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Abstract. Mechanisms of locomotion in microscopic systems are of great
interest not only for technological applications but also for the sake
of understanding, and potentially harnessing, processes far from thermal
equilibrium. Downscaling is a particular challenge and has led to a number
of interesting concepts, including thermal ratchet systems and asymmetric
swimmers. Here we present a granular ratchet system employing a particularly
robust mechanism that can be implemented in various settings. The system
consists of wetted spheres of different sizes that adhere to each other, and are
subject to a symmetric oscillating, zero average external force field. An inherent
asymmetry in the mutual force network leads to force rectification and hence to
locomotion. We present a simple model that accounts for the observed behaviour,
underscores its robustness and suggests a potential scalability of the concept.
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1. Introduction

Interest in small-scale locomotion in biological systems, such as ciliates, flagellates, and
molecular motors, has spurred a number of attempts to construct artificial devices characterized
by similar merits [1–7]. The interest in achieving the long-range-directed motion of cells has
led to the realization of directed cell migration using periodic asymmetric ratchet potentials
via the surface patterning of cell-adhering regions [8]. Systems of particles in fluid dynamics
settings can exhibit directed motion under periodic and symmetric forcing through the symmetry
breaking of surface or streaming flows [2, 3]. Additionally, the controlled transport of particles
and structures can be used for applications such as targeted delivery and stirring in lab-on-a-chip
devices [2, 9, 10]. Dry frictional particles are known to ratchet under asymmetric vibration [11].
Aspherical particles with complex interactions have also been shown to convert periodic and
symmetric external forces into net locomotion [12–14]. Here we report the discovery of a
strikingly robust ratchet system that self-assembles in proper environments and self-aligns in
the direction of the excitation, and we present a simple model of the system that reproduces the
observed behaviour and infers a novel ratchet mechanism for the motion.

When a bidisperse mixture of glass beads is moistened by a fluid and shaken vertically and
sinusoidally, small clusters of beads occasionally take off from the surface of the pile and rapidly
climb up the container walls against gravity. Figure 1(a) and supplementary movie S1 (available
from stacks.iop.org/NJP/13/053041/mmedia) demonstrate this effect where a cluster of beads
spontaneously formed and climbed out of a pile of glass spheres (from Whitehouse Scientific,
density ρ = 2.5 g cm−3) wetted 1% by total volume with a glycerol–water mixture (glycerol
87% from Merck, surface tension γ = 61 ± 1 mN m−1 and viscosity η = 0.12 ± 0.01 Pa s). The
upper surface of the granular pile can be seen as the dark region at the bottom of the images.
These ‘climbers’ are held together and against the wall by capillary bridges; they are led by
a large bead with one or more small beads trailing below. In this system, the self-assembly of
these structures is assisted by the Brazil nut effect [15], as the large beads are transported to the
top of the pile under vertical vibration. Many different ascending clusters have been observed,
which differed in the number of spheres involved. This effect is robust, as we have observed
it using numerous different wetting liquids (silicone oil, glycerol–water mixtures, ethylene
glycol), container materials (glass and polystyrene) and geometries (cylindrical, rectangular).

2. Experimental results

In order to investigate the clusters’ locomotion, we have reproduced this effect in a simplified
setting with artificially assembled clusters of precision ruby spheres (from Sandoz Fils SA,
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Figure 1. Time series of ratcheting structures. (a) Self-assembled structure from
a 50 : 50 mixture of glass spheres with radii in the size ranges of 0.3–0.315 mm
and 0.5–0.59 mm, migrating up the sidewall of a rectangular polystyrene
container (10.6 mm long and wide, 44.8 mm high, from VWR International
GmbH) under a vertical sinusoidal vibration with a frequency f = 170 Hz and a
peak acceleration a0 = 16.2 g (see supplementary movie S1). The sample was
wetted 1% by volume with a glycerol–water mixture. The pile of grains is
visible as the dark region at the bottom of the images. (b) Artificially assembled
walker, composed of precision ruby spheres with 0.2 and 0.3 mm radii, migrating
along the axis of vibration of a horizontally aligned silicone oil wetted glass
microscope slide shaken at f = 80 Hz and a0 = 4 g (see supplementary movie
S2 available from stacks.iop.org/NJP/13/053041/mmedia).

