Tn−1|
≤ exp [cφ2CR2n2α(n−1) − C22n−22α(n−2)] 2
= 2 exp [2n−22α(n−2) (cφCR23+α − C2)] .

Which is summable by choice of cφ.

Remark 8.2.7. We can verify that the integrability obtained for the coupling from Δ
to ℤ is “almost” optimal. Indeed if the coupling from Δ to ℤ is φ-integrable, then by
Theorem 6.1.16 we have

φ ∘ Iℤ ≼ IΔ

where we recall that Iℤ(n) ≃ n and IΔ(n) ≃ ρ ∘ ln(n). Thus using the inequality above,
we get φ(n) ≼ ρ ∘ ln(n). Hence the quantification of Theorem 8.2.5 is optimal up to a
logarithmic factor.

It is now easy to prove our first main theorem.

Proof of Theorem 6.3.1. Let ρ ∶ [1,+∞[→ [1,+∞[ be a non-decreasing function such that
ρ(1) = 1 and x/ρ(x) is non-decreasing. Let Δ be the group defined in Proposition A.1.1.
By the aforementioned proposition it verifies IΔ ≃ ρ ∘ log. Moreover by Theorem 8.2.5
there exists an orbit equivalence coupling from Δ and ℤ that is (φε, exp ∘ρ)-integrable
for all ε > 0.

Finally let us show Corollary 6.3.2 concerning the coupling with ℤd.

Proof. Let ρ ∶ [1,+∞[→ [1,+∞[ be a non-decreasing function such that ρ(1) = 1 and
x/ρ(x) is non-decreasing. Let Δ be the group defined in Proposition A.1.1, in particular
it verifies IΔ ≃ ρ ∘ log.
Let d ≥ 1 and recall (see Example 6.2.5) that for all p < 1/d there exists a (Lp,L1/p)-

integrable orbit equivalence coupling from ℤ to ℤd. Hence, using the composition
of couplings described in appendix B we can deduce from Theorem 9.3.1 and Propo-
sition B.1.3 that there exists a (φε(⋅p),L0)-integrable orbit equivalence coupling from Δ
to ℤd. But p < 1 thus by Claim A.1.4

pρ ∘ log ≼ ρ(p log) = ρ ∘ log(⋅p) ≼ ρ ∘ log .

Thus φε(⋅p) ≃ φε. Hence the corollary.
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9MEASURE SUBGROUP COUPL ING WITH THE
LAMPL IGHTER GROUP

“ Happiness can be found, even in the darkest of times,
if one only remembers to turn on the light.

— J.K. Rowling
Harry Potter and the Prisoner of Azkaban

Let Δ be as defined in Section 7.1 and let q = |A×B|. Denote by Lq the wreath product
(ℤ/qℤ) ≀ ℤ and endow it with the following generating part:

SLq ∶= {(xδ0, 0) | x ∈ ℤ/qℤ} ∪ {(eA×B,±1)}.

The aim of this section is to showTheorem 6.3.3 which we recall below.

Theorem 6.3.3

For all ε > 0 and all α > 0 there exists a group G such that
• IG(x) ≃ (log(x))

1/(1+α) ;
• if we define φε(x) ∶= x

1
1+α+ε then there exists a φε-integrable measure sub-

group coupling from G to Lq.

Using Sofic approximations, we are going to prove that the Brieussel-Zheng’s diagonal
product Δ verifying km = κm and lm = καm is the wanted group G. Drawing inspiration
from the Følner tiling technique described in Definition 6.2.1, we define tilings of Δ and
Lq in Section 9.1. However —unlike the result obtained in the previous chapter— we
can not obtain Følner tiling sequences having same number of elements at each step.
That is why we work in the framework of Sofic approximations which only requires that
we can embed one approximation into the other. Section 9.2 is devoted to the proof of
inequalities useful for the quantification. The latter is proved in Section 9.3 as well as
Theorem 6.3.3.

9.1 cONSTrUcTION OF THE SOFIc APPrOXIMATIONS

In this section we define a Sofic approximation (𝒢n)n∈ℕ of Δ and a Sofic approximation
(ℋn)n∈ℕ of Lq. Recall that (Tn)n∈ℕ denotes the tiling of Δ defined in Lemma 8.1.4 and
let us describe the idea of the construction. We want (𝒢n)n∈ℕ to be a subsequence of
(Tn)n∈ℕ and (ℋn)n∈ℕ to be a subsequence of some Følner sequence of Lq such that 𝒢n
embedds inℋn for alln. Since wewant these Sofic approximations to verify eq. (6.1) with
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φ(x) = x1/(1+α+ε), we also need the embedding to respect the geometry of the groups.
To do so, we draw inspiration from the tiling techniques developped in the preceding
sections. Indeed, we define (ℋn)n∈ℕ such thatℋn+1 is tiled byℋn for all n, which means
that there should exist a finite subset Σ″n+1 such that ℋn+1 = ⊔σ∈Σ″n+1σℋn.
As we will see in the next paragraphs, we will take (𝒢n)n∈ℕ such that 𝒢n = Tpn for

some large enough p > 0 to be determined later. The need to take such a subsequence
of (Tn)n∈ℕ comes from the following discussion. Assume first that 𝒢n = Tn and that it
embeds in some sequence ℋn as described above for all n. Then these sequences verify
|ℋn| > |𝒢n| and due to the tiling process, the quotient of these two cardinalities is mul-
tiplied at each step. More precisely, since we want ℋn to be tiled by ℋn−1 and ℋn to
embed in 𝒢n we thus need Σ″n to verify |Σn| ≤ |Σ″n|. We consequently “approach” Σn by
Σ″n (in a sense that will be precised by eq. (9.3)) and when taking the product Σ″0 ⋯Σ″n we
hence multiply the errors. Since ℋn is the product of Σ″0,… ,Σ″n, the error is thus cumu-
lative. Hence the size of ℋn grows faster than 𝒢n, and actually too fast. Indeed denote
by ιn the embedding from 𝒢n to ℋn and take x ∈ 𝒢n and s ∈ SΔ; to obtain the wanted
integrability we will need to control the distance between ιn(x) and ιn(xs) in ℋn But
if the size —and thus the diameter— of ℋn grows too fast we will not be able to have
good enough control over the distance between ιn(x) and ιn(xs). To avoid this pitfall
we define (𝒢n)n∈ℕ to be a subsequence (Tpn)n∈ℕ of (Tn)n∈ℕ. The speed at which errors
of approximation of 𝒢n by ℋn accumulate is slower. Consequently |ℋn| grows slowly
and thus if p is large enough we will obtain the wanted control on the aforementioned
distance. We refer to page 94 for the concrete use of this parameter p in the proof of
Theorem 9.3.1.
Before defining these Sofic approximations, let us state a useful fact about tilings of

the lamplighter group.

