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ABSTRACT

This paper examines the factors determining the distribution, length scale, magnitude and structure of mesoscale
oceanic eddies in an eddy-resolving primitive equation simulation of the Southern Ocean (MESO). In particular, we
investigate the hypothesis that the primary source of mesoscale eddies is baroclinic instability actinglocally on the
mean state. Using local mean vertical profiles of shear and stratification from the MESO simulation, we integrate
the forced-dissipated quasi-geostrophic equations in a doubly periodic domain at various locations. We also perform
a linear stability analysis of the profiles. The scales, energy levels and structure of the eddies found in the MESO
simulation are compared to those predicted by the linear analysis, as well as to the eddying structure of the quasi-
geostrophic simulations,. This allows us to quantitativelyestimate the role of local non-linear effects and cascade
phenomena in the generation of the eddy field.
We find that typically there is a modest transfer of energy (an ‘inverse cascade’) to larger scales in the horizontal,
with the length scale of the resulting eddies typically comparable to or somewhat larger than the wavelength of
the most unstable mode. The eddies are, however, manifestly nonlinear and in many locations the turbulence is
fairly well-developed. Coherent structures also ubiquitously emerge during the non-linear evolution of the eddy
field. There is a near universal tendency toward the production of grave vertical scales, with the barotropic and
first baroclinic modes dominating almost everywhere, but thereis a degree of surface intensification that is not
captured by these modes. Although the results from the local quasi-geostrophic model compare well with those of
the primitive equation model in many locations, some profiles do not equilibrate in the quasi-geostrophic model.
In many cases bottom friction plays an important quantitativerole in determining the final scale and magnitude of
eddies in the quasi-geostrophic simulations.

1. Introduction

Altimetric observations of the sea surface (e.g. Fu and Menard
1983; Stammer 1997) reveal mesoscale eddies throughout the
world’s oceans, especially near western boundary currentsand
in the Antarctic Circumpolar Current (ACC). Mesoscale eddies
are likely generated by baroclinic instability of the mean flow,
gaining their energy from the massive potential energy reservoir
associated with horizontal gradients of the mean stratification
(Gill et al. 1974). The eddies dominate the oceanic kinetic en-
ergy, and through their effect on transport, play a major role in
the general circulation. Yet, we have neither a well-accepted
consistent theory for their structure and statistics, especially in
cases with realistic stratification, nor are eddies resolved in op-
erational medium- and long-term climate forecasting models.

From the practical point-of-view, because they affect trans-
port of heat, salt and other tracers, unresolved eddies mustbe
parametrized in climate forecasting models, and this need has
yielded various parametrization schemes. A parameterization
of mesoscale eddies attempts to mimic the turbulent flux that
would arise had the eddies been resolved, and at the heart of
any such scheme is a “theory” for the eddy statistics. However,

even in the highly-idealized case of two-layer quasi-geostrophic
flow driven by a horizontally homogeneous, time-independent
mean flow, there is as yet no closed theory for the eddy statis-
tics (see Held and Larichev 1996; Thompson and Young 2007,
for attempts and criticisms). Time-dependent mean flows fur-
ther complicate the picture (Farrell and Ioannou 1999; Flierl and
Pedlosky 2007). In order to take into account the more complex
local mean flows that arise in a general circulation model, pa-
rameterizations must therefore make rather drastic assumptions
about the structure of the unresolved flow (e.g. Gent et al. 1995;
Visbeck et al. 1997). But even parameterizations that attempt to
better account for the full vertical structure of the mean flow (e.g.
Ferrari et al. 2010) still implicitly assume a horizontallylocal
relationship between the resolved flow and the unresolved eddy
fluxes — this will not be accurate if, for example, the eddying
flow at a given location was generated elsewhere and advected
in by the mean flow.

A great deal of work has been done both to understand how
best to implement parameterizations in general circulation mod-
els, and to understand the scale and magnitude of eddies gener-
ated by a given mean flow, but relatively little has been done to
investigate the assumed local relationship. One approach,taken
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by Smith (2007b) and Tulloch et al. (2010), is to use the hydro-
graphic or model mean state to compute local linear baroclinic
instability scales and growth rates at each lateral, open-ocean
location, and compare these directly to either observations or
model output. If the dynamics is effectively close to that pre-
dicted by the local linear model, then these quantities would also
characterize the observed eddy field. Not too surprisingly,only a
rough, inconclusive correspondance between the observed field
and the local linear prediction was found. Moreover, recent
analyses of the altimetric data show that a large fraction ofthe
mesoscale field is organized into coherent structures, suchas
rings (Chelton et al. 2007) and jet-like striations (Maximenko
et al. 2005; Richards et al. 2006), which are likely the result of
highly non-linear processes.

Although it is more likely the case that the nonlinear evo-
lution of the instability determines the eddy properties, the re-
lationship between the mean state and the eddying flow may
still be local. Of particular importance is the degree to which
the nonlinear evolution of local baroclinic instabilitiesleads to
an inverse cascade of energy, in both the horizontal and ver-
tical. Altimetric observations do suggest that an inverse cas-
cade to larger horizontal scales exists at the ocean surface(Scott
and Wang 2005). However, determining which combination
of vertical modes is sampled by the surface flow remains an
open problem. Which modes are sampled by the observations
is important for the following reasons. In the case of the quasi-
geostrophic dynamics with two equal-depth layers, the classical
picture of Rhines (1979) and Salmon (1980) is that baroclinic
energy cascades toward the first baroclinic wavelength of de-
formation, at which the baroclinic energy is transferred tothe
barotropic mode, and the barotropic energy then cascades to-
ward larger scales, until finally dissipative mechanisms become
effective. In this picture, the steady-state flow will be dominated
by the barotropic mode. However, when realistic ocean stratifi-
cation is present, the flow does not completely barotropize,ex-
cept possibly on very long timescales, and a large portion ofthe
energy remains in the baroclinic mode (Smith and Vallis 2001,
2002). This picture may be further modified by the presence of
the ‘surface quasigeostrophic’ mode (Lapeyre and Klein 2006),
which undergoes its own inverse cascade (Capet et al. 2008).

