

Instructions for use

Title Algorithms for Adversarial Bandit Problems with Multiple Plays

Author(s) Uchiya, Taishi; Nakamura, Atsuyoshi; Kudo, Mineichi

Citation
Algorithmic Learning Theory (21st International Conference, ALT 2010, Canberra, Australia, October 6-8, 2010.
Proceedings), ed. by Marcus Hutter; Frank Stephan; Vladimir Vovk; Thomas Zeugmann, ISBN: 978-3-642-16107-0,
(Lecture Notes in Computer Science; 6331/2010), pp. 375-389

Issue Date 2010

Doc URL http://hdl.handle.net/2115/47057

Rights The original publication is available at www.springerlink.com

Type bookchapter (author version)

File Information LNCS6331_375-389.pdf

Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP

https://eprints.lib.hokudai.ac.jp/dspace/about.en.jsp

Algorithms for Adversarial Bandit Problems

with Multiple Plays

Taishi Uchiya, Atsuyoshi Nakamura, and Mineichi Kudo

Graduate School of Information Science and Technology, Hokkaido University
Kita 14, Nishi 9, Kita-ku, Sapporo 060-0814, Hokkaido, Japan

{uchiya, atsu, mine}@main.ist.hokudai.ac.jp

Abstract. Adversarial bandit problems studied by Auer et al. [4] are
multi-armed bandit problems in which no stochastic assumption is made
on the nature of the process generating the rewards for actions. In this
paper, we extend their theories to the case where k(≥ 1) distinct ac-
tions are selected at each time step. As algorithms to solve our problem,
we analyze an extension of Exp3 [4] and an application of a bandit
online linear optimization algorithm [1] in addition to two existing al-
gorithms (Exp3,ComBand [5]) in terms of time and space efficiency
and the regret for the best fixed action set. The extension of Exp3,
called Exp3.M, performs best with respect to both the measures: it
runs in O(K(log k + 1)) time and O(K) space, and suffers at most
O(
p

kTK log(K/k)) regret, where K is the number of possible actions
and T is the number of iterations. The upper bound of the regret we
proved for Exp3.M is an extension of that proved by Auer et al. for
Exp3.

Keywords: multi-armed bandit problem, adversarial bandit problem,
online learning

1 Introduction

Multi-armed bandit problems are a kind of sequential resource allocation prob-
lems in which one resource is allocated to one action among several alternative
actions at each time step. Each allocation yields a reward and the objective of
the problem is the maximization of the total reward. The problems are known
as paradigms of the trade-off between exploration (for better future rewards)
and exploitation (for high current rewards). These problems have been becom-
ing more and more important in this Internet age because several problems such
as server selection in network, Internet ad placement and market pricing at e-
commerce sites [8] can all be formulated as multi-armed bandit problems.

Vast studies have been done so far on these problems [10], and the majority
of them assumes that the bandit processes are stochastic. However, adversarial
bandit problems studied by Auer et al. [4] make no stochastic assumption on the
nature of the process generating the rewards for the actions, and they also have
been becoming popular recently. There have been several extensions on this line

such as the on-line shortest path problem [7], bandit online linear optimization
[1] and combinatorial bandits [5].

In this paper, we study adversarial bandit problems extended in one direc-
tion, namely, those problems with multiple plays. In this extension, k resources
are allocated at each time step. The multiple play setting is practically useful for
such problems as multiple ad placement on one web page, which is studied as the
problem of multi-impressions in [11]. As for stochastic bandit problems, there
are already several studies along this direction [2, 3, 13, 14], but, to the best of
our knowledge, only the study made so far in the adversarial setting is combina-
torial bandits of Cesa-Bianchi and Lugosi [5]. They considered a general bandit
problem in which a player select one binary vector from a fixed set S ⊆ {0, 1}K

at each time step. The k-sized subset version of their algorithm ComBand is
just an algorithm for the multiple play setting. The regret for the best fixed
k-sized action subset is O(k

3

2

√
TK lnK), where T is the number of iterations

and K is the number of possible actions. The time and space complexities of this
algorithm are O(kK3) and O(K3), respectively. Note that here we only consider
the case where selected k actions must be distinct, different from the studies in
[12, 15].