9.1.1 Tiling of the Lamplighter group

Recall that a Følner sequence of Lq is given by

F″n ∶= {((εi)i, t) ∶ t ∈ {0,n − 1}, supp((εi)i) ⊆ [0,n − 1]} .

Our goal here is to extract a subsequence of (F″n)n∈ℕ to define a Følner tiling sequence
for our group Lq. So let (dn)n∈ℕ be a sequence of integers and define Σ″0 ∶= F″d0 . Now let
Dn ∶= ∏n

i=0 di and consider for all n ≥ 0

Σ″n+1 ∶= ⊔dn+1−1
j=0 {((εi), jDn) | supp((εi)i) ⊆[0, jDn − 1]

∪ [(j + 1)Dn, Dn+1 − 1]}.
(9.1)

These sets will be the shifts of thewanted Følner tiling sequence. This is what Lemma 9.1.2
formalises, but first let us give some illustration of this tiling.

Example 9.1.1. Assume d0 = 2 and d1 = 4 then D0 = 2 and D1 = 8. Let ((εi)i, t) ∈ F″D0

and ((ε′i)i, jD0) ∈ Σ″1. We represent the product of these two elements in Figure 9.1 for
j = 0 (Figure 9.1a) or j = 2 (Figure 9.1b). The dark blue squares correspond to lamp con-
figurations coming from the element in FD0 while the orange ones are coming from the
shift. The cursor of that product, namely t + jD1, belongs to the hatched blue rectangle.

Let us now prove that it actually defines a Følner tiling sequence.
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F″2

F″8

1 2 3 4 5 6 7 80

ε′2 ε′3 ε′4 ε′5 ε′6 ε′7ε0 ε1

(a) Representation of ((ε′i)i, 0)((εi)i, t)
F″2

F″8

0 1 2 3 5 6 7 84

ε′0 ε′1 ε′2 ε′3 ε′6 ε′7ε4 ε5

(b) Representation of ((ε′i)i, 2D1)((εi)i, t)

Figure 9.1.: Tiling of the lamplighter

Lemma 9.1.2

Let (dn)n∈ℕ be a sequence of positive integers and define Σ″n+1 as above.
Then (Σ″n)n∈ℕ is a Følner tiling sequence and F″Dn+1 = Σ″n+1F″Dn .

Proof. The strategy of the proof is the same as the one of Lemma 8.1.4.
Let (dn)n∈ℕ be a sequence of positive integers and define Σ″n+1 as in eq. (9.1). Recall

that Dn = ∏n
i=0 dn for all n ∈ ℕ. First let us show that Σ″n+1F″Dn is contained in F″Dn+1 .

Let ((ε′i)i, t) in F″Dn and j ∈ [0,dn+1 − 1] and take ((εi)i, jDn) ∈ Σ″n+1. Then

((εi)i, jDn)((ε′i)i, t) = ((εi + ε
′
i−jDn)i, t + jDn)

By eq. (9.1) and since (ε′i)i is supported on [0,Dn − 1], we have

supp((εi + ε
′
i−jDn)i∈ℤ) ⊆ [0, jDn − 1] ∪ [(j + 1)Dn, Dn+1 − 1] ∪ [jDn, (j + 1)Dn − 1],

= [0,Dn+1 − 1] .

Finally, since t ≤ Dn − 1 and j ≤ dn+1 − 1, we get

jDn + t ≤ (dn+1 − 1)Dn +Dn − 1 ≤ Dndn+1 − 1 = Dn+1 − 1.

Thus ((εi)i, jDn)((ε′i)i, t) belongs to F″Dn+1 .
Now take ((ωi)i, t) ∈ F″Dn+1 and let us show that ((ωi)i, t) belongs to Σ″n+1F″Dn . First,

remark that since t ≤ Dn+1 − 1 there exists a unique 0 ≤ j ≤ dn+1 − 1 such that 0 ≤
t − jDn ≤ Dn − 1. For such a j let t′ ∶= t − jDn and let (εi)i and (ε′i)i such that

εi =
⎧
⎨⎩

ωi if i ∈ [0, jDn − 1] ∪ [(j + 1)Dn,Dn+1 − 1],
e else,

ε′i =
⎧
⎨⎩

ωi+jDn if i ∈ [0,Dn − 1],
e else.
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Then ((εi)i, jDn)((ε′i)i, t′) = ((ωi)i, t). Hence the equality of the lemma. To prove that
(Σ″n)n∈ℕ is indeed a Følner tiling sequence we now only have to show that σF″Dn∩σ′F″Dn =
∅ for all σ ≠ σ′ ∈ Σ″n+1. So take ((εi)i, jDn) and ((ε′i)i, j′Dn) in Σ″n+1 and take ((ωi)i, t),
and ((ω′

i)i, t′) in F″Dn . If

((εi)i, jDn)((ωi)i, t) = ((εi)i, jDn)((ω′
i)i, t) (9.2)

then in particular t + jDn = t′ + j′Dn. But t, t′ < Dn thus the last equality implies
t = t′ and j = j′. In particular (εi)i and (ε′i)i are supported on the same set, namely
[0, jDn − 1] ∪ [(j + 1)Dn,Dn+1 − 1]. That last set is disjoint from [jDn, (j + 1)Dn − 1]
which is the interval where ((ωi−jDn)i) and (ωi−jDn)i are supported. Combining this
with eq. (9.2) we thus get that εi = ε′i for all i. Hence the result.

We thus know how to build Følner tiling sequences for Lq. Nowwe have to specify the
sequence (dn)n∈ℕ such that the obtained tiling will give an appropriate Sofic approxi-
mation for our coupling.

9.1.2 Sofic approximations

Let p ∈ ℕ. Let 𝒢n ∶= Tpn where (Tn)n is the tiling of Δ defined in Lemma 8.1.4. Recall
that the sequence of shifts (Σn)n∈ℕ is defined such that Tn+1 = Σn+1Tn. In particular
Tp(n+1) = Σp(n+1)Σpn+p−1⋯Σpn+1Tpn. Let Σ̄0 ∶= T0 and

Σ̄n+1 ∶= Σp(n+1)Σpn+p−1⋯Σpn+1.

By the above discussion, we thus have 𝒢n+1 = Σ̄n+1𝒢n. Now, let us define inductively the
Sofic approximation ℋn of Lq. First, let ℋ0 ∶= F″1 and define d0 = 1. Then let n ≥ 1 and
assumeℋn ∶= F″Dn defined. Let dn+1 be the minimal integer such that F″Dndn+1 contains
at least |Σ̄n+1| translates of F″Dn . In other words dn+1 is the minimal integer such that
the set Σ″n+1 defined in eq. (9.1) contains at least |Σ̄n+1| elements, viz.