As well as the vertical structure of the cascade, and its pro-
jection on the observed surface, the structure of the evolved flow
is also highly dependent on the nature of the mean PV gradient
and the dissipation mechanism. Even relatively small gradients
of the Coriolis parameter (theβ effect) can result in a steady
flow dominated by zonal jets (Rhines 1975; Vallis and Maltrud
1993). When the mean flow is not strictly zonal, as is the case
in most oceanic locations, the eddy field may take on a very
complex structure, still dominated by jets, but with extremely
high eddy energy (Spall 2000; Arbic and Flierl 2004b; Smith
2007a). On the other hand, the presence of sufficiently strong
drag may overwhelm theβ -effect and yield a nearly isotropic
flow (Thompson and Young 2006, 2007). Finally, the nature of
the drag term — quadratic versus linear — may also change the

scale of the equilibrated flow (Arbic and Flierl 2004a; Grianik
et al. 2004). In short, even when the flow is ‘local,’ and neglect-
ing the effects of topography, variations in the local stratifica-
tion, mean shear and dissipation can result in a great diversity of
possible equilibrated eddy fields.

In the present paper we take a more direct approach, and
try to avoid the need for a complete ‘theory’ of equilibrated
mesoscale eddies in a homogeneous mean flow. Beginning with
a high-resolution, eddy-rich ocean global circulation model sim-
ulation, we ask, to what extent is the steady-state eddy fieldat
a particular location consistent with a homogeneous model of
mesoscale turbulence? To address this question, we analyze
the output from the 1/6◦ run of the Mesoscale Eddy Southern
Ocean project (Hallberg and Gnanadesikan 2006), a series of
simulations using an isopycnal primitive equation model. We
consider first the statistical and structural properties ofthe eddy
field throughout the model domain, and perform a local stabil-
ity analysis like that of Smith (2007b). We then choose a set of
six locations, and use the time-averaged mean fields at thoselo-
cations to drive a horizontally-periodic quasigeostrophic turbu-
lence model to steady-state. The primary metrics of comparison
are i) the horizontal length scale, ii) the magnitude and iii) the
vertical structure of the eddy field — to what extent are these
quantities consistent in the global circulation model and quasi-
geostrophic simulations?

The paper is organized as follows: section 2 is devoted to
the studies of eddy properties in MESO simulations, with an
emphasis on their vertical structure, and a comparison withcom-
putations of linear baroclinic instability. Section 3 discusses the
quasi-geostrophic simulations carried out at various locations in
the Southern Ocean. A comparison between eddies in MESO
simulations and the forced-dissipated quasi-geostrophicsimula-
tions is presented in section 4, and a summary is given in section
5.

2. Eddies in a comprehensive primitive equation ocean model

In this section we examine the mesoscale turbulence in the
eddy resolving comprehensive primitive equation ocean model,
specifically the 1/6° resolution MESO simulations of Hallberg
and Gnanadesikan (2006). This is an isopycnal hemispheric
ocean model with realistic geometry but somewhat idealized
forcing. There are 20 interior vertical layers and a three-level
bulk-mixed layer on the top.

a. Eddy properties in MESO simulations

The surface eddy kinetic energy (EKEs) in MESO simula-
tions, computed by considering a one-year time average of the
square of velocity fluctuations, is presented on the lower panel
of Fig. 1. This map of EKEs compares reasonably well with
observations from altimetry (see Hallberg and Gnanadesikan
(2006) for more details). It shows an inhomogeneous distribu-
tion of oceanic eddies: regions of high EKE are mostly located
around western boundary currents and in some regions in the
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main body of the Antartic Circumpolar Current (ACC).
A snapshot of the surface current speed on the upper panel

of Fig. 1 shows that these regions of high EKEs correspond to
regions where mesoscale turbulence tends to be organized into
rings with typical velocities of 1 m s−1 and diametersLring of
about 200 km. To extract coherent structures in an objective
way from the eddy field we employ the Okubo-Weiss parame-

terW = 4
(
(∂xu)2 +∂yu∂xv

)
. This procedure has been used in

previous diagnostics of altimetry measurements (Isern-Fontanet
et al. 2003, 2006; Chelton et al. 2007). Coherent structures
are found by looking for simply-connected regions in which
W < −2. 10−12 s−2. We define the length scaleLco of a given
structure as an equivalent diameter corresponding to a diskthat
would have the area of the coherent structure:Lco= 2(Area/π)1/2.
Both a snapshot and a one year average of this quantity are plot-
ted in Fig. 2. Similar to observations of eddies in the Mediter-
ranean sea by Isern-Fontanet et al. (2006), regions highly pop-
ulated by large scale coherent eddies are found in high EKE
regions.

b. Modal projection of the eddy energy

To understand the broad characteristics of the vertical struc-
ture of the eddy field, we compute the vertical normal modes at
each location. The baroclinic modes{φm}m≥1 are solutions of
the Sturm-Liouville eigenvalue problem

d
dz

(
f 2
0

N2

dφm

dz

)
= −

φm

Rm
2 , (1)

whereN(lon, lat,z) and f0(lon, lat) are respectively the vertical
profile of buoyancy frequency and the Coriolis parameter at a
given location defined by its latitude and longitude. The bound-
ary conditions for this problem aredφm/dz(z= 0)= dφm/dz(z=
−H) = 0, whereH(lon, lat) is the ocean depth at the location
in question. To each baroclinic mode is associated an eigen-
value R−2

m (lon, lat) defining them-th Rossby radius of defor-
mation. For convenience, we also define the first deformation
wavelengthL1 ≡ 2πR1.1 Note that the vertical modes provide
a complete orthonormal basis for the vertical structure of any
field satisfying the same boundary conditions. However, it has
been recently argued that one should rather consider a basisthat
takes into account both the interior baroclinic modes and the
surface intensified modes that reflect the contribution fromsur-
face density gradients (Lapeyre 2009). Unfortunately, such a
basis would not be orthonormal and would require more com-
plicated analysis and interpretations, and therefore as a starting
point we consider conventional baroclinic modes only; witha
sufficiently high vertical resolution these would also capture the
surface-intensified modes, although the exploration of that is be-
yond the scope of the present paper.

1Note that the above method of calculating the Rossby radius differs by a
constant factor from the scaling estimateNH/ f even in the case of uniform
stratification. In this case it is readily shown thatR1 = NH/(π f ) and soL1 =
2NH/ f .

Baroclinic modes and deformation scales are computed lo-
cally from the one-year averaged density profiles. The problem
(1) is discretized as in (Smith 2007b, Appendix A), and the par-
ticular discretization used here is the same as that in the MESO
simulations, but with a minimum upper-layer depth of 30 me-
ters. Velocity fields are projected onto these modes at each point,
and the partition of eddy kinetic energy into first baroclinic and
barotropic modes is given in Fig. 3. Evidently, the EKE of the
first baroclinic mode and of the barotropic mode accounts for
nearly all the total EKE in MESO, typically well over 80%. The
barotropic mode is clearly dominant along the ACC path, while
the contribution of the first baroclinic mode becomes equivalent
to the barotropic mode at higher latitudes. This is generally con-
sistent with previous diagnostics by Wunsch (1997) on the verti-
cal structure of eddies in the ocean, from (sparse) observations.