Time and space complexities of ComBand can be improved a little by algo-
rithm BOLOM, which is made by applying the bandit online linear optimization
algorithm [1] to our problem. BOLOM runs in O(K3) time per iteration and
O(K2) space regardless of the value of k. The regret of BOLOM for the best

fixed action set is bounded by O(kK
3

2

√
T log T), which is worse than Com-

Band. The best algorithm for the multiple play setting is algorithm Exp3.M,
which is an extension of Exp3 [4]. The action space is the same as that of Exp3,
namely, Exp3.M keeps just K weights. Using the efficient k-combination selec-
tion procedure developed by Gandhi et al. [6], which can select a set S of k
distinct actions so as to satisfy that each action i is selected with given probabil-
ity pi, Exp3.M runs in O(K(log k+1)) time per iteration and O(K) space, and
achieves an upper bound O(

√

kTK log(K/k)) on the regret for the best fixed
action set. Note that this upper bound is an extension of that proved by Auer
et al. [4] because they coincide when k = 1. We also show that a lower bound of
the regret on the problem is Ω(((K − k)/K)2

√
KT), which is also an extension

of that proved in [4] on the original problem.

2 Problem Setting

An adversarial bandit problem [4] is specified by a set of possible player’s actions
[K](

.
= {1, 2, . . . ,K}) and an assignment of rewards x(t)=(x1(t), x2(t), . . . , xK(t))

at time step t = 1, 2, . . . , T , where xi(t) ∈ [0, 1] denotes the reward obtained by
the player. In multiple play setting, the player selects a set of k distinct actions
S(t) ∈ C ([K], k) at each time step t, and after that, the player gets rewards
xi(t) for i ∈ S(t), where C ([K], k) = {S ⊆ [K] : |S| = k}, namely, the set of
all subsets of size k in [K]. Throughout the paper, we use |S| as the number
of elements in S for any set S. Note that we also use notation C (K, k) which

denotes the number |C ([K], k) |
(

=

(

K
k

))

. All the information the player can

obtain at time step t is only the rewards for the actions the player has selected
at that time step.

The cumulative reward GA of a player algorithm A is defined as

GA
.
=

T
∑

t=1

∑

i∈S(t)

xi(t)

if the algorithm A chooses an action sequence S(1), S(2), . . . , S(T). The problem
is to design a player algorithm A that maximizes its cumulative reward under the
condition that an adversary who knows the strategy of A decides an assignment
of rewards.

We measure the performance of algorithm A by the regret of A for the best
fixed set of actions (that is called weakly regret in [4]), which is defined by
Gmax-k − GA, where

Gmax-k
.
= max

S∈C([K],k)

T
∑

t=1

∑

i∈S

xi(t)

is the cumulative reward for the best fixed set of k distinct actions.

3 Previous Works

First, an adversarial multi-armed bandit problem with multiple plays can be
solved by using Exp3 developed by Auer et. al [4]. Regarding a set of k actions
as one action makes Exp3 applicable to our multiple play setting1. However, this
arises a problem that the size of action space becomes large, namely, C (K, k) =
Ω(Kk). As a result, the regret upper bound obtained by Corollary 3.2 in [4]
becomes

Gmax-k − E[GExp3] ≤ 2k
√

e − 1
√

TC (K, k) lnC (K, k) ≤ 2.63
√

k3TKk lnK,

and the time and space complexities becomes Ω(Kk).
The regret upper bound can be improved significantly even using C (K, k)

weights like Exp3. Algorithm ComBand shown in Fig. 1 is the k-sized subset
version of the algorithm developed by Cesa-Bianchi and Lugosi [5], which is just
the algorithm that solves our problem as it is. Like Exp3, ComBand has one
weight for each k-sized subset. At each time step, it randomly selects one k-sized
subset according to a distribution calculated by the weights, and updates the
weights depending on the obtained reward. The randomized selection method of
ComBand is the same as that of Exp3, but ComBand uses more sophisticated
method of weight update than Exp3. ComBand calculates a K × K matrix
Pt that is defined as EpU