(dn+1 − 1)qd0⋯dn(dn+1−2) ≤ |Σ̄n+1| ≤ dn+1qd0⋯dn(dn+1−1). (9.3)

Remark that in particular, one can embed Σ̄n in Σ″n. Finally letℋn+1 = F″Dn+1 . It defines
by induction a sequence (ℋn)n∈ℕ, which is a Sofic approximation of Lq since it is a sub-
sequence of a Følner sequence.

9.1.3 Injection between Sofic approximations

Let us now define the embedding from 𝒢n toℋn. First remark that there exists a natural
bijection ι0 between 𝒢0 andℋ0 that maps (𝐟, 0) ∈ 𝒢0 to the element ((εi)i, 0) ofℋ0 where
ε0 = f0(0) and εi = e if i ≠ 0. Now let n ≥ 1 and denote by νn an embedding of Σ̄n in
Σ″n arbitrarily chosen. Since (Σ̄n)n∈ℕ is a Følner tiling sequence, one can write every
element of 𝒢n as a product σn⋯σ0 where σi ∈ Σ̄i is uniquely determined for all i. Thus
we can define without ambiguity the following injection.

Lemma 9.1.3

Let n ∈ ℕ. The map defined by

ιn ∶
⎧
⎨⎩

𝒢n = Tpn →ℋn,

∏n
i=0 σi ↦∏n

i=0 νi (σi) ,
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is a well defined injection from 𝒢n to ℋn.

Proof. Let n ∈ ℕ. By the preceding discussion, this map is well defined. Now let
x, x′ ∈ 𝒢n. For all i ∈ {0,… ,n} define σi (resp. σ′i) to be the element in Σ̄i such that
x = σn⋯σ0 (resp. x′ = σ′n⋯σ′0). Then by definition of ιn we have ιn(x) = ∏n

i=0 νi (σi)
and ιn(x′) = ∏n

i=0 νi (σ′i). But νi(σi) and νi(σ′i) belong to Σ̄i for all i, thus∏
n
i=0 νi (σi)

is the decomposition of ιn(x) and ∏n
i=0 νi (σi) the decomposition of ιn(x′)) in product

of shifts. Since (Σ″n)n is a Følner tiling sequence, that decomposition is unique thus if
ιn(x) = ιn(x′) then νi(σi) = νi(σ′i) for all i. Thus σi = σ′i since νi is a bijection for all i,
and therefore x = x′. Hence the injectivity of ιn.

9.2 USEFUL INEQUALITIES

In order to quantify the relation between Δ and Lq we will need some bounds on ln |Σ̄n|.
The first lemma bounds ln |Σ̄n+1| by above and the second one bounds ln |Σ̄n| by below,
both in the general case (that is to say for abitrary sequences (km)m∈ℕ and (lm)m∈ℕ).
Corollary 9.2.3 gives a relation between ln |Σ̄n+1| and ln |Σ̄n| in the particular case when
km = κm and lm = καm for some α > 0.
First remark that, by the definition of Σ̄n+1 and Σn+1

|Σ̄n+1| = κpqκ
p(n+1)−κpn

𝔏(pn)

∏
i=1

|Γ ′i |κ
p(n+1)−κpn

𝔏(p(n+1))

∏
i=𝔏(pn)+1

|Γ ′i |κ
p(n+1)−ki . (9.4)

We can now show the wanted bounds on ln |Σ̄n+1| and ln |Σ̄n|.
Lemma 9.2.1

There exists a constant Ĉ1 > 0 such that, for all n ∈ ℕ

ln |Σ̄n+1| ≤ Ĉ1κp(n+1)l𝔏(p(n+1)).

To show this lemma we first bound the two products on the right of eq. (9.4). Recall that
there exist c1, c2 > 0 such that ln |Γ ′i | is bounded above by c1li + c2 for all i. Moreover,
since (lm)m is a subsequence of some (un)n having geometric growth, a sum of of terms
of (lm)m∈ℕ is bounded by its last term up to a multiplicative constant. We use this to
bound by above (up to a multiplicative constant) ln |Σ̄n+1| by the highest term of lm
appearing in eq. (9.4) times the highest possible power.

Proof. First remark that κp(n+1) − ki ≤ κp(n+1) − κpn for all i ∈ [𝔏(pn) + 1,𝔏(p(n + 1))],
thus

ln⎡
⎣

𝔏(pn)

∏
i=1

|Γ ′i |κ
p(n+1)−κpn

𝔏(p(n+1))

∏
i=𝔏(pn)+1

|Γ ′i |κ
p(n+1)−ki⎤

⎦
≤ (κp(n+1) − κpn)

𝔏(p(n+1))

∑
i=1

ln |Γ ′i |.

But recall that by eq. (7.1) we have ln |Γ ′i | ≤ c1lm+c2 and that (lm)m∈ℕ is a subsequence of
a geometric sequence thus a sum of its terms can be bounded by above by the last term
up to a positive constant. Thus

𝔏(p(n+1))

∑
i=1

ln |Γ ′i | ≤
𝔏(p(n+1))

∑
i=1

(c1li + c2) ≤ C0l𝔏(p(n+1)),
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for some C0 > 0 depending only on Δ. Thus using eq. (9.4) we get,

ln |Σ̄n+1|

= ln(κp) + ln⎡
⎣
qκp(n+1)−κpn

𝔏(pn)

∏
i=1

|Γ ′i |κ
p(n+1)−κpn

𝔏(p(n+1))

∏
i=𝔏(pn)+1

|Γ ′i |κ
p(n+1)−ki⎤

⎦
≤ ln(κp) + (κp(n+1) − κpn) [C0l𝔏(p(n+1)) + ln(q)] .

But ln(q) is constant and ln(κp) ≤ (κp(n+1) − κpn) thus there exists some constant Ĉ1 >
0 such that ln |Σ̄n+1| ≤ Ĉ1 (κp(n+1) − κpn) l𝔏(p(n+1)). We get the lemma by (roughly)
bounding (κp(n+1) − κpn) by above by κp(n+1).

Now for the lower bound on ln |Σ̄n|. Recall that C2 is the positive constant given in
Lemma 8.2.4.

Lemma 9.2.2

For all n ∈ ℕ,
ln |Σ̄n| ≥ C2κpn−1l𝔏(pn)

where C2 > 0 is a constant.