density ρ = 4.0 g cm−3) on a horizontally aligned substrate. We focused our study on the
simplest structure: an asymmetric dimer built out of one large and one small bead, which
we call a walker. The substrate was aligned horizontally so that the effect of gravity on the
walkers’ motion can be neglected. It was either a Marienfeld glass microscope slide (76 mm
long, 26 mm wide and 1 mm thick) or a 90◦ glass prism with a 25 mm-wide square face. The
glass substrate was coated with a 4–5 nm-thick layer of chromium (using a BOC Edwards
Auto 306 Evaporation System) to eliminate static charging effects on the moving clusters of
spheres. We used silicone oil as a wetting fluid, as it is a perfectly wetting fluid for the substrate
and the spheres and its evaporation can be neglected on the experimental timescales due to its
low vapour pressure. The substrates were wetted with a 4–6µm-thick layer of filtered Wacker
silicone oil Si AK 5 (surface tension γ = 19.2 mN m−1, dynamic viscosity η = 4.6 mPa s) prior
to the experiments. A horizontal harmonic vibration was applied to the substrate using an
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electromagnetic shaker (LDS model V406), such that the acceleration of the substrate is given
by a(t)= a0 cos(2π ft), where a0 is the peak acceleration and f is the shaking frequency. The
acceleration was monitored using a triple-axis accelerometer (Kistler model 8690C50), and we
ensured that the unwanted acceleration in the vertical direction was below 3% of the driving
acceleration.

The motion of the clusters was recorded with a PCO 1200hs CMOS camera mounted on
a Zeiss Stemi 2000 C stereo microscope with a 0.63× front lens. The time interval between
successive pictures was set to an integer number of vibrations, typically one image per shake
or one image every ten shakes, so that the substrate appeared immobile in the time series of
pictures. We observed that the walkers aligned with the axis of vibration of the substrate as soon
as the vibration was applied, and migrated in the direction of the larger sphere. The walkers
travelled with a constant speed when viewed stroboscopically; one example of this motion is
shown in figure 1(b) and supplementary movie S2. In order to obtain velocity measurements
from the recorded time series, the position of the centroids of the structure was first determined
in each image using the particle analysis package of ImageJ software, after isolating the
structure from the background by applying a single threshold to the stack of pictures. The time
series of structure positions was then further analysed using Matlab software.

Figure 2 shows experimental measurements of the walkers’ velocity for vibration
frequencies f from 60 to 90 Hz (symbols) against the peak acceleration a0 of the horizontal
vibration, for a walker with R1 = 0.3 mm and R2 = 0.2 mm. The walkers’ locomotion velocities
were obtained by averaging a minimum of six runs, where half of the measurements were
done with the large sphere facing to the left and half with the large sphere facing to the right.
Both locomotion directions along the axis of vibration were thereby sampled, thus ruling out
the possible influence of any residual tilt of the set-up. The size of our experimental errors
corresponds to the difference between the largest and smallest velocity measurements; they
represent the dispersion of the velocities, presumably due to the presence of dust or irregularities
on the surfaces.

We observed a nonlinear dependence of the walkers’ locomotion velocity on the peak
acceleration a0; this rises sharply as the acceleration increases until it reaches a plateau
near a0 ≈ 6 g (where 1 g = 9.8 m s−2), then drops off above a0 = 11 g. Additionally, the data
exhibit no significant frequency dependence, unlike dry frictional ratchet systems [12–14]. This
suggests that the ratio of the applied force to the cohesive force is a relevant control parameter, as
opposed to an energy ratio that would imply a dependence on the peak velocity of the substrate,
a0/2π f [16]. For the following data analysis, we therefore introduce the dimensionless force
0 as the ratio between the inertial force acting on the structure and the average capillary
force between the beads and the substrate. For a perfectly wetting liquid such as silicone oil,
0(t)= a(t)M/4πγR̄, where M is the sum of the masses of the spheres, R̄ is the arithmetic
mean of their radii and γ is the surface tension of the wetting fluid [17, 18]. We denote 00

as the dimensionless peak force a0 M/4πγR̄. The inset of figure 2 shows that the minimum
dimensionless peak force required for locomotion to occur, 0c, is also independent of the
vibration frequency within the experimental uncertainties. The range of vibration frequencies
used in the inset is representative of the limits of our experimental apparatus. Our shaker cannot
perform well-controlled sinusoidal vibrations outside of this range as the motion of the substrate
is dominated by the vibration eigenmodes of the set-up.