[1U1⊤
U], where 1U is a K-dimensional vector whose ith

1 A reward for a set of k actions must be divided by k in the application.

ComBand(The k-sized subset version of the algorithm for Combinatorial Bandits)
Parameters: γ ∈ (0, 1]
Initialization: wU (1) = 1 for U ∈ C ([K], k)
For each t = 1, 2, . . . , T ,

1. For U ∈ C ([K], k) set

pU (t) = (1 − γ)
wU (t)

P

U′∈C([K],k) wU′(t)
+

γ

C (K, k)
.

2. Choose S(t) randomly according to the distribution pU (t) for U ∈ C ([K], k).
3. Receive a reward

P

i∈S(t) xi(t) ∈ [0, k].
4. Set

Pt =
X

U∈C([K],k)

pU1U1
⊤
U and

l̂(t) =

0

@k −
X

i∈S(t)

xi(t)

1

AP+
t 1S(t).

5. For U ∈ C ([K], k) set

wU (t + 1) = wU (t) exp

−γ(K − k)
P

i∈U l̂i(t)

kK(K − 1)

!

.

Fig. 1. Pseudocode of algorithm ComBand [5] (k-sized subset version).

component is 1 if i ∈ U and 0 otherwise, and ⊤ denotes transpose. Then, the
K-dimensional vector of pseudo-losses l̂(t) is calculated as P+

t 1S(t) multiplied by

the loss k−∑i∈S(t) xi(t), where P+
t is the pseudo-inverse of Pt. For each k-sized

subset U , the weight wU (t+1) is wU (t) multiplied by exp
(

−η
∑

i∈U l̂i(t)
)

, where

l̂i(t) is the ith component of l̂(t) and η = γ(K − k)/kK(K − 1). By Theorem 1
and Proposition 15 in [5], for k ≤ K/2, we obtain

Gmax-k − E[GComBand] ≤
(

2 +
K − 1

K − k

)

k
√

TK lnC (K, k) ≤ 4
√

k3TK lnK.

As commented in [5], there is an implementation of ComBand in which
the time and space complexity is also significantly improved. In the efficient
implementation, one weight wi for each original action i is enough because weight
wU for a k-sized subset can be represented by

∏

i∈U wi and Step 5 in ComBand

can be replaced with

5’. For i ∈ [K] set wi(t + 1) = wi(t) exp

(

−γ(K − k)l̂i(t)

kK(K − 1)

)

.

Since each k-sized subset can be represented by a path from the source to

. . .
. . .

. . .
. . .

. . .
. . .

.
. . .

.

. . .

. . .

. . .

. . .

. . .

k

K

source

sink

Fig. 2. The directed graph G such that a path in G has one-to-one correspondence to
a k-sized subset of [K].

the sink in G of Fig. 2, by dynamic programming technique of Takimoto and
Warmuth [16], S(t) can be chosen without calculating pU (t) for all U ∈ C ([K], k)
in Step 2, and Pt can be calculated without taking a sum over all U ∈ C ([K], k)
in Step 4. (See also the proof of Theorem 3 in [7].) From the fact that the number
of nodes in G is O(kK) and the weights of the edges incoming into the same
vertex are the same, S(t) can be chosen in O(kK) time and O(kK) space, and Pt

can be calculated in O(kK3) time and O(K3) space. Note that we do not have to
keep edge information in memory because of its regularity. The pseudo-inverse
P+

t can be calculated in O(K3) time and O(K2) space. In total, the time and
space complexities of ComBand is O(kK3) and O(K3), respectively.

4 Application of Bandit Online Linear Optimization

A more efficient algorithm for large k can be obtained by applying an algorithm
developed in the context of bandit online linear optimization [1]. In the bandit
online linear optimization problem, the space corresponding to the action space
is a compact closed convex set K in R

n. At each time step t, a player chooses
qt ∈ K, then an adversary returns x⊤

t qt to the player. The player’s goal is to
minimize his regret defined as

max
q∗∈K

T
∑

i=1

x⊤
t q∗ −

T
∑

i=1

x⊤
t qt.