Proof. Bounding ln |Σ̄n| by below by the last factor appearing in eq. (9.4) and using the
fact that k𝔏(pn) ≤ κpn−1 we get

ln |Σ̄n| ≥ (κpn − k𝔏(pn)) ln |Γ ′𝔏(pn)|
≥ (κpn − κpn−1) ln |Γ ′𝔏(pn)|,

We conclude as in the proof of Lemma 8.2.4 and by bounding κpn − κpn−1 by below by
κpn−1.

Now let ρ(x) = x1/(1+α) for some α > 0 and consider the diagonal productΔ associated
to such a map ρ (see appendix A.1). In that case km = κm and lm = καm for allm and we
can deduce from the two preceding lemmas the following corollary.

Corollary 9.2.3

Let α > 0 and assume that km = κm and lm = καm for all m ∈ ℕ. Then there exists
some constant Ĉ2 > 0 such that for for all n ∈ ℕ

ln |Σ̄n+1| ≤ Ĉ2κp(α+1) ln |Σ̄n|

Proof. Let α > 0 and assume that km = κm and lm = καm for all m. Remark that in that
case 𝔏(pj) = pj − 1 thus l𝔏(pj) = κα(pj−1) for all j. Using Lemmas 9.2.1 and 9.2.2 we get,

ln |Σ̄n+1|
ln |Σ̄n|

≤ Ĉ1κp(n+1)κα(p(n+1)−1)
C2κpn−1κα(pn−1)

,

= Ĉ1
C2
κp+1κα(p(n+1)−1−pn+1),

= Ĉ1
C2
κp+1καp.

Let Ĉ2 ∶= Ĉ1κ/C2, then ln |Σ̄n+1| ≤ Ĉ2κp(1+α) ln |Σ̄n|. Hence the lemma.
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9.3 QUANTIFIcATION

Let us now prove Theorem 6.3.3. First let α > 0 and consider the diagonal product Δ
defined by km = κm and lm = καm. For such a group we start by quantifying the inte-
grability of themeasure subgroup couplingwith Lq obtained using Sofic approximations.

Theorem 9.3.1

Let α > 0 and Δ be the diagonal product defined by km = κm and lm = καm.
Then for all ε > 0 there exists a measure subgroup coupling from Δ to Lq that is
φε-integrable where

φε(x) ∶= x
1

1+α+ε .

Using Theorem 6.2.9, we will show that there exists p ∈ ℕ such that the sequences 𝒢n
and ℋn defined in Section 9.1.2 verify for every s ∈ SΔ

lim
R→∞

sup
n

R

∑
r=0

φε(r) |
{x ∈ 𝒢

(1)
n ∣ dℋn(ιn(x), ιn(x ⋅ s)) = r}|

|𝒢n|
< ∞. (9.5)

Let us discuss the strategy of the proof. Take (𝐟, t) ∈ 𝒢n. We first study the distance
between ιn(𝐟, t) and ιn((𝐟, t) ⋅ s) for some generator s and we distinguish two cases, de-
pending on whether s = (e,±1) (see Claim 9.3.3) or not (see Claim 9.3.2). In the first
case, the bound on the distance obtained involves terms of (Di)i∈ℕ. Thus we compute
an upper bound to Di (see Claim 9.3.4). Finally we show that eq. (9.5) is verified in both
cases.

Proof of Theorem 9.3.1. Let ε > 0, let p ∈ ℕ and 𝒢n and ℋn as defined in Section 9.1.2. Let
ιn be the map defined in Section 9.1.3. Let (𝐟, t) ∈ 𝒢n and s ∈ SΔ such that (𝐟, t) ⋅ s ∈ 𝒢n.
Recall that for all i = 0,… ,n there exists a unique (𝐠i, tiκp(i−1)) ∈ Σ̄i such that

(𝐟, t) = (𝐠
n, tnκp(n−1))⋯(𝐠

0, 0). (9.6)

Let us study the value of ιn((𝐟, t) ⋅ s) when s ∈ SΔ.

Claim 9.3.2. If s = ((amδ0)m, 0) for some a ∈ A or if s = ((bmδkm)m, 0) for some b ∈ B
then d (ιn((𝐟, t)), ιn((𝐟, t) ⋅ s)) = 1

Proof of the Claim. First assume that s = ((amδ0)m, 0) for some a ∈ A. Let (𝐡, 0) be such
that

(∀m ∈ ℕ) hm(x) =
⎧
⎨⎩

g0m(x) if x ≠ 0,
g0m(0)am if x = 0.

By definition it verifies (𝐡, 0) = (𝐠0, 0)((aδ0)m, 0) and its range is the same as the one of
(𝐠0, 0). Thus (𝐡, 0) belongs to Σ̄0. Hence the decomposition

(𝐟, t) ⋅ s =
[

n

∏
i=1
(𝐠i, tiκp(i−1))

]
(𝐡, 0) ,

gives the unique decomposition of (𝐟, t) ⋅ s in product of shifts. Hence by definition of ιn

ιn((𝐟, t) ⋅ s) =
n

∏
i=1

νi (𝐠i, tiκp(i−1)) ⋅ ι0 (𝐡, 0) .
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Thus, using the definition of ι0

dLq(ιn((𝐟, t)), ιn((𝐟, t) ⋅ s)) = dLq(ι0(𝐠
0, 0), ι0(𝐡, 0))

= dLq((g
0
0(0)δ0, 0), (h0(0)δ0, 0)) = 1.

If s = ((bmδkm)m, 0) for some b ∈ B, a similar argument shows that

dLq(ιn((𝐟, t)), ιn((𝐟, t) ⋅ s)) = dLq(ι0(𝐠
0, 0), ι0((𝐠0, 0) ⋅ s)) = 1.

Hence the claim.

Let us study the case when s = (𝐞, 1). Remark that by eq. (9.6) the decomposition of
t in base κp is given by the sequence (tiκp(i−1))i of the cursors of elements of Σ̄i, that is
to say t = ∑n

i=0 tiκp(i−1). Now, denote by i0(t) the integer such that

(∀i < i0(t)) ti = κp(i−1) − 1 and ti0(t) < κp(i0(t)−1) − 1. (9.7)

That is to say i0(t) is the digit that will “absorb“ the carry when we add one to t decom-
posed in base κp. Finally, let us recall that 𝒢(r)n is defined as

𝒢(r)n = {x ∈ 𝒢n | B𝒢n(x, r) ≃ BG(eG, r)} .

Claim 9.3.3. If s = (e,±1) and (𝐟, t) ∈ 𝒢(1)n , then d (ιn((𝐟, t)), ιn((𝐟, t) ⋅ s)) ≤ 3Di0(t).
Moreover, to a given i0 ≤ n, the proportion of elements in 𝒢n verifying eq. (9.7) is (κp −
1)/κpi0 .