As the degree of asymmetry is a relevant control parameter for ratchet systems [1, 3, 13],
we expect that the asymmetry of the walker would have an effect on its migration velocity. We
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Figure 2. Measurements of the walkers’ velocity as a function of the peak
substrate acceleration a0 (lower axis) and dimensionless peak force 00 (upper
axis) for different vibration frequencies f (see legend). These data were obtained
for a walker with R1 = 0.3 mm and R2 = 0.2 mm (sin δ = 0.2) on a glass slide.
The solid grey curve represents a fit of the average walker velocity calculated
using a linear friction law to the experimental data where the coefficient of
sliding friction, κ = 0.032 s mm−1, is the only fit parameter (theory supplement,
equation (S9), available from stacks.iop.org/NJP/13/053041/mmedia). The
dashed black curve represents the expected average velocity for a friction law
with a Coulomb and a viscous friction term, computed numerically with µ=

0.24 and α = 550. Inset: the dimensionless force at the onset of motion, 0c, as a
function of the vibration frequency f . 0c was measured by gradually decreasing
the peak plate acceleration a0 and waiting for the walker to stop moving. The
dashed line in the inset is located at the mean value of 0c. These experiments
were performed on a glass prism. The error bars represent the range of data
resulting from multiple experimental measurements.

characterize the asymmetry by the angle δ formed between the centres of the spheres and the
horizontal, as shown schematically in the inset of figure 3. The main panel of figure 3 shows the
velocity of the walkers as a function of the asymmetry parameter sin δ = (R1 − R2)/(R1 + R2),
measured with a fixed dimensionless peak force 00 = 0.5 (solid symbols). The velocity vanishes
in the case of symmetric walkers composed of spheres with identical radii (δ = 0) on a well-
levelled substrate, and increases with the degree of asymmetry, sin δ.

3. Theoretical model

Having identified the relevant parameters, we present a simple model to explain our
experimental observations and to elucidate the mechanism of locomotion. We show that directed
motion arises from the asymmetry-dependent force balance of the walker system and from the
symmetry properties of the friction laws, which relate the friction force to the normal contact
force and to the sliding velocity on each contact point. In determining the force balance, we
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Figure 3. Inset: schematic view of a walker composed of two spheres with radii
R1 and R2. Its asymmetry is characterized by the angle δ formed by connecting
the centres of the spheres with the horizontal. The vibration axis of the substrate
is denoted as x . Main panel: the walkers’ velocity as a function of the asymmetry
parameter sin δ = (R1 − R2)/(R1 + R2) (squares). The walkers were constructed
from precision spheres with 0.2, 0.25, 0.3, 0.35 and 0.4 mm radii on a glass
prism. The vibration frequency was fixed at 80 Hz and the dimensionless force
00 was kept fixed at 0.5. The error bars represent the range of data resulting from
multiple experimental measurements. The grey solid curve shows the expected
theoretical dependence of the walkers’ velocity on the asymmetry parameter sin δ
from our model with a linear friction law (theory supplement, equation (S9))
where κ = 0.032 s mm−1. The dashed black line represents the expected average
velocity for a friction law with a Coulomb and a viscous friction term, computed
numerically with µ= 0.24 and α = 550. The fit parameters have the same value
as in figure 2 for both theory curves.

assume that the two beads remain in contact with each other and the substrate. This geometrical
constraint imposes an asymmetry dependent relationship between the friction forces and the
normal contact forces that act on the beads. Using a quasi-static approximation gives an
expression of the friction forces as simple functions of the dimensionless force 0. Finally, the
friction laws provide the link between the friction and normal forces and the sliding velocities,
and thus the locomotion velocity, as will be discussed in more detail below.

