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We present an experimental study of the elastic properties of a superhydrophobic surface in the Cassie
regime, due to the gas bubbles trapped at the liquid-solid interface. We use a surface force apparatus to
measure the force response to an oscillating drainage flow between a sphere and the surface. We show that
the force response allows to determine the surface elasticity without contact, using the liquid film as a
probe. The elasticity of the bubble mattress is dominated by the meniscii stiffness, and its determination
enables us to probe the shape of these meniscii. Another effect of surface elasticity is to decrease the
viscous friction. We show that this effect can be wrongly attributed to rate dependant boundary slippage if
elastohydrodynamics is not taken into account.
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Superhydrophobic (SH) textured solid surfaces are of
interest in many engineering applications [1]. The air
trapped in the nonwetting grooves of the surface pattern
confers to the composite liquid-solid interface various
properties which allow powerful ways to manipulate
liquids. In microfluidics, SH surfaces minimize the friction
of flows at wall—the trapped air acting as a lubricant—
and allow reduced pressure drops in microchannels [2– 4].
In self-clearance applications, easy motion of fluid drops is
favored by ultralow contact angle hysteresis and weak
anchoring of contact lines [5]. In agriculture, the elastic
properties of SH surfaces cause the drops of agricultural
chemicals to bounce on leaves instead of spread—a draw-
back to be avoided [6].

In this Letter, we study more specifically the elastic
properties of a carpet of bubbles trapped in the holes of a
superhydrophobic surface. We present a new method to
measure surface elasticity at a distance, using a dynamic
flow. For a bubble pattern of micrometric size, we find that
the elastic response of bubbles is dominated by their me-
niscus, with only a small correction arising from the gas
compressibility. We also show, as discussed in [7], that
bubbles compliance reduces the viscous friction of the
flow, and that this elastic effect can be wrongly interpreted
as a huge boundary slip of the liquid at the wall if not
properly taken into account.

The surfaces we use (Fig. 1) are smooth silicon planes
etched with holes (radius a � 0:65� 0:03 �m, height
3:5 �m) laid on a square lattice of period L � 1:4 �m.
The microstructure is made by photolithography and elec-
trochemical etching [8]. The plain surfaces are hydrophilic,
and wetted by water in the so-called Wenzel regime, i.e.,
with the liquid filling the holes. Silanized surfaces are
superhydrophobic, and water wets them in the Cassie
regime, with microbubbles trapped in the holes (advancing
contact angle 155�, hysteresis of 9�).

We study a dynamic flow on this ‘‘bubble mattress’’ with
a dynamic surface force apparatus specifically designed to
act as a nanorheometer [9]. A sphere of radius R is im-

mersed in the liquid at a distanceD of the surface (D� R)
and oscillated in the normal direction with amplitude ho
(typically 8 Å) at frequency !=2� � 19 Hz. This oscilla-
tion creates a drainage flow between the sphere and the
surface at the exciting frequency. The device measures the
relative distance between the surfaces and the in phase and
out of phase amplitudes of the oscillating force acting on
the surface, from which the complex force response
G!�D� � � ~F!�D�=ho � G0!�D� � iG

00
!�D� is derived.

The distance is varied very slowly (5 �A 	 s�1) and its origin
is set at the contact of the sphere and the top of the textured
plane, located by a sharp increase of the quasistatic force.
The Reynolds number is very small (Re � ho!

��������
RD
p

=� 

10�7, with � � �=� the kinematic viscosity) so that for an
incompressible Newtonian liquid and rigid surfaces, the
force induced by the flow is purely viscous [G0!�D> 0� �
0]. The damping can then be used to study the viscosity and
boundary condition of the confined liquid [10]. A nonzero
value of G0!�D� obtained with a Newtonian fluid is a
signature of elasto-hydrodynamic effects due to surface
deformation.