When there is no ambiguity we will sometimes abuse notations and denote i0 instead
of i0(t). Now, let us discuss the strategy of the proof. The action of s adds one to the
cursor and thus changes the the decomposition in base κp up to ti0 (the coefficient that
will “absorb” the carry). Using this we show that the action of s on (𝐟, t) changes only
the (i0 + 1)-right-most factors in the decomposition given by eq. (9.6). Thus (𝐟, t) and
(𝐟, t + 1) differ at most from an element in FDi0

. Hence the distance between these two
elements is bounded by the diameter of the aforementioned Følner set.

Proof of the claim. Assume that s = (e, 1) and (𝐟, t) ∈ 𝒢(1)n and let i0 = i0(t) as defined by
eq. (9.7). Remark that we have in particular∑i0

i=0 tiκp(i−1) < κp(i0−1)−1. Now consider
the element of Tpi0 defined by

(𝐩, t′) ∶=
i0
∏
i=0

(𝐠
i, tiκp(i−1)).

Then, since (𝐩, t′) ⋅ s = (𝐩, t′ + 1) and since by the above discussion t′ + 1 < κp(i0−1),
we obtain that (𝐩, t′) ⋅ s belongs to Tpi0 . Thus for all i = 0,… , i0 there exists a unique
(𝐡i, xi) ∈ Σ̄i such that

(𝐩, t′) ⋅ s =
i0
∏
i=0

(𝐡i, xi).

But by eq. (9.6)

(

n

∏
i=i0+1

(𝐠i, tiκp(i−1))
)

−1

⋅ (𝐟, t) ⋅ s =
i0
∏
i=0

(𝐠i, tiκp(i−1)) ⋅ s =
i0
∏
i=0

(𝐡i, xi)
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Thus, the equality (𝐟, t)⋅s = ∏n
i=i0+1 (𝐠i, tiκp(i−1))⋅∏

i0
i=0 (𝐡i, xi) gives the decomposition

of (𝐟, t)s in product of shifts. Hence,

dLq(ιn(𝐟, t), ιn(𝐟, t) ⋅ s) = dLq (

i0
∏
i=0

νi(𝐡i, xi),
i0
∏
i=0

νi(𝐠i, tiκp(i−1))
)

= dLq(ιi0((𝐩, t
′) ⋅ s), ιi0(𝐩, t′)),

≤ diam(F
″
Di0) .

The diameter of F″Di0
is at most 3Di0 , hence the first part of the claim. Let us now show

the second assertion. The cursor of an element in Σ̄i can uniformly take κp different
values. Thus the proportion of (𝐠i, tiκp(i−1)) in Σ̄i verifying ti = κp − 1 is 1/κp, whereas
the proportion verifying ti < κp − 1 is (κp − 1)/κp. Hence the ratio elements (𝐟, t) ∈ 𝒢n
such that the decomposition given in eq. (9.6) verifies eq. (9.7) is (κp − 1)/κi0p.
Finally, an analogous reasoning shows the result for s = (e,−1).

To prove eq. (9.5) is verified we now need an estimation of Dn.

Claim 9.3.4. There exists CD > 0 depending only on Δ such that Dn ≤ (CDκp(1+α))
n for

all n ∈ ℕ.

Proof. To prove the claim, we want to establish an upper bound to dn+1. By the left
inequality of eq. (9.3) we get

(dn+1 − 1)qDn(dn+1−2) ≤ |Σ̄n+1|
⇒ ln(dn+1 − 1) + Dn(dn+1 − 2) ln(q) ≤ ln |Σ̄n+1| ,

⇒dn+1 − 2 ≤
ln |Σ̄n+1|
Dn ln(q)

.

Using Corollary 9.2.3 and eq. (9.3) applied to Σ̄n, we deduce

dn+1 − 2 ≤ Ĉ2κp(1+α)
ln |Σ̄n|
Dn ln(q)

,

≤ Ĉ2κp(1+α)
Dn−1(dn − 1) ln(q) + ln(dn)

Dn ln(q)
,

≤ Ĉ2κp(1+α) (
dn − 1
dn

+ ln(dn)
Dn ln(q))

.

But (dn − 1)/dn < 1 and ln(dn)/(Dn ln(q)) < 1, thus dn+1 ≤ 2Ĉ2κp(1+α) + 2 which we
can roughly bound by above by (2Ĉ2 + 1)κp(1+α). Let us define CD ∶= 2Ĉ2 + 1 then CD
depends only Δ and we get Dn ≤ (CDκp(1+α))

n. Hence the claim.

Finally, let us show that eq. (9.5) is verified for some well chosen p. Let n,p ∈ ℕ and
R > 0. If s = ((aδ0), 0) or s = ((bδkm), 0) then by Claim 9.3.2

R

∑
r=0

φε (r) |
{x ∈ 𝒢

(s)
n ∣ dℋn(ιn(x), ιn(x ⋅ s)) = r}|

|𝒢n|
= φε(1)
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which does not depend on R nor on n, thus eq. (9.5) is verified. Now assume s = (e,±1).
By Claim 9.3.3 and the upper bound on Dn given by Claim 9.3.4, we get

R

∑
r=0

φε (r) |
{x ∈ 𝒢

(s)
n ∣ dℋn(ιn(x), ιn(x ⋅ s)) = r}|

|𝒢n|

≤∑
i∈ℕ

φε(3Di)
κp − 1
κip ,

≤∑
i∈ℕ

φε (3CiDκpi(1+α))
κp − 1
κip ,

=∑
i∈ℕ

31/(1+α+ε)(CDκp(1+α))
i

1+α+ε κp − 1
κip ,

=(κp − 1)31/(1+α+ε)∑
i∈ℕ(

(CDκp(1+α))1/(1+α+ε)
κp )

i
.

But since (1 + α)/(1 + α + ε) − 1 < 0, there exists p > 0 such that

C1/(1+α+ε)D κp((1+α)/(1+α+ε)−1) < 1.

For such an integer p we get (κp − 1)∑i∈ℕ ((Cκp(1+α))1/(1+α+ε)/κp)
i < +∞. Since that

term does not depend on R nor nwe thus get that eq. (9.5) is verified. Hence the theorem.

Remark 9.3.5. We can verify that the result above concerning the coupling from Δ to
Lq is “almost” optimal. Indeed if the coupling from Δ to Lq is φ-integrable, then by
Theorem 6.1.16 we have

φ ∘ ILq ≼ IΔ
where we recall that ILq(n) ≃ log(n) and IΔ(n) ≃ log(n)1/(1+α). Thus using the inequality
above, we get φ ∘ log(n) ≼ log(n)1/(1+α). Hence the optimal integrability suggested by
this theorem corresponds to φ(x) ∶= x1/(1+α). Thus the quantification of Theorem 9.3.1
is almost optimal.