Vertical profiles of EKE at six different locations are plotted
as in Fig. 4, and table 1 gives additional information. While
EKE is in some places (for instance at 30° E 34° S, in the Aghu-
las current) mostly barotropic and first baroclinic, the eddying
field is in a number of places surface intensified in a way that
cannot be explained by its barotropic and first baroclinic mode
only (see the dashed blue lines of Fig. 4). That is to say, even
though most of the energy does reside in the barotropic and first
baroclinic modes, there is in some places a non-negligible resid-
ual near the surface, possibly due to some form of surface in-
stability or surface quasi-geostrophic dynamics. A natural first
question is then to determine if this vertical structure canbe un-
derstood by linear instability computations of baroclinicinsta-
bility around an imposed mean flow.

c. Linear instability in the primitive equation simulations

Following Smith (2007b), linear instability computationshave
been performed at each horizontal point of the MESO simula-
tions (details are described in the Appendix). The mean state is
computed by taking a one-year time-average over the entire flow.
We chose the time period of one year after performing some
preliminary analysis that showed that most unstable regions are
characterized by fairly short instability time scales, from weeks
to months. The mean flow is also varying on a similar time
scale, and if we were to average over a much longer period the
mean flow would be unrepresentative of the flow that the eddies
actually see, while taking a smaller time average would leave
a too-strong signature of the eddies in the mean fields. Taking
a one-year averaged seemed the best choice, and these fields
are used in both the linear stability analysis and the non-linear
quasi-geostrophic simulations described later.

The maximum instability growth rateωinst = 1/τinst is plot-
ted on the upper panel of Fig. 5. Regions of fast growth in Fig.
5 are localized in space and are associated with large instability
wavelengthsLinst in Fig. 6. These regions of fast growth mostly
reflect the fine-grained structures of the mean flow, and the local-
ized regions of instability. This rough field is in some contrast
with the rather smooth distribution of EKE in Fig. 1, which may
reflect the smoothing-out of localized instabilities by advective
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effects.
The ratioLinst/L1 is plotted in Fig. 5, and the first baroclinic

Rossby radiusR1 is shown in Fig. 7. This ratioLinst/L1 is typ-
ically about two in the ACC, and drops to about 0.3 at higher
latitudes, except in regions of high growth rate, as for instance
in western boundary currents. Note that in the classical Eady
problem (constant stratification and velocity shear and a flat bot-
tom) Linst/L1 ≈ 2 (Vallis 2006). The ACC is the region where
the stratification is the closest to a linear profile, so it is not
surprising that predictions based on the Eady problem are well
approached. By contrast, small values of the ratioLinst/L1 are
mostly associated to surface intensified modes in regions where
the mean flow is surface intensified, and easterly sheared (Tul-
loch et al. 2010).

A major issue in the dynamics of mesoscale eddies in gen-
eral, and here in particular, is understanding what sets their hori-
zontal scale. Comparing the eddy properties in the fully-developed
primitive equation simulations with the linear stability proper-
ties (shown in Fig. 6), one finds that the simulated eddies tend
to be a few times larger than the scale of the linear instabil-
ity, but the interpretation is difficult because of the presence
of structures in the field. The rings visible in Fig. 2 do seem
to have diameters close to the instability wavelength in regions
of fast growth — for example, table 1 shows that the insta-
bility wavelength in the Aghulas current (point 30° E,34° S) is
Linst ≈ 2L1 = 500 km, which is the about the size of oceanic
rings in this region. Note that the way the coherent structure are
extracted tends to underestimate the eddy length scale, since our
criterion on the Okubo-Weiss parameter selects the core of the
rings. Note also that other metric for the eddy length scale (see
e.g. Tulloch et al. (2010) for a discussion) would lead to similar
conclusions.

The β -effect is one possible and oft-cited mechanism that
may play a part in setting eddy scales. In the presence of suf-
ficiently largeβ , the flow will become anisotropic in the hor-
izontal, possibly self-organizing into zonal jets (Rhines1975;
Vallis and Maltrud 1993) with widths of order the Rhines scale,
(V/β )1/2, whereV is some measure of the barotropic eddy ve-
locity. Here we define a Rhines wavelength asLRh = 2π(vrms/β )1/2,
wherevrms is the root-mean-square meridional barotropic veloc-
ity; other choices do not change the results significantly. The
lower panel of Fig. 6 shows the Rhines wavelength computed
from the one-year average of the MESO simulation, and shows
that this scale is generally larger than both the instability wave-
length and the ring size, taking on values of about 500km in
regions of high eddy activity. This is not surprising, sinceβ be-
comes quite small at high latitudes — using an estimated value
of vrms ∼ .1 ms−1 (appropriate to regions of high eddy activ-
ity, judging from Fig. 1) andβ at 50◦ yields LRh ∼ 500 km.
Moreover, the jets recently observed in the ocean (Maximenko
et al. 2005; Richards et al. 2006) are typically at low-latitudes —
small jets in the ACC appear to be driven by topographic vari-
ations rather thanβ (Thompson 2010). Locally, oceanic eddy
length scales tend to be closer to the scales given by linear in-

stability analysis than the Rhines wavelength, but we should not
conclude that the eddy field is a consequence of linear dynam-
ics. The rings themselves are certainly nonlinear structures (see
e.g. Venaille and Bouchet (2010) for an interpretation of these
structures as a result of potential vorticity homogenization with
additional dynamical constraints), and their length scaleis not
necessarily given by local properties of the mean flow.

All these results are consistent with previous analysis of
eddy length scale in term of linear baroclinic instability (Tul-
loch et al. 2010). We note in addition that maps of eddy length
scale, Rhines scale and instability wavelength exhibit strong spa-
tial inhomogeneities, with high values along western boundary
currents. Caution is then warranted when interpreting zonal av-
erage of such quantities.

As noted previously, the vertical structure of the eddies is
primarily barotropic and first baroclinic, but there is in many
places an additional intensification near the surface. Fig.4
shows, among other things, a comparison between the struc-
ture of vertical EKE profiles in the MESO simulation and the
vertical profile of the energy of the fastest-growing linearmode
EKElin(z) = |ψ̃inst|

2/
∫ 0
−H dz |ψ̃inst|

2, with arbitrary amplitude, at
six particular locations. The surface-intensification in both quan-
tities suggests that at least part of this structure is a direct con-
sequence of the linear instability properties of the column. At
the location 80° E, 45° S, there are eddies in the MESO field, de-
spite that linear analysis yields nearly stable modes (the growth
rate∼ 100 days, and the scale of fastest growthl inst∼ L1/50 are
both very small). Moreover, no eddy activity forms in the non-
linear quasi-geostrophic model run with the mean flow at this
location (discussed later), even after one year of integration. It
seems likely that in this region eddies in MESO have their origin
elsewhere and are advected in, rather than growingin situ.