We consider a walker, composed of two spherical beads with radii R1 and R2 and masses
m1 and m2, which are held together and attached to a flat horizontal substrate by adhesive
forces provided by liquid bridges. The walker is subjected to an external driving force that is
parallel to the substrate. When the walker is aligned with the direction of the excitation, the
plane defined by the three contact points is the plane of symmetry of the system (see figure 4),
and all of the forces lie within that plane. The beads can rotate and slide on the substrate and
on each other. The angular velocity of sphere i about an axis perpendicular to the symmetry
plane is denoted by ϕ̇i , and its sliding velocity on the substrate is denoted by vi . The sliding
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Figure 4. (a) Side view of a walker composed of two spherical beads on a
flat horizontal substrate, aligned with the shaking direction (the x-axis). The
circled numbers define the indices corresponding to the three points of contact.
The angular velocities ϕ̇i are considered to be positive in the counterclockwise
direction, and the velocity of the walker on the substrate vx is considered to be
positive from left to right, as indicated by the arrow. (b) Sketch representing, with
arrows, the friction forces F‖

i and the net normal forces1Fi that act on the three
contact points, and the inertial forces that act on the centre of mass of the beads.
All force vectors lie in the plane of symmetry of the system. The solid dark grey
arrows correspond to forces that act on bead 1, while the dashed light grey arrows
correspond to forces that act on bead 2. The inertial forces are considered positive
when they point from bead 2 towards bead 1. The friction forces are considered
to be positive in the direction opposite to the positive sliding velocities, and so in
this sketch F‖

1 and F‖

2 are positive, whereas F‖

3 is negative. The resulting normal
forces 1Fi are positive when they point towards the centre of the bead to which
they apply.

velocity of bead 1 on bead 2 is thus v3 = R1ϕ̇1 + R2ϕ̇2. Assuming that the spheres remain in
hard mechanical contact with each other and the substrate, such that the geometry of the walker
does not change over time, the velocity of the centre of mass of both beads and of the walker
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with respect to the substrate is described by a single variable along the shaking direction,
vx = v1 − R1ϕ̇1 = v2 − R2ϕ̇2. The acceleration of the structure with respect to the substrate is
denoted by v̇x .

We first describe the forces that act on the two beads in the rest frame of the walker,
which holds true as long as contact is maintained at each contact point. In our experiments,
the substrate is subjected to a harmonic mechanical vibration with an acceleration a(t)=

a0 cos(2π ft) in the reference frame of the lab. Consequently, the driving force consists of the
inertial forces acting on the beads, where the inertial force −mi(a(t)+ v̇x(t)) is acting on the
centre of mass of bead i . Adhesive forces act on each contact point and are normal to the contact
plane. Given that their direction is fixed, they can be represented in a compact form by using the
three-component vector notation Fa := (F a

1 , F a
2 , F a

3 ), where F a
i is the magnitude of the adhesive

force exerted on bead i at the contact point i with the substrate (for i ∈ {1, 2}), and F a
3 is the

magnitude of the adhesive force exerted on bead 1 at the contact point 3 between the two beads.
In our experiments, the adhesive forces are capillary forces and can be written as [17, 18]

Fa
= −k0 R̄

1 + sin δ
1 − sin δ
1
2 cos2 δ

 , (1)

where k0 = 4πγ . The average radius R̄ =
1
2(R1 + R2) characterizes the length scale of the

system, sin δ = (R1 − R2)/(R1 + R2) characterizes the asymmetry of the system, and the
characteristic magnitude of the adhesive forces, k0 R̄, sets the typical force scale of the system.
The minus sign on the right-hand side of equation (1) arises from our sign convention. Note
that van der Waals adhesive forces could be written in the same form simply by defining
k0 = A/12ε2, where A is the Hamaker constant and ε is a cutoff parameter, which may be
identified with surface roughness [18]. The weight of bead i acts on its centre of mass in the
vertical direction with an amplitude −mi g, where g is the acceleration due to gravity. The beads
also experience two types of contact forces at each contact point: contact forces normal to the
plane of contact that are elastic in origin and resist the indentation of the surfaces, and friction
forces within the plane of contact that resist the relative motion of the surfaces. The direction of
the contact forces is thus solely determined by the geometry of the system. Their amplitudes are
represented by Fi for the normal contact and F‖

i for the friction forces that are exerted by the
substrate on the bead i (for i ∈ {1, 2}), F3 for the normal contact force and F‖

3 for the friction
force exerted by bead 2 on bead 1 at the contact point 3. The magnitudes of the contact forces
are written in the three-component vector notation as F := (F1, F2, F3) and F‖ := (F‖

1 , F‖

2 , F‖

3 ).
The friction forces are considered to be positive in the direction opposite to the positive sliding
velocities.