We can now prove Theorem 6.3.3

Proof of Theorem 6.3.3. Let α > 0 and Δ be the diagonal product defined by the two se-
quences km = κm and lm = καm. Then by appendix A.1 the isoperimetric profile of Δ
verifies IΔ(n) ≃ log(n)1/(1+α). Moreover by Theorem 9.3.1 there exists a measure sub-
group coupling from Δ to Lq that is φε-integrable for all ε > 0. Hence the theorem.

Let us conclude by the demonstration of Corollary 6.3.4.

Proof. Let α > 0 and ε > 0 and define φε(x) ∶= x 1
1+α+ε . By Theorem 6.3.3 there exists

a group G such that IG(n) ≃ (log(n))1/(1+α) and such that there exists a φε-integrable
measure subgroup coupling from G to Lq.
Now let H ∶= ℤ2 ⋊A ℤ where A is the matrix

A ∶=
(
2 1
1 1)

.

By [DKT21, Th. 6.1] there exists a measure equivalence coupling from Lq to H that is
(L∞, exp)-integrable. It is thus (ψ, exp)-integrable for all increasing map ψ ∶ ℝ+ → ℝ+.
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In particular if ψ = id we can compose the couplings and obtain by Proposition B.1.3 an
orbit equivalence coupling from G to H that is (φε,L0)-integrable. Hence the corollary.

We show Corollary 6.3.5 similarly, by using Example 6.1.11 instead of [DKT21, Th. 6.1]
in the above proof.

95





10CONCLUS ION , UNF IN I SHED WORK AND
OPEN PROBLEMS

“ Past the mud and the rain I will slowly stand
Yet still a long way to go on the route we planned.

— Alpine Universe
The Empire of Winds, fromThe Empire of Winds

(O.S.T)

We conclude this part on some open problems. This is also the occasion to discuss
possible strategies to tackle them and current work in progress.

THE LAMPLIGHTEr cASE

Our result concerning the Lamplighter group (Theorem 6.3.3) gives only a measure sub-
group coupling. It is thus natural to ask the following question.

Question 10.0.1. If α > 0 et φ(x) = x1/(1+α) does there exist a group G with isoperimet-
ric profile IG ≃ φ ∘ log(x) and such that there exists a φ-integrable measure equivalence
coupling from G to Lq?

As discussed in the introduction, we worked on this question and we hope to be able
to prove the existence of aφε-integrable measure equivalence coupling (forφε as defined
in Theorem 6.3.3). However time did not allow us to add this result in this mansucript,
since the proof was only achieved during spring 2021.
Another limitation discussed in the introduction was the fact that we needed an es-

timation of the growth rate of (lm)m∈ℕ in order to get the integrability (see discussion
belowTheorem 6.3.3). We thus had to restrict ourselves to the family of functions of the
form x ↦ x1/(1+α). Nonetheless one can also ask what happens for a larger family of
functions.

Question 10.0.2. Let ρ ∶ [1,+∞[→ [1,+∞[ be a non-decreasing function such that ρ(1) = 1
and x/ρ(x) is non-decreasing. Does there exist G such that IG ≃ ρ ∘ log and a (ρ,L0)-
integrable measure equivalence coupling from Δ to Lq?
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FUrTHEr DIrEcTIONS

These are possible refinements of our second main result, but we can also look at prob-
lems concerning other kind of groups. For example instead of considering H ∶= ℤ2 ⋊A ℤ
as in Corollary 6.3.4, we can look at the problem involving any polycyclic groups.

Question 10.0.3. Can we build measure or orbit equivalence coupling from some group
G to a polycyclic group, with prescribed integrability?

Another possible direction is to consider couplings between two Brieussel-Zheng’s
diagonal products.

Question 10.0.4. Let ρ, ̃ρ ∶ [1,+∞[→ [1,+∞[ be non-decreasing functions such that ̃ρ(1) =
ρ(1) = 1 and x/ρ(x) and x/ ̃ρ(x) are non-decreasing. Denote by ρ−1 a quasi-inverse for ρ.
Given two Brieussel-Zheng’s diagonal products Δ and Δ̃ with respective isoperimetric
profiles IΔ ≃ ρ ∘ log and IΔ̃ ≃ ̃ρ ∘ log(n), can we build a measure equivalence coupling
from Δ to Δ̃ that is ( ̃ρ ∘ ρ−1,L0)-integrable?

We actually worked on this problem but obtained couplings with “bad” integrability.
Indeed—as in the Lamplighter case— our constructions draw inspiration from the tiling
technique, which does have the kindness to provide us with a coupling but with terrible
integrability. We adress and detail this issue in the next paragraph.

cOUPLINGS BUILDING TEcHNIQUES

Weexposed and used two different techniques to build couplings between groups: Følner
tiling sequences and Sofic approximations. As we saw in the Lamplighter case, the tiling
technique —though inspiring— is not always usable to get orbit or measure equivalence
couplings. Indeed the condition that the two sequences must have at each step the same
cardinality is very restrictive. Furthemore this technique can give couplings with a very
“bad” integrability. Indeed we tried to use these tilings to answer Question 10.0.4 but the
integrability of the coupling thus obtained was not as good as the optimal one, namely
(L(1+α̃)/(1+α),L0). This is what we describe below.
Let α > α̃ > 0 and take Δ (resp. Δ̃) to be the diagonal product defined with km = κm

and lm = καm (resp. k̃m = km and ̃lm = κα̃m). Consider the Følner tiling sequence
(Σn)n∈ℕ of Δ defined in Chapter 8 and assume that we have overcome this cardinality
issue. That is to say, assume that we can build a Følner tiling sequences (Σ̃n)n∈ℕ for Δ̃
such that |Σn| = |Σ̃n| for all n ∈ ℕ. We can show that the sequence of tiles ( ̃Tn)n∈ℕ verifies

diam( ̃Tn) =∶ R̃n ≼ κm(1+α).