Overall, the vertical structure of the EKE in the primitive
equation simulations does have some resemblance to linear dy-
namics, with surface intensification but otherwise a fairlyuni-
form structure in the vertical. In the next section we explore the
extent to which the structure can be understood on the basis of
quasi-geostrophic turbulence.

3. Eddies in forced-dissipated quasi-geostrophic simulations,
with an imposed mean flow

We found that the eddy field in the primitive equation sim-
ulation bears some rough correspondance in vertical structure
to that of the locally-computed linear instabilities, but the hor-
izontal eddy scales are larger, and the spatial structures of the
eddies are quite complex, including coherent vortices, jets and
turbulent undulations of streamlines. On the practical side, one
would like a theory for the horizontal property flux the eddy field
generates, in order to effectively parameterize the effects of sub-
grid-scale eddies on a coarsely-resolved ocean model. The eddy
flux is a function of the eddy scale, energy and vertical structure,
and so a theory for the latter will yield the former.

However, there is no complete theory for the steady state
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eddy statistics driven by an imposed mean state, even within
the highly-idealized assumptions of quasi-geostrophic scaling
and horizontal homogenity (effectively equivalent to the use of
a horizontally periodic domain). Attempts to form a theory for
the steady-state, horizontally homogeneous eddy statistics in the
case of two equal-depth layers and zonal mean flow began with
Haidvogel and Held (1980), and yet even these restrictions are
insufficient to allow straightforward closure. Thompson and
Young (2006) were able to construct a useful closure withβ = 0
and a linear vorticity drag on the bottom layer, although their
theory for the eddy diffusivity still required some empirical fit-
ting. When non-zeroβ is included with zonal mean flow, some
progress was made by Held and Larichev (1996) and Lapeyre
and Held (2003), although Thompson and Young (2007) demon-
strate that the former results are problematic, in part because
they do not explicitly take into account the role of drag in dis-
sipating the energy. Non-zonal mean flows further complicate
the picture (Spall 2000; Arbic and Flierl 2004b), and in some
cases the flow cannot achieve a steady-state (Smith 2007a). Non-
trivial vertical structure and other drag mechanisms only add ad-
ditional problems.

Our approach is therefore to use the steady-state statistics
of a local model for the eddies as our “theory,” and this, in a
nutshell, is the motivation for this section. Here we consider
non-linear quasi-geostrophic simulations of perturbations about
imposed, baroclinically unstable mean states taken from six lo-
cations in the MESO run. The six locations are referenced in ta-
bles 1 and 2, and represented as black circles on Fig. 1. We first
review the quasi-geostrophic model and describe its numerical
implementation, then discuss the issues that arise in generating
steady states with this model.

a. Quasi-geostrophic dynamics around imposed mean flows

The perturbation quasi-geostrophic potential vorticity (PV)
is

q = ∇2ψ +
∂
∂z

(
f 2
0

N2

∂
∂z

ψ
)

, (2)

whereψ is the perturbation streamfunction andu =(−∂yψ, ∂xψ)
the corresponding velocity perturbation. Neglecting contribu-
tions from the relative vorticity, the mean quasigeostrophic po-
tential vorticity (PV) gradients are

∂Q
∂x

=
∂
∂z

(
f 2
0

N2

∂V
∂z

)
,

∂Q
∂y

= β −
∂
∂y

(
f 2
0

N2

∂U
∂z

)
, (3)

whereβ is the planetary vorticity gradient andf0 the Coriolis
parameter. The corresponding mean density profiles are used
in the the six quasi-geostrophic simulations presented here are
plotted in Fig. 8 and the imposed mean velocity and PV gradient
profiles are shown in Fig. 9.

The quasi-geostrophic equation advection equation for the

perturbation PVq given the imposed mean stateU,∇Q is

∂q
∂ t

+(u+U) ·∇q+u ·∇Q = 0 0> z> −H

(4a)

∂
∂ t

∂ψ
∂z

+(u+U) ·∇
∂ψ
∂z

+

(
u×

∂U
∂z

)
·k = −N2w z= 0,−H

(4b)

with w(0) = 0 and w(−H) = −Dbottom , (4c)

whereDbottom represents bottom friction (topography is omitted,
see below), andk is the unit vector in the vertical direction. The
boundary conditions (4b) can be replaced by the condition ofno
buoyancy variation at the top and the bottom layer (∂zψ = 0 at
z= 0,−H), provided that surface buoyancy anomalies are inter-
preted as a thin sheet of potential vorticity just above the ground
and below the lid (Bretherton 1966). Note that the termU ·∇Q is
omitted on equation (4a). This may be justified if there is scale
separation between large scale flow and perturbations (Pedlosky
1984) or if the mean flow is a steady state of the unforced undis-
sipated quasi-geostrophic equations. Although neither isstrictly
true in our case, following Arbic and Flierl (2004b) we do not
expect quantitative changes to result from the presence of the
term.

The quasi-geostrophic simulations were performed in a dou-
bly periodic domain of extensionL = 64R1, (whereR1 is the first
deformation radius) using a spectral code in the horizontaland
finite-difference in the vertical (see Smith and Vallis (2002) for
details). All the runs presented in this paper have an effective
resolution of 2562 in the horizontal, and vertical resolution that
varies from place to place, depending on the average number of
layers present at that location in the MESO simulation (typically
from 7 to 16). Integrations were performed until a statistically
steady state was achieved. The equilibration times were found to
be extremely large, requiring typically more than 15 years.This
difficult equilibration was already reported in the same frame-
work, but for even more idealized settings, by Arbic and Flierl
(2004b). When equilibration was not possible over this period
of time, additional dissipation mechanisms were included —see
the next section for more discussion of this choice.

b. Effect of the mean state parameters and structure on the steady-state
perturbation flow

Steady-state is achieved when eddy energy generation by the
unstable mean flow is balanced by dissipation. Multiplication
of (4a) by−ψ and integration over the domain yields the eddy
energy budget

dE
dt

=
∫

dz (Vuq−Uvq)−Dissipation. (5)

Generation of eddy energy thus occurs through the eddy flux of
PV, and the dissipation term depends on the bottom dragDbottom.
Because eddy energy tends to accumulate in low-mode, large-
scale flows, the most energy effective dissipation mechanisms
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are either scale-independent or concentrated at large scales; in
the present simulations, we primarily use linear (scale-independent)
bottom drag. The numerical simulations also include a small-
scale enstrophy dissipation filter, but this has negligble effects
on the energy budget.