At rest (when there is no driving force), there are no friction forces, and the system is in
mechanical equilibrium due to the presence of the normal contact forces F0 that oppose the
adhesive forces and the weight of the beads. Since the ratio of the weight of a spherical bead
to the capillary force adhering it to the substrate, mi g/k0 Ri = ρgR2

i /3γ , is 60.1 for all of the
systems we have investigated, we further neglect the weight of the beads relative to the adhesive
forces between the beads and the substrate. The normal contact forces are then simply balancing
the adhesive forces given by equation (1), such that

F0
= −Fa. (2)
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Under driving (a 6= 0), when the beads are subjected to an inertial driving force, the friction
forces are nonzero and the normal contact forces change from their value at rest to become

F = F0 +1F. (3)

As long as contact is maintained at each contact point, the variation in the normal contact forces
1F, which are the resulting forces acting on the contact points in the normal direction after
summing the adhesion forces with the normal contact forces, can be derived from the balance of
forces in the rest frame of the walker, as illustrated in figure 4(b). In the presence of an inertial
driving force in the x-direction, the balance of forces acting on bead 1 gives

F‖

3 cos δ +1F1 +1F3 sin δ = 0,

1F3 cos δ− m1(a + v̇x)− F‖

1 − F‖

3 sin δ = 0,
(4)

where v̇x is the acceleration of the structure with respect to the substrate. The balance of forces
acting on the walker gives

1F1 +1F2 = 0 (5)

and

F‖

1 + F‖

2 + M(a + v̇x)= 0, (6)

since there is no net force acting on contact point 3 according to Newton’s third law. Using
equations (4)–(6), the normal contact forces can then be written as

F = F0 +
1

cos δ


−

1−M
2 sin δ 1+M

2 sin δ −1
1−M

2 sin δ −
1+M

2 sin δ 1
1−M

2 −
1+M

2 sin δ

 F‖. (7)

This relationship depends only on the asymmetry of the walker through the angle δ and the
relative mass difference of the spheresM= (m1 − m2)/M .

In the quasi-stationary limit, an approximation whose application is validated by the fact
that no frequency dependence has been observed in the walkers’ velocities, the rate of change
of the rolling velocities of the beads on the substrate, Ri ϕ̈i , and the acceleration of the walker on
the substrate v̇x are negligible with respect to the acceleration of the substrate in the reference
frame of the lab, a. An expression for the rate of change of the sliding velocities of the
spheres comprising a walker in the general case is given in the theory supplement, section 1.1
(available from stacks.iop.org/NJP/13/053041/mmedia). In the quasi-static limit, a constant
angular velocity ϕ̇i for both of the spheres means that the overall torque due to the friction
forces applied on bead i has to be equal to zero (as represented in figure 4(b)). As a result, and
given our sign convention,

F‖

1 = −F‖

3 = F‖

2 . (8)

Similarly, a constant locomotion velocity means that equation (6) becomes

F‖

1 + F‖

2 = −Ma. (9)

After normalizing all of the forces by the force scale k0 R̄ given by the adhesive forces, the
combination of equations (8) and (9) gives

F‖

k0 R̄
=
0

2

−1
−1
1

 . (10)
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sin δ = 0.2. Dashed line: i = 1; solid black line: i = 2; grey line: i = 3. Inset:
magnitude of the dimensionless force at which the first contact is lost, 0loss, as a
function of the asymmetry parameter sin δ.