To consider our multiple play setting bandit problem in this framework, set
K to the convex hull of

{

1U ∈ R
K : U ∈ C ([K], k)

}

, where 1U is a vector whose
ith component is 1 if i ∈ U and 0 otherwise. The following proposition holds.

Proposition 1. The convex hull of
{

1U ∈ R
K : U ∈ C ([K], k)

}

is equal to
{

q : 0 ≤ qi ≤ 1 for i = 1, 2, . . . ,K,
∑K

i=1 qi = k
}

.

Proof. Let A =
{

q : 0 ≤ qi ≤ 1 for i = 1, 2, . . . ,K,
∑K

i=1 qi = k
}

and

B =
{

1U ∈ R
K : U ∈ C ([K], k)

}

. Then, B is a compact convex subset of R
K

and the set of its extreme points is A. Thus, the convex hull of A is B by Krein-
Milman theorem [9]. ⊓⊔

By the above proposition, any q ∈ K satisfies
∑K

i=1 qi = k, so K can be
regarded as a (K − 1)-dimensional subspace KK−1 defined by

KK−1
.
=

{

q : 0 ≤ qi ≤ 1 for i = 1, 2, . . . ,K − 1, 0 ≤ k −
K−1
∑

i=1

qi ≤ 1

}

.

Therefore, a linear optimization problem under the constraint of range KK−1

can be solved as the unconstrained linear optimization problem with the θ-self
concordant barrier

R(q)
.
= − ln

[{

K−1
∏

i=1

qi(1 − qi)

}(

k −
K−1
∑

i=1

qi

)(

1 − k +

K−1
∑

i=1

qi

)]

on KK−1, where θ = 2K for this barrier R. By applying Algorithm 1 in [1] to
our multiple play setting bandit problem, we can obtain algorithm BOLOM

shown in Fig. 3. In the application, there are two things we have to take care
of. One is the difference of the problem settings: in linear optimization setting,
the player can select any element p in K, but in the multiple play setting, the
player must select a set U from C ([K], k), which corresponds to the original set
of C (K, k) vectors before taking its convex hull.

This can be overcome by selecting a set U ∈ C ([K], k) at random so as
to satisfy the condition that each action i is selected with probability pi. This
selection guarantees that E(1U) = p holds, and the bound of Theorem 1 in [1]
is still valid for the algorithm of the above modification by their Proposition 1
in Sec. 7 in [1]. Function DepRound [6] used in our algorithm is an efficient
algorithm that makes such a selection, whose details are described in Sec. 7.

The other problem is that the reward x(t)⊤p(t) expectedly received by the
player at each time step t cannot be expressed linearly in KK−1: it is expressed
as

(x1(t) − xK(t), . . . , xK−1(t) − xK(t))







p1(t)
...

pK−1(t)






+ kxK(t),

that is, it is expressed as a combination of a linear part with a new reward vector
(x1(t) − xK(t), · · · , xK−1(t) − xK(t)) and a bias kxK(t).

Let y(t) = 1
k (x1(t) − xK(t), · · · , xK−1(t) − xK(t))

⊤
. Then,

ES(t)
1

k
x(t)⊤1S(t) =

1

k
x(t)⊤ES(t)1S(t) =

1

k
x(t)⊤p(t)

= y(t)⊤







p1(t)
...

pK−1(t)






+ xK(t) = y(t)⊤(q(t) + εtλ

− 1

2 eit
) + xK(t)

BOLOM(Bandit Online Linear Optimization with Multiple plays)
Parameters: η > 0
Initialization:

R(q) = − ln

"(

K−1
Y

i=1

qi(1 − qi)

)

k −
k−1
X

i=1

qi

!

