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High friction on a bubble mattress
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Reducing the friction of liquid flows on solid surfaces has become
an important issue with the development of microfluidics
systems, and more generally for the manipulation of fluids at
small scales. To achieve high slippage of liquids at walls, the
use of gas as a lubricant1–4—such as microbubbles trapped in
superhydrophobic surfaces5—has been suggested. The effect of
microbubbles on the effective boundary condition has been
investigated in a number of theoretical studies6–9, which basically
show that on flat composite interfaces the magnitude of the
slippage is proportional to the periodicity of the gaseous
patterns10. Recent experiments aiming to probe the effective
boundary condition on superhydrophobic surfaces with trapped
bubbles have indeed shown high slippage in agreement with
these theoretical predictions10–12. Here, we report nanorheology
measurements of the boundary flow on a surface with calibrated
microbubbles. We show that gas trapped at a solid surface
can also act as an anti-lubricant and promote high friction.
The liquid–gas menisci have a dramatic influence on the
boundary condition, and can turn it from slippery to sticky. It
is therefore essential to integrate the control of menisci in fluidic
microsystems designed to reduce wall friction.

Here, we investigate slippage on superhydrophobic surfaces
embedded with a square lattice of calibrated cylindrical holes
(see Fig. 1). The microstructure is made by photolithography and
electrochemical etching13. The plain surfaces are hydrophilic, and
wetted by water in the so-called ‘Wenzel’ regime, that is, with the
liquid filling the holes. Silanized surfaces are superhydrophobic,
and the favoured wetting regime of water is the Cassie regime
(advancing contact angle 155◦, hysteresis of 9◦), with microbubbles
trapped in the cylindrical holes. The slippage on those surfaces
is characterized by the effective slip length B, which corresponds
to the distance between the top of the walls of the patterned
surface and the virtual no-slip plane where the mean velocity profile
extrapolates to zero. The higher the effective slip length, the higher
the slippage and the smaller the interfacial friction.

We study the effective slippage on these surfaces with a dynamic
surface force apparatus14 (SFA). A newtonian liquid (a mixture of
water and glycerol with similar wetting properties as water, with a
viscosity η=39±2 mPa s) is confined between the microstructured
plane and a smooth non-slipping sphere of radius R. The dynamic
SFA measures the complex force response G(ω) = F(ω)/h0 acting
on the surfaces when the sphere is oscillated in the normal direction
with an amplitude h0 and a frequency ω/2π. It is measured for
varying values of the mean distance D between the sphere apex
and the top of the plane. The imaginary part of the complex
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Figure 1 Microstructured surfaces. Description of the surfaces used. a, Scanning
electron micrograph (taken under an angle) of the microstructured surfaces studied.
b, The surfaces are modelled by smooth planes with holes of radius
a= 0.65±0.03 µm and height H= 3.5 µm, laid on a square lattice of period
L= 1.4 µm. The surface fraction of the solid (φS = 1− (πa2/L2 )) is equal to
0.32±0.06.

force response G′′(ω) is the viscous damping due to the flow and
can be linked to the effective (averaged) hydrodynamic boundary
condition on the plane. According to the theory15, the far-field
asymptote of the inverse of the viscous damping G′′−1 with respect
to the distance D intersects the D axis at the position of the
virtual no-slip surface, directly giving the value of the effective slip
length B as defined above. The slope of the asymptote is equal
to [6πωηR2

]
−1. The real part G′(ω), for a newtonian liquid, is a

signature of the elastic deformation of the surfaces.
We compare two situations: the hydrophilic plane (Wenzel

regime, no bubbles) which is the reference situation, and the
superhydrophobic plane (Cassie regime, trapped bubbles). The
radius of the sphere is R = 3.25 ± 0.05 mm in the hydrophilic
case and R = 3.05±0.05 mm in the superhydrophobic case. Both
experiments are carried out at an excitation frequency of 19 Hz.

In the hydrophilic case, we show in Fig. 2a the inverse of the
viscous damping as a function of the distance D between the
surfaces. The linear extrapolation of the viscous damping intersects
the D axis at a distance of 105 ± 10 nm from the origin, which
corresponds to an effective slip length B of 105 ± 10 nm. In this
reference situation, the extrapolated no-slip plane lies underneath
the top of the wall, as expected, because some of the liquid inside
the holes participates in the flow16. As shown in Fig. 2b, the real
part G′ of the force response is equal to zero, as there is no elastic
deformation of the surface.
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Figure 2 Nanorheology over microstructured surfaces. Flow between a Pyrex sphere and a textured microstructured plane (see insets). a,b, The surface is hydrophilic; the
liquid fills the holes. c,d, The surface is superhydrophobic; the liquid does not fill the holes. a and c show the evolution of the inverse of the viscous damping G ′′−1 as a
function of the distance D between the surfaces. The far-field asymptote (dashed line) allows the determination of the effective slip length B. b and d show the evolution of
the elastic part G ′ as a function of the distance D; a value equal to zero corresponds to a rigid response (b). Solid line (c): Fitting results for a model based on the local
elasticity of the superhydrophobic surface embedded with bubbles, with a surface stiffness κ = 9.5×1011 Nm−3 and a slip length B of 20 nm.