Hence, the friction force on each contact point, normalized by the force scale k0 R̄, is
proportional to the dimensionless driving force 0(t). As a result, the normal contact force on
each contact point given by equation (7) and normalized by k0 R̄ is an affine function of 0, as
depicted in figure 5,

F

4πγR̄
=

1 + sin δ
1 − sin δ
1
2 cos2 δ

 +
0

2 cos δ

−M sin δ− 1
M sin δ + 1
M+ sin δ

 . (11)

Finally, the friction law on each contact point relates the friction force F‖

i to the normal
contact force Fi and the sliding velocity vi . It is typically an odd function of the sliding velocity
vi [19, 20], such that

F‖

i (Fi ,−vi)= −F‖

i (Fi , vi). (12)

According to equation (10), the friction force F‖

i is also an odd function of the dimensionless
driving force 0, and so we must have

F‖

i (Fi(−0), vi(−0))= −F‖

i (Fi(0), vi(0)) (13)

for any 0 value. Since the normal forces do not have any special symmetry with respect to 0
(see equation (11) and figure 5), the sliding velocities vi cannot, in general, be odd functions of
0 if the relationship in equation (13) is to be respected. Indeed, if the sliding velocity vi were
an odd function of 0, and the relationship in equation (12) were satisfied, it would require that
the relationship F‖

i (Fi(−0), vi(0))= F‖

i (Fi(0), vi(0)) is fulfilled for any 0 value. This is not
generally true when Fi(−0) 6= Fi(0), and so the sliding velocities vi cannot be odd functions of
0. As a result, for a periodic and symmetric driving force 0(t), the average value of the sliding
velocity at each contact point is typically nonzero, as is the average velocity of the walker. When
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Figure 6. Sketch representing the motion of a walker with a linear friction law
in the rest frame of the substrate during: (a) a forward stroke (0 < 0), and
(b) a backward stroke (0 > 0) with the same amplitude as the forward stroke but
the opposite direction. The dashed arrows indicate the direction of the inertial
driving forces that act on the walker. The curved black arrows represent the
rolling velocity of the beads on the substrate, −Ri ϕ̇i . The straight blue arrows
represent the sliding velocity of the beads on the substrate. The small bead is both
rolling and sliding during the forward and the backward strokes, whereas the big
bead is mainly rolling during the forward stroke, and mainly sliding during the
backward stroke. The total velocity of the beads is larger during the forward
stroke than during the backward one, which leads to locomotion in the direction
of the large sphere during a driving cycle.

an explicit expression for the friction law on each contact point is given, the sliding velocity vi

can be calculated as a function of the peak dimensionless force 00 and the asymmetry of the
walker, δ, by using the expressions for the friction force F‖

i and the normal force Fi given by
equations (10) and (11), respectively. Finally, the walker’s velocity vx is a linear combination
of the sliding velocities of the three contact points, vx(0, δ)=

1
2(v1 + v2 − v3), and its average

value over one excitation period can be quantitatively compared with the experimental data. In
the following section, we consider two types of friction laws: a simple linear friction law and a
friction law that contains Coulomb and viscous friction terms.

4. Discussion

A basic picture of the mechanism of motion of the walker can be drawn by considering a simple,
fully linear friction law of the form F‖

i = κvi Fi . In the reference frame of the substrate, when
0 < 0 and the inertial force is directed towards the large bead (see figure 6(a)), the forward
sliding motion of the large bead is impeded by an increase in the normal contact force F1 on
the contact between the large bead and the substrate (figure 5, dashed line). At the same time,
the forward rotational motion of both beads is enhanced by the decrease in the normal force F3

between the two beads, which facilitates the sliding of one bead over the other (figure 5, grey
line). The forward sliding of the small bead is also enhanced by the small value of the normal
force F2 between the small bead and the substrate (figure 5, black line). Conversely, when 0 > 0
and the inertial force is directed towards the small bead (see figure 6(b)), the backward sliding
motion of the large bead is facilitated by the decrease in the normal force F1, but the increased
values of the normal forces F3 and F2 impede both the backward rotation motion of the beads
and the backward sliding motion of the small bead. In this case, the small bead acts like a brake
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for both the rolling and the sliding motion directed towards the small bead. Due to this braking
action, the distance travelled during the backward stroke, 0 > 0, is smaller than the distance
travelled during the forward stroke, 0 < 0, when the forward rolling motion is enhanced. This
results in an overall locomotion in the direction of the large sphere.