1 − k +

K−1
X

i=1

qi

!#

for q ∈ KK−1,

qi(1) =
k

K
for i = 1, 2, . . . , K − 1

For each t = 1, 2, . . . , T
1. Calculate the set of eigenvectors {e1, . . . , eK−1} and

eigenvalues {λ1, . . . , λK−1} of ∇2R(q(t)).
2. Choose it uniformly at random from {1, . . . , K − 1} and

εt = ±1 with probability 1/2.
3. Set

pj(t) = qj(t) + εtλ
− 1

2 eit,j for j = 1, 2, . . . , K − 1,

pK(t) = k −
K−1
X

i=1

pi(t).

4. Set
S(t) = DepRound(k, (p1(t), p2(t), . . . , pK(t))).

5. Receive rewards xi(t) ∈ [0, 1] for i ∈ S(t).
6. Set

ŷ(t) = (K − 1)

0

@

1

k

X

i∈S(t)

xi(t)

1

A εtλ
1

2 eit ,

q(t + 1) = arg min
q∈KK−1

"

−η
t
X

s=1

ŷ(s)⊤q + R(q)

#

.

Fig. 3. Pseudocode of algorithm BOLOM.

holds. Thus, by virtue of random choice of εt,

Eεt
ES(t)ŷ(t) =

1

2
(K − 1)(y(t)⊤(q(t) + λ− 1

2 eit
) + xK(t))λ

1

2

it
eit

−1

2
(K − 1)(y(t)⊤(q(t) − λ− 1

2 eit
) + xK(t))λ

1

2

it
eit

= (K − 1)(y(t)⊤eit
)eit

holds, so Eŷ(t) = Eit
Eεt

ES(t)ŷ(t) = y(t) is still implied.
Therefore, by Theorem 1 in [1], we obtain the following theorem.

Theorem 1. Set η =
√

2K log T/(4(K − 1)
√

T). Then

Gmax-k − E[GBOLOM] ≤ 16k(K − 1)
√

2KT log T +
√

(K − 1)T

holds for any T > 16K log T and for any assignment of rewards.

The regret upper bound of BOLOM is worse than that of ComBand in
both T and K. Algorithm BOLOM runs in O(K3) time per iteration and needs
O(K2) space. Thus, BOLOM is more efficient than ComBand.

5 Multiple Play Version of Exp3

In Sec. 3, we saw that a direct application of Exp3 for action space C ([K], k)
have to deal with Ω(Kk) weights, which caused a large regret upper bound
and large time and space complexities. Can we apply algorithm Exp3 for the
original action space [K] to solve the multiple play setting of a bandit problem?
The answer is yes, and we develop such an algorithm in this section.

As Exp3 does, our algorithm selects action i with probability pi(t) and es-
timates xi(t) by x̂i(t) = xi(t)/pi(t) when action i is selected and by x̂i(t) = 0
otherwise. This calculation guarantees our algorithm to satisfy E[x̂i(t)] = xi(t)
if action i is selected randomly with probability pi(t). Then, the problem is re-
duced to how to select k distinct actions under the condition that each action i
is selected randomly with probability pi(t). This can be done in O(K) time per

iteration by using function DepRound [6]. (See Sec. 7.) Note that
∑K

i=1 pi(t)
must be k in this problem setting because the expected total number of selection
is
∑K

i=1 pi(t).
However, a new problem arises using this selection: probability pi(t) possibly

becomes more than 1 if it is set to a value proportional to weight wi(t) that is

more than 1
k

∑K
j=1 wj(t). Our countermeasure for this situation is to let pi(t)

linearly depend on modified weight w′
i(t) that is made from wi(t) by cutting off

at some threshold αt.
Our extension of algorithm Exp3 for multiple play setting is algorithm

Exp3.M shown in Fig. 4. If all wj(t) are less than
(

1
k − γ

K

)
∑K

i=1 wi(t)/(1− γ),
which is checked at Step 1, pj(t) calculated at Step 3 is less than 1 for all
i = 1, 2, . . . ,K without weight modification. In this case, S0(t) is set to ∅ at Step
1. Otherwise, threshold αt is set to an appropriate value, and all the actions i
with wi(t) ≥ αt are classified into S0(t). The temporal weight w′

i(t) is set to αt

for i ∈ S0(t) and wi(t) for i 6∈ S0(t). Since

w′
i(t)

∑K
j=1 w′

j(t)
=

αt
∑

wj(t)≥αt
αt +

∑

wj(t)<αt
wj(t)

holds for all i ∈ S0(t), pi(t) is set to 1 for all i ∈ S0(t) in Step 3 if αt is decided
as in Step 1, namely, αt is decided so as to satisfy

αt
∑

wi(t)≥αt
αt +

∑

wi(t)<αt
wi(t)

=

(

1

k
− γ

K

)

/(1 − γ).