Figure 2(a) shows the components of the force response
obtained on the plain hydrophilic surface for a sphere of
radiusR � 3:25� 0:05 mm. The liquid is a water-glycerol

FIG. 1 (color online). SEM picture of the microstructured
surfaces. They are modeled as smooth planes with holes of
radius 0:65 �m and height 3:5 �m laid on a square lattice of
period L � 1:4 �m.
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solution (78% of glycerol, viscosity 39� 1 mPa 	 s mea-
sured with a Ubbelohde viscosimeter), behaving as a
Newtonian fluid at the frequency used. Its wetting proper-
ties on the patterned surfaces are similar to water so that the
liquid fills the holes of the hydrophilic surface. In this
Wenzel state, the elastic component G0!�D� is 3 orders of
magnitude lower than the viscous component G00!�D�, ex-
cept at short distances comparable to the roughness of the
etched silicon (30 nm peak-to-peak measured by atomic
force microscopy). Therefore, no significant elastic effect
is observed. The viscous damping G00! decreases as D�1 at
large distance, in a way consistent with the Reynolds
damping 6��!R2=D for a flow between a sphere and a
plane. The prefactor provides a value of the fluid viscosity
� � 39� 2 mPa 	 s in very good agreement with the mac-
roscopic determination. At shorter distance, the decrease in

friction due to the flow occurring in the holes of the
patterned surface becomes visible [11].

On the superhydrophobic surface [Fig. 2(b), sphere ra-
dius R � 3:05� 0:05 mm, same liquid], the elastic re-
sponse of the microbubbles trapped in the holes appears
clearly. The elastic part of the force response G0! has a
finite value over the whole range of distances investigated.
The viscous damping saturates at a nonzero value instead
of diverging at small D. This saturation at short distance is
due to the bubbles deformation, which essentially compen-
sates for the sphere displacement. At large distance, the
viscous damping retrieves the ReynoldsD�1 scaling with a
fluid viscosity � � 39� 2 mPa 	 s. For a quantitative
analysis, we develop a continuous elasto-hydrodynamic
(EH) model describing the flow of a Newtonian and in-
compressible liquid confined between a rigid oscillating
sphere and a flat surface with a local elastic response. The
deflection of the surface at distance r from the sphere-plane
axis is ��r; t� � K�1P�r; t� (Fig. 3) with P�r; t� the local
pressure and K the surface stiffness of the square lattice of
entrapped bubbles. A lubrication flow is assumed within
the liquid film. We use here a no-slip boundary condition,
but we have checked that using a partial slip b.c. compat-
ible with the value of the damping measured at large
distance does not change significantly the results presented
here. The Poiseuille flow and mass balance equations write
 

u�r; t� � �
H2�r; t�

12�
@P�r; t�
@r

1

r
@
@r
�rHu�r; t�� � �

@H
@t
� �

�
dh
dt
� K�1 @P�r; t�

@t

�
(1)

with h�t� � hoei!t the oscillating motion of the sphere,
H�r; t� � D� r2=2R� h�t� � ��t� the local thickness of
the liquid film, and u�r; t� the thickness-averaged flow
velocity. The linearization at small amplitude ho gives an
equation for the complex amplitude ~P�r� of the pressure

 �
1

r
d
dr

�
r
�D� r2=2R�3

12�
d ~P
dr

�
� �i!�ho � K

�1 ~P�r��

(2)

with the conditions ~P�1� � 0 and �d ~P=dr��r � 0� � 0.
With adimensional variables ~P0 � ~P=Kho, x � D=Dc,
z � Z=Dc, Dc �

��������������������
3�!R=K

p
, Z � D� r2=2R, one gets

D+h(t)

R

r

ξ(t)

H(r,t)

FIG. 3 (color online). Schematics and notations of the EH
model.
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FIG. 2 (color online). Components of the force response
G!�D� measured in the Wenzel state (a) and the Cassie state
(b) as a function of the distance D between the surfaces. In
(a), the dashed line has a slope of �1. In (b), the continuous line
is the numerical solution of the EH model computed with a
crossover distance Dc � 211 nm. For comparison, the dashed
line is the damping expected with no elastic effect and a slip
length b � 211 nm.
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G!�D� � �
1

ho

Z 1
0

2�rdr ~P�r�

� �
6��!R2

Dc

Z 1
x

~P0�z�dz: (3)

Solving (3) numerically gives the following scaling laws:
 

G!�D� �
6��!R2

Dc
f�D=Dc�

f�x� � 1� j when x! 0

f�x� �
1

3x3 �
j
x

when x! 1 :

(4)