To compare the model with our experimental data, we calculated the average value of the
velocity of the walker vx , with the linear friction law mentioned above applied to all three
contact points, and for a harmonic excitation 00 cos(2π ft). Averaging over one period, we
obtained a function of the peak dimensionless force 00 and the asymmetry δ; the average
velocity, v̄x , is plotted with the experimental data in figures 2 and 3 as grey curves (the explicit
expression is given in the theory supplement, equation (S9)). In order to fit this expression to
our data, the walker’s asymmetry parameter sin δ was set to the value of 0.2 in figure 2, and
the dimensionless force 00 was set to 0.5 in figure 3, in correspondence with the experimental
parameters. The single fit parameter κ = 0.032 s mm−1 was used in both figures. In figure 3, the
theoretical velocity dependence of the walker on the asymmetry parameter sin δ is consistent
with the experimentally observed trend. In particular, the locomotion velocity vanishes as the
asymmetry parameter goes to zero. However, the theoretical velocity prediction deviates from
the experimental dependence on the peak dimensionless force 00 displayed in figure 2 at low and
high values, since neither the threshold for motion at low dimensionless force nor the plateau
region are reproduced using the simple linear friction law.

A better agreement with the experimental features is obtained when a more standard
friction law that includes both Coulomb and viscous friction terms is used: F‖

i = µFivi/|vi | +
αη R̄vi , where µ is the coefficient of sliding friction, α is a dimensionless geometrical factor and
η is the dynamic viscosity of the wetting fluid. In this case, the average walkers’ velocity over
one period of harmonic driving 0(t)= 00 cos(2π ft) was computed numerically. Our method
of solving this system numerically is described in detail in the theory supplement (available
from stacks.iop.org/NJP/13/053041/mmedia). The average walkers’ velocity is compared with
the experimental data in figures 2 and 3 (black dashed curves), using the fit parameters µ= 0.24
and α = 550, where the value we obtained for the sliding friction coefficient µ is a reasonable
value for our system [20]. A threshold for the onset of motion at a low dimensionless force and
a plateau at higher dimensionless forces are both reproduced. The threshold for the onset of
motion is due to the Coulomb friction term, as the sliding velocity vi remains equal to zero as
long as |F‖

i |6 µ|Fi |. The dimensionless force thresholds for the onset of sliding on each contact
point depend on the asymmetry of the walker, the friction coefficient µ, and the direction of the
sliding motion. Motion is only possible when the magnitude of the dimensionless peak force 00

becomes larger than the lowest threshold for the onset of sliding on one of the contact points, 0c.
For a walker with sin δ = 0.2 and µ= 0.24, our model gives 0c = 0.19, a predicted value that is
close to the experimental threshold for the onset of motion displayed in the inset of figure 2. For
a dimensionless peak force 00 > 0c, the walker switches between different modes of motion
as the dimensionless force 0 varies, each time a threshold for the onset of sliding is crossed.
These 0-dependent modes of motion are responsible for the different regimes of the theoretical
walker’s velocity versus 00 curve: an initial sharp increase in the velocity for 00 > 0c, a plateau
at intermediate 00 values, and a further increase for yet higher peak dimensionless forces. A
more detailed analysis of the rich dynamical behaviour predicted with this model is beyond the
scope of this article because the modes of motion of the walker, and the boundaries of these
modes in parameter space, depend sensitively on the specific friction law used on each contact
point.
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Directed motion was predicted by means of both types of friction laws we have
implemented, even the fully linear one. Even if the details of the friction laws are important
for describing the specifics of the walkers’ modes of motion, these details do not matter much
for some kind of directed motion to occur. In our theoretical description, the ratchet phenomenon
itself is very robust in the sense that for it to occur, it is simply required that the friction force F‖

i
depends on the normal contact force Fi and is an odd function of the sliding velocity vi (such
that F‖

i (Fi ,−vi)= −F‖

i (Fi , vi)), which is usually true for real contacts [19, 20].
The key asymmetry in our model comes from the relationship between the normal forces