Moreover by Lemma 8.1.5 the tiles in Δ verify εn = 2/κn. Hence to compute the integra-
bility of the coupling we have to find a map φ such that (φ(R̃n)εn−1)n∈ℕ is summable
(see Theorem 6.2.4). For example if φ = x1/(1+α+ε) for some ε > 0, then the sequence is
summable and thus the coupling is (φ,L0)-integrable. But Theorem 6.1.16 suggests the
optimal integrability of the coupling fromΔ to Δ̃ could be as good asφ(x) = x(1+α)/(1+α̃).
Hence the integrability of the coupling obtained with the Følner tiling sequences is not
as good as the (theoretical) optimal one. Thus the motivation to define and use other
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couplings building techniques is not just due to the fact that it might be hard to find Føl-
ner tiling sequences with same number of elements: it is also necessary because Følner
tiling sequences do not always provide couplings with good integrability.
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Part III

APPEND IX

“
— Percival
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ATHE TECHNICAL CONSTRUCT ION OF
D IAGONAL PRODUCT

In this section we recall the definition given in [BZ21, Appendice B] of a Brieussel-
Zheng’s group from its isoperimetric profile and some useful results concerning the met-
ric of these groups.

A.1 FrOM THE ISOPErIMETrIc PrOFILE TO THE GrOUP

The aim of this section is to define —given a function— a group with this asymptotic
behavior. We also expose some tools used by Brieussel and Zheng to define such a group,
that will be useful for our proofs of orbit equivalence integrability.

A.1.1 Definition of Δ

Recall that a Brieussel-Zheng’s groupΔ is uniquely determined by the sequences (Γm)m∈ℕ
and (km)m∈ℕ. Moreover, in the particular case of expanders (see Section 7.1.2), the group
Δ is uniquely determined by the sequences (km)m∈ℕ and (lm)m∈ℕ (where lm corresponds
to the diameter of Γm). Thus, starting from a prescribed function ρ, we will define se-
quences (km)m∈ℕ and (lm)m∈ℕ such that the corresponding Δ verifies IΔ ≃ ρ ∘ log.
First, let

𝒞 ∶=
{
ζ ∶ [1,+∞) → [1,+∞)

|
ζ continue, ζ(1) = 1

ζ and x ↦ x/ζ(x)non-decreasing}
.

Equivalently this is the set of functions ζ satisfying ζ(1) = 1 and

(∀x, c ≥ 1) ζ(x) ≤ ζ(cx) ≤ cζ(x). (A.1)

So let ρ ∈ 𝒞 and define f such that ρ(x) = x/f(x). Remark that in particular f belongs
to 𝒞. Combining [BZ21, Proposition B.2 and Theorem 4.6] we can show the following
result (remember that with our convention the isoperimetric profile considered in [BZ21]
corresponds to 1/IΔ).

Proposition A.1.1

Let κ, λ ≥ 2. For any f ∈ 𝒞 there exists a subsequence (km)m∈ℕ of (κn)n∈ℕ and
a subsequence (lm)m∈ℕ of (λn)n∈ℕ such that the group Δ defined in Section 7.1.2
verifies IΔ(x) ≃ ρ ∘ log.

Example A.1.2 ([BZ21, Example 4.5]). Let α > 0. If ρ(x) ∶= x1/(1+α) then the diagonal
product Δ defined by km = κm and lm = καm verifies IΔ ≃ ρ ∘ log.
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A.1.2 Technical tools

Now let us recall the intermediary functions defined in [BZ21, Appendix B] and some of
their properties.
Let ρ ∈ 𝒞 and let f such that ρ(x) = x/f(x). The construction of a group corresponding

to the given isoperimetric profile ρ∘log, is based on the approximation of f by a piecewise
linear function ̃f. For the quantification of orbit equivalence, many of our computations
will use this function ̃f and some of its properties. We recall below all the needed results,
beginning with the definition of ̃f.

Lemma A.1.3

Let (km) and (lm) given by Proposition A.1.1 above. The function ̃f defined by

̃f(x) ∶=
⎧
⎨⎩

lm if x ∈ [kmlm, km+1lm],
x

km+1
if x ∈ [km+1lm, km+1lm+1],

(A.2)

verifies ̃f ≃ f.

We will denote by ̃ρ the map x ↦ x/ ̃f(x). Remark that both ̃f and ̃ρ belong to 𝒞. In
particular they verify eq. (A.1), which is only true when c and x are greater than 1. When
c < 1 we get the following inequality.

Claim A.1.4. If 0 < c′ < 1 and x′ ≥ 1/c′ then c′ ̃ρ(x′) ≤ ̃ρ(c′x′).

Proof. If 0 < c′ < 1 then 1/c′ > 1, thus we can apply eq. (A.1) with c = 1/c′ and x = c′x
which gives us

̃ρ(x′) = ̃ρ(
1
c′ c′x′) =

̃ρ(cx) ≤ cρ(x) = 1
c′ ̃ρ(c′x′).

Thus c′ρ(x′) ≤ ̃ρ(c′x′).

A.2 KNOWN rESULTS ON THE METrIc

We recall here some useful material about the metric of Δ and refer to [BZ21, Section 2.2]
for more details. First, let (x)+ ∶= max{x, 0}.

Definition A.2.1

For j ∈ ℤ and m ∈ ℕ let Imj ∶= [jkm/2, (j + 1)km/2 − 1]. We define the essential
contribution of fm : ℤ → Γm by

Em(fm) ∶= km ∑
j:range(fm,t)∩Imj ≠∅

max
x∈Imj

(|fm(x)|Γm − 1)+ .

The following proposition sums up [BZ21, Lemma 2.13, Proposition 2.14]. Recall that
𝔩(n) denotes the integer such that k𝔩(n)+1 > n and k𝔩(n) ≤ n.

Proposition A.2.2

For any δ = (𝐟, t) ∈ Δ we have

|(𝐟, t)|Δ ≤ 500
𝔩(range(δ))

∑
m=0

|(fm, t)|Δm ,

|(fm, t)|Δm ≤ 9 (range(fm, t) + Em(fm)) .
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BCOMPOS IT ION OF COUPL INGS

We recall in this chapter some material of [DKLMT20, Sections 2.3 and 2.5] concern-
ing the composition of couplings. We conclude by a figure summing up the different
couplings mentioned in this manuscript and their integrability.

B.1 cOMPOSITION AND INTEGrABILITY

B.1.1 Definition of the composition

Let us first recall the definition of the composition of two couplings given in [DKLMT20,
Section 2.3]. Please note that we state it for measure subgroup and equivalence couplings
since these are the only two notions of coupling we consider in this manuscript, but in
[DKLMT20] the authors define the composition in a more general case.
Let Γ , Λ and Σ be three countable groups and let (X1,X1,Λ,μ1) be a subgroup cou-

pling from Γ to Λ and (X2,X2,Σ,μ2) be a subgroup coupling from Λ to Σ. We define the
composition of these two couplings to be the subgroup coupling (X3,X3,Σ,μ3) obtained
as follows: the space of the coupling is defined by X3 ∶= (X1 × X2)/Λ where Λ acts di-
agonally on (X1 × X2,μ1 ⊗ μ2). This space X3 is equipped with the measure μ3 obtained
by identifying X3 with a Λ-fundamental domain. Denote by πX3 the map which takes
(almost) every x in X1×X2 to the unique element of Λ⋅x which belongs to the aforemen-
tioned fundamental domain and define X3,Σ ∶= πX3(X1,Λ × X2,Σ). Finally equip X3 with
the induced Γ and Λ actions and denote by X1,Γ (resp. X2,Λ) the fundamental domain
for the Γ (resp. Λ) action on X1 (resp. X2), then X3,Γ ∶= πX3(X1,Γ ×X2,Λ) is a fundamental
domain for the action of Γ on X3.
This new coupling verifies the following property.