A simple model for these scaling laws is the following.
In the limit of high stiffness K, the Reynolds pressure field
Po�r� � �j!ho�3�R=Z2� obtained from integrating
Eq. (2) with K�1 � 0 is valid if the maximum surface
deformation remains small: � � K�1Po�Z � D� � ho.
This condition defines the large distance limit and the value
of Dc. The Reynolds pressure field is approximately con-
stant, equal to �j!ho�3�R=D2� in a region of radius r ’����������

2RD
p

around the sphere apex, and decays as r�2 far from
it. Therefore, the surface area probed by the flow is A �
2�RD. In this limit, the viscous force is F � Po�D�A �
���D�j!ho with the damping coefficient ��D� �
6��R2=D. The surface undergoes a small elastic displace-
ment � ’ K�1Pmax � K�1�F=2�RD� over the probed
area. The equivalent spring stiffness of the elastic surface
is thus k�D� � 2�RDK. The overall force response corre-
sponds to a spring and a dashpot in series

 G!�D� �
j�!k

�k� j�!�
’ j�!� �2!2=k: (5)

This simple model retrieves both the Reynolds viscous
damping and, within a numerical factor, the variation of
the elastic response G0!�D Dc� � 6��2R3!2K�1=D3

at large distances.
In the limit of a soft surface, i.e.,D� Dc, the part of the

liquid film whose thickness is lower than Dc cannot drain
since the surface cannot sustain the high pressure this
would require. Instead, the elastic displacement compen-
sates for the sphere displacement: � ’ ho. This occurs over
an area around the sphere apex 2�R�Dc �D� ’ 2�RDc.
The stiffness k�D� thus saturates to k�Dc�. Over this area,
the pressure in the liquid saturates to its maximum value
Pmax � Po�Z � Dc�; therefore, the viscous damping also
saturates to ��D � Dc� � k�Dc�=!. The spring-and-
dashpot model then retrieves the small distance scaling
law (4).

We compare in Fig. 2(b) this continuous elasto-
hydrodynamic model to the experimental force response
measured in the Cassie regime. A good agreement is found
with the scaling laws at small and large distance, with a
crossover distance lying in the middle of the range inves-

tigated. The variation of the real part as D�3 at large
distances gives the value of the surface stiffness: K �
0:95� 0:10 1012 N=m3. This value is then used to com-
pute the full response function of the elasto-hydrodynamic
model. This latter provides a good fit of the experimental
data over 3 orders of magnitude for the whole range of
distances investigated, without other adjustable parameter.

The measured surface stiffness is then compared to the
expected surface stiffness of a bubble mattress,

 K � �L2
dPliq

dVbubble
(6)

where �dVbubble=L2 is the increase of the film thickness
allowed by the bubble deformation and Pliq the liquid
pressure on the bubble. For the bubble size and the fre-
quency used here, the diffusion of gas in and out from the
liquid phase is negligible [7]. Taking into account the
capillary pressure drop Pcap � Pliq � Pgas across the me-
niscus, the compressibility of a single bubble is

 

dPliq

dVbubble
�

dPgas

dVbubble
�

dPcap

dVbubble

� �
1

@gVbubble
�

2�

�a4 cos	�1� cos	�2 (7)

with @g the bubble gas compressibility, � � 63�
3 mN=m the liquid-gas surface tension, and 	 the angle
formed by the spherical-cap meniscus with the plane sur-
face [12]. It is shown in Fig. 4 that with the micro-
metric hole size of our surface, the meniscus contribution
dominates over the gas compressibility. The magnitude
of the measured surface stiffness is in good agreement
with the expected stiffness of the bubble mattress. More
specifically, with the numerical values a � 0:65 �m and

FIG. 4 (color online). Expected stiffness K of a bubble mat-
tress calculated from Eq. (7). The bubbles are trapped in a square
lattice of cylindrical holes. Their meniscus protrude with an
angle 	 above the solid surface. The dashed line plots the
contribution of the gas compressibility to the overall stiffness.
The rectangle is the surface stiffness measured with its error bar.
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L � 1:4 �m, we find that the measured stiffness in this
experiment corresponds to protruding meniscii forming an
angle 	 � 46� � 6� with the surface plane. This protrud-
ing configuration is likely due to the rounded geometry of
the hole edges on which the meniscus merges to the sub-
strate. It is of interest to mention that the expected menis-
cus stiffness does not depend on the sign of 	, i.e., is
similar for a protruding or intruding meniscus. However,
we have to eliminate the possibility of an intruding (nega-
tive) angle, since 	 <�30� would lead to a negative
pressure in the gas phase.