1) THE BETA EFFECT

The Coriolis gradientβ yields a constant term in the merid-

ional mean PV gradient,∂yQ = β − ∂z

(
( f/N)2 ∂zU

)
. Profiles

of mean PV gradients at six different locations are given in Fig.
9. Typically, variations of the mean PV gradient due to thick-
ness (or stretching) variations are much stronger thanβ in the
locations considered (as in Smith 2007b), and linear instabil-
ity computations depend only a little onβ at these points. The
effect of β would have been much more important if we had
considered the linear instability due to just the barotropic and
first baroclinic modes (i.e. if we had projected the mean shear
onto just the first two modes) — the equivalent of a two-layer
model. For instance, defining the two-layer criticality number as
Cr = U1/βR2

1, whereU1 is the projection of the mean zonal ve-
locity on the first baroclinic mode gives values of order one (see
table 1), but this definition does not take into account the strong
vertical variations of mean PV gradients, which overwhelmβ .

The relative unimportance ofβ from the point of view of
linear stability contrasts with the strong qualitative differences
between simulations performed with and withoutβ at almost
every location (see table 2). Energy levels are generally greater
(sometimes by more than an order of magnitude) withβ than
without it. A similar result was found for non-zero mean merid-
ional flows by Spall (2000), and the result stands in stark con-
trast to the effect ofβ on cases with purely zonal flow. In the
zonal-mean flow case (with predominantly zonal flow directed
eastward in upper layers relatively to the lower layers), increas-
ing β has a stabilizing effect for linear modes, and consistently
the scaling of Held and Larichev (1996) predicts a decrease of
energy production withβ in forced-dissipated simulations.

The reasons for the contrasting roles ofβ in zonal and non-
zonal mean flow can be understood through its tendency to pro-
duce zonally elongated flows (rather than its effect on stability),
which then affects the eddy generation terms in (5) in different
ways. Whenβ is large enough to produce eddy-driven zonal
jets (e.g. when drag is small enough to allow zonal anisotropies
to form), the northward (cross-jet) PV fluxvq is suppressed, be-
cause cross-jet fluxes tend to be increasingly suppressed asthe
jet strengthens (Smith 2005; Haynes et al. 2007). By contrast,
as the jets increase in strength correlations arise betweenpoten-
tial vorticity q and zonal velocitiesu, resulting in an enhanced
eastward (along-jet) PV fluxuq. When bothU andV are non-
zero, increasingβ will lead to stronger jets, and eddy energy
injection due to the along-jet flux (

∫
dzVuq) will far dominate

the increasingly negligible across-jet flux due to the zonalflow
(−

∫
dzUvq) — thus when the flow is more non-zonal, eddy en-

ergy will increase withβ (Smith 2007a).

In some of the locations investigated here, the enhanced pro-
duction of eddy energy due to non-zonal mean flow prevented
equilibration in the quasi-geostrophic simulation. However, this
effect only could not be sufficient to explain the difficulty to
equilibrate in locations whereβ does not dominate the dynam-
ics, as for instance in the case of the formation of surface inten-
sified rings at high latitude (see below).

2) THE ROLE OF BOTTOM FRICTION

In addition to the complexities encountered with the com-
bination of β and non-zonal mean flows, reliance on bottom
drag can also make equilibration difficult to achieve. In cases in
which the dynamics is confined to the upper ocean, and with no
efficient energy transfers from these upper layers to the lower
layers, bottom friction may not be sufficient to achieve equili-
bration (Arbic and Flierl 2004b). In the real ocean, energy may
also dissipate either by eddies propagating away from the region
of generation and by small scale dissipation by non-geostrophic
processes in the ocean interior. In some cases we sought to
achieve equilibration by the addition of another dissipative pro-

cess, namely a small thermal drag of the formνth
∂
∂z

(
f 2
0

N2
∂
∂zψ

)

on the right hand side of the PV transport equation (4a). This
terms damps vertical variations of buoyancy and so available
potential energy. It allows equilibrate simulations for which the
kinetic energy is quasi-equilibrated, but not the potential energy.
This is the case when eddies are organized into surface intensi-
fied zonal jets separating regions of quasi-homogenized poten-
tial vorticity: the total energy is dominated by the APE of the ho-
mogenized regions, which is the the difficult part to equilibrate,
while the kinetic energy, dominated by the jets at the interfaces,
was quasi-equilibrated.

A non-dimensional parameter one can associate with bot-
tom friction is the throughputU1/R1rb whererb is the bottom
friction coefficient. In the limit of small bottom velocities, the
bottom drag is an approximation to the Ekman drag, andrb ∼
dE f/2H, wheredE is the Ekman layer depth. Control exper-
iments assumed a typical Ekman layer depth of order 10 m,
which leads to throughput values from 0.5 to 30 in the six lo-
cations considered (see table 1). The fact that some simulations
were difficult to equilibrate, and that many uncertainties were
attached to the estimation of the depth of bottom Ekman layer,
motivated us to carry out a number of other simulations in which
the Ekman layer depth is fixed at 1 m, 100 m (not shown in this
paper) and 1000 m. These values (some of them being unrealis-
tic for the ocean), span the limits of very weak and very strong
bottom friction.

As expected from previous numerical computations of geostrophic
turbulence in two-layer models, bottom friction plays an impor-
tant role in setting the horizontal and vertical structure of the tur-
bulence (Arbic and Flierl 2004a; Thompson and Young 2007).
This is illustrated in table 2 by the changes in the contribution
of barotropic and first baroclinic modes with different values of
bottom friction. The ratio of the baroclinic to barotropic kinetic
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energy tends to zero in the limit of vanishing bottom friction,
while it tends to a constant value in the limit of high bottom fric-
tion, consistent with previous forced-dissipated simulations of
two layer quasi-geostrophic models (Arbic and Flierl 2004a).

The complete barotropization in the low-friction limit can
be understood as a tendency for the system to reach the gravest
modes, consistently with the Rhines-Salmon phenomenologyof
two-layers turbulent flow. In the high-friction limit, bottom drag
strongly damps the dynamics in the lower layers. If one com-
bines the condition of vanishing velocity at the bottom and the
tendency for the system to reach the gravest vertical mode, then
the energy will project mostly on the barotropic and the first
baroclinic mode in such a way that the baroclinic mode compen-
sates the barotropic mode at the bottom. The ratio of barotropic
to baroclinic energy in MESO (see table 1) and in the quasi-
geostrophic simulations (see table 2) show that the ocean isin
an intermediate regime between these two limits.