In the superhydrophobic case (Fig. 2c), the asymptote of the
inverse of the viscous damping G′′−1 intersects the D axis at a
distance B = 20±10 nm from the top of the walls, showing a much
smaller effective slip length in the presence of microbubbles than
in the hydrophilic case. In addition, at small distances the damping
is quite different from that observed in the hydrophilic case. This
saturation of the damping is an elastohydrodynamic effect, owing
to the compression of the bubbles trapped inside the holes of the
superhydrophobic surface. In Fig. 2d, the elastic part G′ of the
response function, which is not zero, shows directly the elastic
contribution of the bubbles which deform under the pressure
induced by the flow. This elastic response confirms the presence of
gas trapped in the surface holes. The striking point of these results
is to show a smaller effective slip length (B = 20 ± 10 nm) in the
presence of microbubbles, than without any gas phase trapped at
the boundary (B = 105 ± 10 nm). This demonstrates the fact that
the presence of gas trapped at an interface does not always have a
lubricating effect on the boundary flow.

We evaluate the stiffness of the microbubbles by comparing
the force response to a continuous elastohydrodynamic model
with a locally deformable surface: the surface displacement

ξ(r, t) at a distance r from the sphere-plane axis is assumed to
depend linearly on the local liquid pressure ξ(r, t) = κ−1p(r, t).
Fitting the experimental data with a numerical resolution of this
model (solid line in Fig. 2c) confirms the effective slip length
B = 20 ± 10 nm on the plane, and yields a local surface stiffness
κ= (9.5±1.0)×1011 N m−3. From this value, the stiffness Kbubble of
a single bubble can be determined: Kbubble =dPliquid/dVbubble =κ/L2,
where Pliquid is the mean pressure of the liquid above the
bubble of volume Vbubble and L is the lattice periodicity.
The stiffness is dominated by the stiffness of the meniscus
Kcap = 2γ cosθ(1 + cosθ)2/πa4, where θ is the protrusion angle
of the meniscus (defined in the inset of Fig. 3). Taking into
account the error bars in the determination of the hole radius
from scanning electron micrographs (a = 0.65 ± 0.03 µm) and in
the water/glycerol surface tension (γ = 63 ± 3 mN m−1), we can
estimate the angle of the protruding menisci: 30◦ < θ < 60◦. This
corresponds to a height of the microbubbles of about 200–400 nm
above the solid surface.

Is this protruding geometry of the menisci responsible for
the low slip length measured? To answer this question, we
study numerically the influence of the meniscus shape on the
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hydrodynamic boundary condition, with a three-dimensional
finite-element method (Comsol). We solve for a Couette flow
between a smooth surface moving at a velocity U0 and a fixed
model surface made of a square lattice of cylindrical holes with
the same parameters as the experiment (see Fig. 1). To account for
the experimental uncertainty on the hole radius, we consider three
values for the radius (a =0.62, 0.65 and 0.68 µm). We take a no-slip
boundary condition on each solid–liquid interface.

We first consider our reference case: the Wenzel wetting
regime with the liquid filling the holes. In this case, we get an
effective slip length Bfilled = 55±10 nm in relatively good agreement
with the value measured experimentally in the hydrophilic case
(105±10 nm). The difference between those values comes from the
experimental error (offset) in the distance D measured due to the
wall roughness, a few tens of nanometres (the top of the roughness
is the reference plane in SFA experiments).

In the Cassie regime, when bubbles fill the holes, we calculate
the effective slip as a function of the shape of the meniscus
characterized by the protrusion angle θ (Fig. 3). For this we
consider simplified local boundary conditions on the free surface:
the meniscus is anchored at the edge of the holes and its shape
is a fixed spherical cap that does not depend on the stress. This
approximation is valid in the limit of small capillary numbers,
which is representative of our experiments in which the capillary
number is always smaller than 10−4. Angles θ smaller than −30◦ are
not considered because they would correspond to negative values of
the pressure in the gas phase. For all other values of θ, the meniscus
is stable (its compressibility is positive). In addition, we neglect
the viscosity of the gas phase and assume a perfect slip boundary
condition locally on the meniscus.