In conclusion, we show here a new method to measure
surface elastic properties at a nanoscale, at a distance, and
without mechanical contact. This method can be applied to
a wide range of elastic surfaces, by tuning the liquid
viscosity. It has interesting applications for fragile surfaces
on which direct contact should be avoided, or complex
surfaces which properties can be affected by the proximity
of a mechanical probe, such as ultrathin polymer films
[13,14]. We have also shown that the elastic properties of
a carpet of micrometric bubbles is determined by the
deformation of their free surface. The measurement of
the surface elasticity thus allows to probe the shape of
the meniscii.

Finally, in the spirit of [7], we want to comment on the
importance of surface elasticity effects for the study of
liquid friction at surfaces, and boundary hydrodynamics in
general. As shown by the saturation of the damping in
Fig. 2(b), a consequence of surface elasticity is to reduce
the overall viscous friction of a flow. This reduction of

friction is not due to liquid slippage at the solid surface, but
to the fact that surface deformation allows more space for
the flow. As a result, if not taken properly into account, the
existence of a finite surface elasticity can be wrongly
attributed to liquid slippage at the surface. More important,
because the amplitude of surface deformation depends on
the viscous stress, the apparent boundary effect depends on
the shear rate. We illustrate this effect in Fig. 5 by plotting
the apparent slip length that would be obtained if the
elasto-hydrodynamic force response were wrongly inter-
preted in terms of boundary slippage. This apparent slip
length bapp is derived point-by-point from the ratio f�meas �

G00!�D�=�6��!R
2=D� of the measured viscous response to

the Reynolds force, by comparing it to the theoretical value
f�th�bapp=D� [15]. When D>Dc, the EH effects are negli-
gible and the slip length has a low limit value correspond-
ing to the actual boundary condition on the Cassie surface
[11]. However, when D<Dc, the surface deflection is
significant, and the apparent slip length increases by orders
of magnitude. This is plotted in Fig. 5 as a function of the
shear rate at wall _� � 1:38ho!

����
R
p

=D3=2 normalized by
the critical shear rate _�c � _��Dc�. Rate-dependent slip
effects with a threshold shear rate have indeed been re-
ported in literature [16]. Our results show the necessity to
control sharply surface elasticity effects in order to inves-
tigate rate effects in boundary conditions.
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417, 811 (2002).
[7] E. Lauga and H. Brenner, Phys. Rev. E 70, 026311 (2004).
[8] P. Kleimann, X. Badel, and J. Linros, Appl. Phys. Lett. 86,

183108 (2005).
[9] F. Restagno et al., Rev. Sci. Instrum. 73, 2292 (2002).

[10] C. Cottin-Bizonne, B. Cross, A. Steinberger, and
E. Charlaix, Phys. Rev. Lett. 94, 056102 (2005).

[11] A. Steinberger et al., Nat. Mater. 6, 665 (2007).
[12] E. Charlaix and H. Gayvallet, J. Phys. II 2, 2025 (1992).
[13] Y. Sun, B. Akhremitchev, and G. Walker, Langmuir 20,

5837 (2004).
[14] H. Bodiguel and C. Fretigny, Phys. Rev. Lett. 97, 266105

(2006).
[15] O. I. Vinogradova, Langmuir 11, 2213 (1995).
[16] Y. Zhu and S. Granick, Phys. Rev. Lett. 87, 096105 (2001).

0.01 0.1 1 10 100

10

100

1000

b nm

f *

  /. .
c

app

meas

5

6
7
8

0.1

2

3

4

5

6
7
8

1

FIG. 5 (color online). Left axis: ratio f�meas of the measured
damping G00! normalized to the Reynolds damping 6��!R2=D
as a function of the normalized shear rate at wall _�= _�c �
�Dc=D�3=2. Right axis: apparent slip length bapp derived from
f�meas assuming no elastic effect and a partial slip boundary
condition.
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