4. Comparison between primitive equation and quasi-geostrophic
simulations

a. Eddy kinetic energy levels and vertical structure

A comparison of eddy kinetic energy levels in the MESO
simulation (see table 1) and the equilibrated quasi-geostrophic
simulations (see table 2) shows some of the strengths and limits
of the locality hypothesis. Some regions of high energy lev-
els in MESO are also regions of high energy levels in quasi-
geostrophic simulations, but in other regions (see e.g. point
30° E,34° S, in the Aghulas current), energy levels produced
in the quasi-geostrophic simulations are orders of magnitude
higher than MESO simulation (or it was necessary to consider
artificially high bottom drag to obtain similar values). On the
other hand, regions of low energy levels in MESO are always
found to be regions of low energy levels in quasi-geostrophic
simulations; in fact, the energy levels produced in quasi-geostrophic
simulations are smaller than in MESO simulations.

These results suggest than a few very energetic regions sup-
ply eddies to other, less baroclinically active regions, although
the existence of missing energy sources (such as mixed baroclinic-
barotropic instabilities or direct generation by winds) and sinks
(such as ageostrophic processes) in the QG models forced by
baroclinic instability make such an assertion a little tentative.

The normalized profiles of EKE extracted from the QG sim-
ulations at the six different locations are presented in Fig. 4.
Also shown are the corresponding EKE profiles from the same
locations in the MESO simulation, as well as EKE profiles due
to only to the barotropic and first baroclinic mode — see also
table 2. In some places there is a clear tendency for energy toac-
cumulate in low modes (at points 30° E,34° S and 80° E,34° S),
while in others the vertical structure is similar to that of the most
unstable mode, sometimes enhanced near the surface.

b. Eddy length scale and horizontal structure

To compare the horizontal organization of mesoscale turbu-
lence between the two models, snapshots of surface flows are
presented on Fig. 10 and 11. Snapshots of the MESO sim-
ulation (in which the time-mean flow is removed) are chosen
such that the point at which the vertical profiles are extracted for
the quasi-geostrophic simulation is at the center of the domain.
The domain length scale is the same as for the quasi-geostrophic
simulations, namelyL = 64R1, whereR1 is the first baroclinic
Rossby radius of deformation at this point. In each case, MESO
snapshots are compared with the quasi-geostrophic simulations
that are equilibrated (see table 2), even if the equilibration in-
volves high bottom friction or the use of thermal damping. Since
points 80° E,34° S where found to be stable, and since none of
the 30° E,60° S simulations were equilibrated, the dynamics at
these locations are not discussed in the following. Perhapsthe
most noticeable feature is the emergence of structures of one
form or another in nearly all cases.

Point 30° E,34° S is located in the western boundary current
along South Africa, perhaps the most energetic region of the
ocean. A typical feature of eddying activity in this region is
the formation of mesoscale rings, visible on the left panel of
Fig. 10. Strikingly, the (all anticyclonic) rings producedin
the quasi-geostrophic simulations are of similar size, slightly
larger than the wavelength of the most baroclinically unstable
mode. This quasi-geostrophic illustration is taken from a run
with high bottom friction (r = 100rb in table 2). Decreasing the
friction to r = 10rb leads to an increase of the number of rings,
and their length scale is then equal to the instability wavelength.
In this case the flow looks very similar to the ‘vortex crystal’
observed previously in the two-layer quasi-geostrophic simula-
tions of Arbic and Flierl (2004b). For lower bottom friction
(rb and 0.1rb on table 2), there remains only one vortex at the
scale of the instability wavelength, and the flow is dominated by
a single domain scale barotropic vortex. This implies that the
scale of the eddies is a non-monotonic function of bottom fric-
tion, consistent with the results of Thompson and Young (2006).
Note that barotropic instability and topographic interactions are
not present in the quasi-geostrophic simulations; evidently baro-
clinic instability and non-linear evolution is sufficient to create
the coherent rings, with comparable length scale to the observed
rings in MESO simulations.

At point 30° E,45° S (left panel of Fig. 11), both MESO and
the quasi-geostrophic simulation show rings embedded between
coherent, relatively strong eastward jets. However, the jet-like
structures are stronger in MESO, and the rings are larger than
in the quasi-geostrophic simulations. A similar scenario seems
also to hold at 80° E,34° S, shown in the right panel of Fig. 10:
rings are smaller in the quasi-geostrophic simulations (they have
a diameter comparable to the instability wavelength) than in the
MESO simulations.

Finally, at points 80° E,60° S and 80° E,34° S, the quasi-
geostrophic simulations exhibit strong surface-intensified coher-
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ent rings whose length scales are roughly comparable to the in-
stability wavelengths. The surface intensification is present in
the linear instability properties, but the evolution into coherent
structures is manifestly a nonlinear process. The formation of
the coherent structures evidently inhibits an inverse cascade of
energy to larger scales, and we discuss this more below.

c. Is there an inverse cascade ?

Do the energy containing eddies have a scale larger than
the instability wavelength? Here we regard the latter as corre-
sponding to the injection wavelength in forced-dissipatedquasi-
geostrophic simulations. There are then two different although
related scales we consider: the scale of the kinetic energy (KE)
and the scale of the available potential energy (APE). Equiva-
lently, we may also consider the energy in the barotropic mode
(entirely kinetic) and the energy in the first and higher baroclinic
modes (kinetic plus potential).

Spectra of barotropic and first baroclinic KE, and the APE
are plotted in the lower panels of Figs. 10 and 11. These spectra
support the idea that there is a moderate inverse cascade forboth
barotropic and first baroclinic modes: the energy peak is gener-
ally larger than the instability wavelength, but only by a factor of
a few. The equivalent barotropic nature of the flow is noticeable
in these cases: the first baroclinic and barotropic kinetic energy
spectra have roughly the same shape. It is also apparent that
the total energy is dominated by the available potential energy,
which is always at scales larger than the instability wavelength,
consistent with a moderate inverse cascade for the available po-
tential energy in the quasi-geostrophic simulations.