and the friction forces given by equation (7). This relationship was obtained under the condition
that the beads remain in contact with each other and the substrate throughout the excitation
cycle. The essential role of the adhesive forces in this system is to maintain contact against
the driving force, which is why the adhesive forces define the relevant force scale in the
system (4πγR̄ for capillary forces of a perfectly wetting fluid). Contact between the beads
and the substrate is maintained as long as the peak dimensionless force 00 remains below
the smallest dimensionless force in absolute value, 0loss, for which one of the normal contact
forces becomes equal to zero and the corresponding contact is lost (see figure 5). The value of
0loss, calculated a posteriori using equation (11), only depends on the asymmetry of the walker
sin δ and is plotted in the inset of figure 5; its expression is given in the theory supplement
section 1.2. For a walker with sin δ = 0.2, as in figure 2, 0loss is equal to 1.2. This value is very
close to the peak dimensionless force where the experimental walker’s velocity drops off in
figure 2, 00 ≈ 1.1, and so we surmise that this velocity decrease is due to loss of contact in the
system.

Another striking feature of the experimental system is that the walkers first self-align,
then remain aligned with the direction of the excitation, while migrating across the substrate.
In order to understand the stability of the walker’s direction of locomotion, we consider
the sideways motion of the walker in the plane of the substrate, when it is not perfectly
aligned with the shaking direction (see the theory supplement, section 2, available from
stacks.iop.org/NJP/13/053041/mmedia). Let ψ be the angle between the axis passing through
the contact points 1 and 2 between the beads and the substrate and the direction of the applied
oscillation (illustrated in the theory supplement figure S2). If the pair of beads roll sideways
without sliding, and the walker’s acceleration associated with locomotion is small relative to
the acceleration of the substrate, the dynamics of the angle ψ are equivalent to the motion
of a parametric pendulum. For small angles ψ and a harmonic driving force oscillating with
a frequency f , the equation of motion for sideways rolling reduces to a differential equation
of Mathieu type [21]. Defining the dimensionless time variable ϑ = π ft , this equation can be
written in canonical form as

d2ψ

dϑ2
+ [U − 4V cos(2ϑ)]ψ = 0, (14)

where the parameter U is proportional to the time-averaged driving force, so here U = 0. Our
system thus dwells on the abscissa of the stability diagram in the (V,U ) plane, whose central
interval [−0.45; +0.45] lies within a stable region [21], where the stability diagram is shown
in figure 7. The parameter V characterizes the amplitude of the parametric oscillation; its
expression is given in the theory supplement (equation (S18)). It can be shown that |V |< 0.4
for all of the experimental systems investigated in this work, which is well within the stable
region. Damping of the rolling motion, which is not accounted for in this description but should
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Figure 7. Stability diagram of Mathieu equation (14). It is symmetric about the
U axis. The white space corresponds to regions of instability, while the grey
shaded area represents the region of stability. The presence of damping is known
to enlarge the shaded region [21, 22].

be present in reality, is known to enlarge the stable regions, and to lead to a decrease in the
amplitude of the orientation oscillations with time [22]. This explains the self-alignment of the
walkers with the direction of the excitation.

5. Conclusion

We have reported the discovery of a novel ratchet system that is able to self-assemble, self-aligns
in the driving direction and is robust in that it functions under a wide range of experimental
conditions. This ratchet system has been quantitatively studied using artificially assembled
asymmetric dimers and we have presented a basic model of this system that successfully
reproduces the main experimental features of this system. The basic ingredients of this model are
the geometry of the system, a set of friction laws that depend on both the sliding velocity and the
normal contact force, and the ratio between the driving and adhesion forces. The source of the
rectification mechanism was identified as the asymmetry introduced by the relationship between
the friction forces and the adhesive forces; however, the mechanism itself does not rely on the
exact nature of the adhesive forces. This suggests that similar effects could be expected in a
downscaled system, with adhesion provided by van der Waals forces instead of capillary forces,
if a suitable driving method is implemented. We have also shown that the walkers display a rich
dynamical behaviour, with several modes of motion predicted; investigating the occurrence and
stability of these modes both experimentally and numerically remains a topic for further study.
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