Proposition B.1.1 ([DKLMT20, Prop.2.9])

Let Γ , Λ and Σ be three countable groups.
• Let (X1,X1,Λ,μ1) be a subgroup coupling from Γ to Λ and (X2,X2,Σ,μ2) be a
subgroup coupling from Λ to Σ. The composition of these two couplings is a
subgroup coupling from Γ to Σ.

• If both couplings are measure equivalence couplings, then their composition
is also a measure equivalence coupling.

Let us now study the behaviour of integrability under composition.

B.1.2 Integrability

Now that we know how to compose couplings, we need to quantify the integrability of
the obtained composition. Such a tool is provided by [DKLMT20, Prop. 2.26] which we
recall below.
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Proposition B.1.2

Let φ,ψ ∶ ℝ+ → ℝ+ be two non-decreasing subadditive maps with φ moreover
concave and let Γ , Λ and Σ be three finitely generated groups. Let (X1,X1,Λ,μ1) be
a φ-integrable measure subgroup coupling from Γ to Λ and let (X2,X2,Σ,μ2) be a ψ-
integrable measure subgroup coupling from Λ to Σ. Then the composition of these
two couplings is a φ ∘ ψ-integrable measure subgroup coupling from Γ to Σ.

Using the above proposition and Proposition B.1.1 we can obtain a similar result for
the quantification of measure equivalence coupling.
Now recall that two orbit equivalent groups are measure equivalent. In particular ev-

ery orbit equivalence coupling induces anmeasure equivalence coupling (see [DKLMT20,
Rk. 2.34]). Thus combining Proposition B.1.1 with [DKLMT20, Prop. 2.42] we obtain the
following result.

Proposition B.1.3 ([DKLMT20, Prop. 2.9 and 2.42])

If (X1,μ1) (resp. (X2,μ2)) is a (φ,L0)-integrable (resp. (ψ,L0)-integrable) orbit
equivalence coupling from Γ to Λ (resp. Λ to Σ), the composition of the induced
measure equivalence couplings gives a (ϕ ∘ ψ,L0)-integrable orbit equivalence cou-
pling from Γ to Σ.

See Corollary 6.3.2 and the discussion below Question 10.0.3 for examples of quantified
composition of couplings.

B.2 OVErVIEW

Figure B.1 sums up the known results on the integrability of couplings between the dif-
ferent groups appearing in this manuscript.

ℤ IZ(x) ≃ x

ℤd IZ(x) ≃ x1/d

ΔIΔ ≃ ρ ∘ log Lq ILq ≃ log

Lp
L1/p p < 1/d

exp ∘ρ

ρ∘log
(logρ log)1+ε exp

log
(log∘ log)1+ε

x ↦ x1/(1+α+ε)

If ρ(x) ≃ x1/(1+α)

by
com

position

Measure equivalence couplings

Measure subgroup coupling

Figure B.1.: Overview of the mentioned couplings
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NOTAT IONS INDEX

PArT 1

𝔄 Atlas of isometries from Y to X.
𝒜 An apartment in 𝒳.
(Γ ,S) Cayley graph of Γ with respect to the generating part S.
H0 The group ρ−1(PSLn(𝕂)).
Isom(𝒢) Isometry group of 𝒢.
ιy Isometry from 𝒴 to 𝒳 based at y (see page 42).
κ Natural injection of Y in 𝒴 (see Section 3.3.3).
[L] Class modulo homothety of the lattice L.
𝒫(x) The print of the vertex x (see Definition 2.3.1).
P A print in Y (see Definition 3.2.6).
ϕy Local isometry from 𝒴 to 𝒳 based at y (see eq. (3.5)).
q Quasi-isometry between X and 𝒳.
R Radius such that Y is R-locally the same as X.
ρ Injective homomorphism from Isom(X) to Isom(𝒳).
rA See Lemma 3.2.4.
r𝒫 Radius considered to define prints (see Definition 3.2.6).
R𝒳 Radius such that 𝒴 is R𝒳-locally 𝒳.
r𝒳 Radius such that ιy coincide with ϕy on B𝒴(y, r𝒳) (see page 42).
rY See Claim 3.3.8.
τ(x) The type of the vertex x, where x belongs to the Bruhat-Tits building of PSLn(𝕂).
𝒳 The Bruhat-Tits building of PSLn(𝕂).
𝒴 Hybrid graph built to be locally the same as the building (see Section 3.2.3).
(y1,… ,yl) A path of adjacent vertices y1, y2, …, yl.

PArT 2

≼, ≃ See above Definition 6.1.12.
|X| Cardinal of the set X.
∂F Boundary of the set F.
dn Integer such that Σ̄n ambedds in Σ″n (see eq. (9.3))
Dn Equals to the product∏n

i=0 di.
Δ See Definition 7.1.1.
Δm See Section 7.1.
Fn Følner sequence of Δ.
F″n Følner sequence of Lq.
𝐠 The sequence of maps (gm)m∈ℕ.
g′m See Section 7.1.3.
𝒢n Sofic approximation of Δ.
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Γ ′m Normal closure of [Am,Bm].
ℋn Sofic approximatin of Lq.
IG Isoperimetric profile of G.
ιn Injection from Σn to Σ″n (see page 88).
Lq Lamplighter group ℤ/qℤ ≀ ℤ.
νi An injection from Σ̄i to Σ″i .
Rn Diameter of Tn.
R′n Diameter of T′n.
SG A generating part of the group G.
Σn Følner tiling sequence (of Δ).
Σ̄n Følner tiling sequence defined by Σ̄n = ∏pn

i=p(n−1)−1 Σn.
Σ′n Følner tiling sequence of ℤ.
Σ″n Følner tiling sequence of Lq.
Tn Tile of Δ defined by Tn = ∏n

i=0 Σi
T′n Tile of ℤ defined by T′n = ∏n

i=0 Σ′i
θAm(fm) Natural projection of fm on Am (see Section 7.1.3).
θBm(fm) Natural projection of fm on Bm (see Section 7.1.3).
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