In regions whereβ is sufficiently large, strong eastward jets
form and separate regions of homogenized potential vorticity in
the upper layers, as on the right panel of fig. 10. This is of course
consistent with the familiar notion that the beta effect leads to
anisotropic flows (Rhines 1975; Vallis and Maltrud 1993). How-
ever, the Rhines scale itself (LRh≡

√
vrms/β ) does not manifest

itself unambiguously in the simulations: one might expect to
see a footprint of this length scale in the horizontal dynamics
if the flow were fully barotropic, but, perhaps because thereis
no clear separation between the instability scale and the scale of
the eddies, this is not always the case. Point 80° E,34° S is an
exception, as illustrated in Fig. 11: here the peak in the kinetic
energy spectrum occurs at the Rhines scale, and correspondsto
the zonal jet width in physical space. This peak is not related
to the injection mechanism, since the instability wavelength is
at much shorter scale (and corresponds to the size of the surface
intensified coherent rings in physical space). In that case,there
is effectively an clear inverse cascade for the barotropic mode,
with a cascade arrest at about Rhines scale.

5. Summary and Conclusion

The aims of this paper have been to make progress in under-
standing the processes that set the length scale, vertical structure
and magnitudes of oceanic eddies. We have proceeded by sup-

posing the the mean flow is given, either from observations or,
as in this paper, from a primitive equation model. Using the pro-
files of shear and stratification at various locations we compute
the linear instability properties of the flow at all locations, and in-
tegrate a fully nonlinear quasi-geostrophic model driven by the
mean state at six particular locations. The degree to which the
latter produces an eddy field of similar energy, scale and struc-
ture to that at the driving location in the MESO simulation can
be taken as a test of the ‘locality hypothesis,’ i.e. the ideathat
eddy statistics are a function of the local mean state. Consistent
with this hypothesis, neither the linear nor nonlinear integrations
take into account the horizontal shear or time-dependence of the
flow, nor do they allow eddies to advect in or out of the region.

In many, but not all regions, the nonlinear quasi-geostrophic
simulations compare well with the primitive equation simula-
tions in both the structure, scale and magnitude of the eddies.
We conjecture that in regions characterized by strong and fast
instabilities (timescales from days do weeks), the length scale
and the regime of self-organization can be interpreted withlocal,
non-linear quasi-geostrophic simulations. However, because the
simulations are local, the propagation of eddies away from the
source is neglected, and because the mean flow is imposed, pos-
sibly important interactions between eddies and mean flows are
neglected. In regions characterized by weak, slow instabilities
the dynamics seem to be governed by eddies coming from more
unstable regions. In some regions artificially high bottom drag
or thermal damping were necessary to equilibrate quasi-geostrophic
simulations, suggesting that the primitive equations are equi-
librating by non-local mechanisms, for example the advection
of the eddy field away from a region of instability, or possibly
through ageostrophic sources of dissipation.

Perhaps most striking overall is the degree of inhomogene-
ity of the eddy field in both the quasi-geostrophic and primi-
tive equation simulations. In some regions the flow is clearly
very strongly eddying, in some regions less so. In some regions
the flow is dominated by coherent structures (jets and rings), in
some regions less so. The presence of such coherent structures
in at least three of the six cases investigated is surprisingly well
reproduced by the quasi-geostrophic simulations. The flow dy-
namics is generally more reminiscent of the phenomenology of
equivalent barotropic, reduced gravity quasi-geostrophic turbu-
lence, than of barotropic turbulence on aβ -plane: in modal rep-
resentation, barotropic and baroclinic flows are both dominant,
but in regimes of high bottom friction, their ratio is such that the
flow has the structure of a two vertical-layer system with most
of the dynamics confined in the upper layer.

Regarding the horizontal scale of the eddies we find that,
typically, the eddy scale is somewhat larger than the instabil-
ity scale, suggesting a moderate inverse cascade rather than an
extended one (although the production of zonal jets may be re-
garded as an extended transfer of energy to grave horizontal
scales in the zonal direction). The final scale of the eddies is
determined by a combination of bottom drag, the formation of
coherent structures and Rossby wave scattering, with no single

8



effect dominating anywhere. Regarding the vertical structure of
the eddies, nearly all of the kinetic energy is in the barotropic
and first baroclinic modes. In some regions there is a residual
of surface-intensified flow, which seems to arise from the linear
instability problem, for which the fastest growing mode is com-
monly surface intensified. Evidently, the vertical structure of
the eddies are in something of an intermediate regime between
the profile set by the most unstable mode, and a tendency for
barotropization and first baroclinization. The nonlinear integra-
tions generally show more agreement with the primitive equa-
tions, in terms of horizontal and vertical scales and structure,
than do purely linear instability calculations. Nonetheless, in
many cases the fully-equilibrated flows do show a residual sig-
nature of the linear instability, particularly in the near surface
enhancement of the eddy flow.

The inhomogeneity of the flow and the lack of a single flow
regime — whether linear or highly turbulent — suggests that we
should not seek a single, all-encompassing theory of mesoscale
eddies. Nor would it be correct to base a parameterization of
mesoscale eddy fluxes purely on the basis of linear theory or
purely on the presumption that the flow is in a fully-developed
state of geostrophic turbulence. The bulk of the Southern Ocean
seems somewhere between these extremes. Ingredients for a
full understanding of the eddy field must come from both lin-
ear theory, from geostrophic turbulent cascade phenomenology,
and from theories explaining the emergence and the dynamics
of coherent structures. A greater degree of idealization than the
setting of this paper, but with more realism than previous studies
with idealized profiles of shear and stratification, may be needed
to make progress in this area, and we are currently pursuing this,
with the hope of bridging the gap between idealized studies of
geostrophic turbulence and the real ocean.

Appendix

Linear instability computations

We linearize the quasi-geostrophic equation (4a) and look-
ing for normal modes of the form

ψ = Re
{

ψ̃k,l (z)e
−iωk,l t+ikx+ily

}
. (6)

The growth rateI ωk,l (whereI denotes the imaginary part)
and corresponding modes̃ψk,l (z) are computed for a range of
wavenumbersk, l such that 1/(5R1) > (k2 + l2)1/2 < 5/R1, fol-
lowing Tulloch et al. (2010). The maximum growth rate is de-
fined as

ωinst = max
l ,k

(
I

{
ωk,l

})

and the corresponding instability wavelength isLinst= 2π (kinst+ l inst)
−1/2.
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TABLE 1. This table summarizes properties of the most unstable mode at different locations, as well as non-dimensional parameters,
and some properties of eddy kinetic energy in MESO at these points. k∗inst = 2πkinst/L is the non dimensional instability wavenumber
(with L = 64R1, it givesk∗int ≈ kinst/(10R1)). τinst is the corresponding time scale (the inverse of the growth rate), in days.A0 andA1

gives the relative contribution of the amplitude of the unstable linear modes, as a percentage, to the barotropic and first baroclinic
projections. ”Thrpt” and ”Crit” refers respectively to Throughput,U1/(rbR1), with rb = dE f/(2H), and Criticality,U1/(βR2