The numerical results (Fig. 3) clearly show the decrease in
slip length due to the meniscus curvature. A huge decrease of
the effective slip length is obtained for protruding menisci: for
θ > 45◦, the slip lengths become smaller than in the Wenzel
case, that is, without any gas phase trapped on the surface. At
larger angle values, the effective slip lengths become negative,
accounting for an immobilized layer of the liquid close to the wall.
In this limit, the liquid–solid friction is higher than on a non-
slipping flat solid surface without holes. Our experimental results
lie in the region where the effective slip length decreases strongly
with the menisci protrusion. The SFA value for the effective slip
length, B = 20 ± 10 nm, plotted as a function of the experimental
determination of the protrusion angle, 30◦ < θ < 60◦ (orange
rectangle), is in quantitative agreement with the numerical results.
Thus, the ‘sticky’ behaviour observed experimentally is actually
explained by the effect of the menisci curvature.

This experiment shows quantitatively that the boundary
condition of a liquid flowing on a composite surface embedded
with microbubbles depends dramatically on the shape of the gas–
liquid interfaces. Contrary to what is often believed, the presence
of gas at the solid–liquid interface does not always reduce the
friction. A gas phase can also promote high friction, by trapping
an immobile liquid layer of significant thickness above the solid
wall. Our result is the first experimental evidence of Richardson’s
and Jansons’ predictions17,18, which showed that a perfectly slippery
surface can provide a no-slip boundary condition if it is rough
enough. In view of this result, it is not clear that the slip lengths of
micrometric size reported in the literature on smooth hydrophobic
surfaces can actually be explained by the presence of nanobubbles.
Indeed, as described in ref. 19, the nanobubbles that exist on
hydrophobic surfaces are not flat; they resemble spherical caps
with heights of the order of 10 nm and diameters of the order of
100 nm, an aspect ratio close to that of our bubbles (1.3 µm in
diameter and about 250 nm in height). More specifically, the stable
nanobubbles demonstrated in ref. 19 are only 4 to 20 times smaller
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Figure 3 Evolution of the slip length with the meniscus shape. Red crosses:
Numerical values for an angle θ of the meniscus. Dashed blue line: Numerical value
in the hydrophilic case when the liquid fills the holes. The width of the error bars
corresponds to the numerical values obtained for the radius a, 0.62≤ a≤ 0.68 µm.
Orange rectangle: SFA experimental value (taking into account the error bars). Inset:
Schematic diagram of the protrusion angle θ formed by the meniscus in the
superhydrophobic case.

than ours (60–300 nm in diameter), so that we would expect our
macroscopic analysis to hold. Finally, our result also shows that
controlling slippage at the wall using superhydrophobic surfaces
in microfluidics applications is still an open problem for surface
engineering. Geometry is a key element and patterns should be
designed to minimize the meniscus curvature. With contiguous
grooves for instance, or with posts—for which the gas phase is
connected to a reservoir—the shape of the meniscus is expected to
be less pronounced and the negative impact on the slippage should
be smaller. Conversely, controlling the shape of the meniscus would
provide a means of fine tuning the boundary condition at the wall.

METHODS

The numerical calculation of the effective slip length on the patterned surfaces
is made with the three-dimensional finite-element method Comsol solving for
a Couette flow in a unit cell of the square lattice. The bottom surface is a square
of size L×L (L = 1.4 µm) with a cylindrical hole of depth H = 3.5 µm and
radius a = 0.62, 0.65 or 0.68 µm in its middle (this corresponds to the
experimental determination of the pattern parameters). The upper surface is a
flat plane located at a distance z = d of the top of the bottom surface. This unit
cell is filled with a newtonian liquid of viscosity η. The Couette flow is
produced by keeping fixed the lower surface and by moving the upper one at a
velocity U0 in the x direction, parallel to a horizontal axis of the unit cell. The
velocity profile is assumed periodic in the x direction, and the velocity in the
y = 0 and y = L planes has no component on the y axis. A no-slip boundary
condition is assumed on all liquid–solid surfaces. When calculating the flow on
a bubble, a perfect slip boundary condition is assumed at the liquid–gas
interface. The effective slip length is derived from the viscous force F acting on
the upper surface. The viscous force is obtained by integrating the x component
of the tangential stress σxz (z = d) = η ·dvx/dz. The slip length is then given by
B = (U0ηL2/F)−d. It is checked that this value does not depend significantly
on the distance d, which is varied between d = 3a and 6a.
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In the calculation of the flow on a bubble, the liquid–gas meniscus is
treated as a rigid boundary. We check separately for the stability of the
meniscus by calculating analytically its compressibility (that is, the stiffness of
the bubble). Neglecting the gas compressibility, which has a stabilizing effect,
the stiffness of the meniscus Kcap is always positive, so the meniscus is stable
over the whole range of values of θ we considered.
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