1). E is
the total eddy kinetic energy in MESO simulations at this point, in m2s−2, andE0 andE1 give the relative contribution of the kinetic
energy to barotropic and first baroclinic kinetic energy, respectively.

location k∗inst τinst A0, A1 thrpt Crit E E0, E1

30° E,34° S 6 11 97;1 30 0.3 4.10−2 61;38
30° E,45° S 16(5) 16(19) 16;63(79;19) 20 5 1.10−3 52;41
30° E,60° S 23(4) 54(90) 12;42(84;4) 6 5 1.10−4 71;24
80° E,34° S 19 54 87;7 2 0.4 7.10−4 49;29
80° E,45° S 5 60 88;10 1 0.4 5.10−3 72;26
80° E,60° S 14 11 32;48 0.4 1.6 4.10−5 32;47

TABLE 2. Summary of quasi-geostrophic simulations. See text for details on the parameters of the “Control” simulation. Herer
is bottom friction,νth is thermal drag (always zero unless specified), andE is the average kinetic energy (in m2s−2). An asterisk
“*” means that the simulation is not equilibrated.E0 andE1 are the percentage of barotropic and first baroclinic energy. ke0, ke1,
kape1give the peak of barotropic and baroclinic kinetic energy, as well as available potential energy. The terms in brackets refers to
secondary peaks.

location feature E E0/E, E1/E (%) ke0, ke1, kape1

30° E,34° S Control 10 * 86, 14 1, 5, 1
β = 0 4 * 92, 8 6, 6, 6
r = 100rcontrol 2.10−1 35, 63 4, 4, 4
r = 0.1rcontrol 2.102 * 99, 1 1, 1, 1
νth = 10−4 days−1 3.10−2 * 63, 34 4, 4, 4

80° E,34° S Control 2.10−4 * 32, 55 5, 5, 5
β = 0 5.10−5 42, 47 6, 6, 6
r = 100rcontrol 6.10−4 * 48, 42 4, 4, 4
r = 0.1rcontrol 6.10−4 * 70, 20 8, 4, 4
νth = 10−5 days−1 2.10−4 32, 57 8, 8, 5

30° E,45° S Control 4.10−4 48, 43 6, 2, 2
β = 0 1.10−2 67, 29 2, 6, 4
r = 100rcontrol 1.10−3 43, 50 4, 4, 2
r = 0.1rcontrol 9.10−2 * 97, 2 1, 6, 1
νth = 10−4 days−1 3.10−4 46, 45 6, 3, 3

80° E,45° S Control stable
β = 0 3.10−5 31, 59 4, 4, 3

30° E,60° S Control 2.10−5 * 29, 27 9, 9, 2
β = 0 2.10−5 * 36, 41 4, 4, 4
r = 100rcontrol 4.10−5 * 59, 29 5, 5, 4
r = 0.1rcontrol 1.10−5 * 35, 28 8, 8, 5
νth = 10−4 days−1 4.10−5 * 46, 30 9, 9, 9

80° E,60° S Control 3.10−5 * 16, 42 2, 9, 2
β = 0 2.10−6 51;43 4, 4, 2
r = 100rcontrol 6.10−6 * 53;38 2, 2, 2
r = 0.1rcontrol 9.10−6 * 13, 36 13, 13, 9
νth = 10−4 days−1 5.10−6 21, 40 5, 5, 5
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FIG. 1. Upper panel: Snapshot of the surface kinetic energy, in m2s−1, plotted with a log10 scale. Lower panel: one year average
of surface eddy kinetic energy (EKE) from MESO simulations.The black circles correspond to the six locations considered for
quasigeostrophic simulations; see Fig. 4 for the vertical structure of EKE at these particular points.
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FIG. 2. Upper panel: Core of the coherent rings extracted on a snapshot by using the Okubo-Weiss criterion; color represent the
equivalent diameterLco of the coherent structures (see text for details). Lower panel: one year average ofLco represented as in the
upper panel. This allows to define a global map of eddy length scale.
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FIG. 3. Upper panel: ratio of barotropic EKE to total EKE. Centerpanel: ratio of first baroclinic EKE to total EKE. Lower panel:
sum of first baroclinic and barotropic contributions.
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FIG. 4. Vertical EKE profiles in MESO (blue), quasi-geostrophicsimulations (red). Solid lines represent the EKE profile normalized
by its average on the vertical; this allow to compare the vertical structure on one side, and the amplitude on the other. Values of the
vertically averaged EKE are given in the different boxes forcomparison. Dashed lines represent a reconstruction of thesame EKE
profile with the barotropic and the first baroclinic mode only, to determine how well the full profile is represented by considering only
these two modes. The green solid line represents the squarednorm of the amplitude of the most unstable linear mode, normalized
by its vertical average. It would be the vertical EKE profile of the most unstable linear mode. At 80° E,45° S, non-linear quasi-
geostrophic simulations were found to be stable, so there isno quasi-geostrophic simulation associated with this location.
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FIG. 5. Upper panel: growth rate of the most unstable mode, computed locally using one-year averaged mean profiles from MESO
simulations. Vertical structures of the corresponding amplitude are given for six points (represented by small black circles) in Fig. 4.
Lower panel: ratio of the corresponding instability wavelengthLinst = 2π/(k2

inst+ l2
inst)

1/2 with the deformation wavelength 2πR1.
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FIG. 6. Upper panel: wavelengthLinst of the most unstable mode. Lower panel: Rhines scaleLRh = 2π(vrms/β )1/2.
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FIG. 7. Map of first baroclinic Rossby radius of deformationR1.
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FIG. 8. Density profiles from one-year averaged MESO simulations, at the six locations considered for the quasi-geostrophic
simulations.
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FIG. 9. Mean vertical profiles of velocity and potential vorticity gradients, at the six different locations used for the quasi-geostrophic
simulations. Velocities are in m.s−1, and potential vorticity gradients are in units ofβ . Note that the horizontal and vertical axes are
not the same for the different locations.
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FIG. 10. The upper and center panels show snapshots of surface speed (ms−1) in MESO and in the corresponding quasi-geostrophic
simulations, respectively. At a given location, the domainlength is the same for the MESO and quasi-geostrophic snapshots, namely
L = 64R1. The lower panel shows energy spectra from the MESO simulation. Also shown are relevant the wavenumbers correspond-
ing to relevant length scales, including the first baroclinic wavelength 2πR1, the linear instability wavelengthLinst (the prime denotes
a secondary peak in the growth rate), and the Rhines scale 2π(V/β )1/2.
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FIG. 11. See Fig. 10 for legend.
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