Note that S0(t) ⊆ S(t) since pi(t) = 1 for all i ∈ S0(t). Another point of our
algorithm is that weights wi(t) are not updated for i ∈ S0(t) in Step 6, namely,

Exp3.M(The extended version of Exp3 for bandit problems with Multiple plays)
Parameters: γ ∈ (0, 1]
Initialization: wi(1) = 1 for i = 1, 2, ..., K
For each t = 1, 2, ...

1. if arg maxj∈[K] wj(t) ≥
`

1
k
− γ

K

´
PK

i=1 wi(t)/(1 − γ) then

Decide αt so as to satisfy

αt
P

wi(t)≥αt
αt +

P

wi(t)<αt
wi(t)

=

„

1

k
− γ

K

«

/(1 − γ).

Set S0(t) = {i : wi(t) ≥ αt} and w′
i(t) = αt for i ∈ S0(t).

else

Set S0(t) = ∅.
2. Set

w′
i(t) = wi(t) for i ∈ {1, 2, ..., K} − S0(t).

3. Set

pi(t) = k

(1 − γ)
w′

i(t)
PK

j=1 w′
j(t)

+
γ

K

!

for i = 1, 2, ..., K.

4. Set
S(t) = DepRound(k, (p1, p2, . . . , pn)).

5. Receive rewards xi(t) ∈ [0, 1] for i ∈ S(t).
6. For i = 1, 2, ..., K set

x̂i(t) =



xi(t)/pi(t) if i ∈ S(t),
0 otherwise.

wi(t + 1) =



wi(t)exp(kγx̂i(t)/K) if i 6∈ S0(t),
wi(t) otherwise.

Fig. 4. Pseudocode of algorithm Exp3.M

wi(t+1) = wi(t) for actions i with relatively too large weights. The bottleneck of
the algorithm is the calculation of αt, which can be calculated in O(K(log k+1))
time by finding the largest k weights. Therefore, Exp3.M runs in O(K(log k+1))
time at each time step and needs O(K) space.

The following theorem is an extension of Theorem 3.1 in [4].

Theorem 2. For any K > 0 and for any γ ∈ (0, 1],

Gmax-k − E[GExp3.M] ≤ (e − 1)γGmax-k +
K

γ
ln

K

k

holds for any assignment of rewards and for any T > 0.

Proof. Let Wt,W
′
t denote

∑K
i=1 wi(t),

∑K
i=1 w′

i(t), respectively. Then, for any
t = 1, 2, ..., T ,

Wt+1

Wt
=

∑

i∈[K]−S0(t)

wi(t + 1)

Wt
+

∑

i∈S0(t)

wi(t + 1)

Wt

=
∑

i∈[K]−S0(t)

wi(t)

Wt
exp

(

kγ

K
x̂i(t)

)

+
∑

i∈S0(t)

wi(t)

Wt

≤
∑

i∈[K]−S0(t)

wi(t)

Wt

[

1+
kγ

K
x̂i(t)+(e − 2)

(

kγ

K
x̂i(t)

)2
]

+
∑

i∈S0(t)

wi(t)

Wt
(1)

= 1 +
W ′

t

Wt

∑

i∈[K]−S0(t)

wi(t)

W ′
t

[

kγ

K
x̂i(t) + (e − 2)

(

kγ

K
x̂i(t)

)2
]

= 1 +
W ′

t

Wt

∑

i∈[K]−S0(t)

pi(t)
k − γ

K

1 − γ

[

kγ

K
x̂i(t) + (e − 2)

(

kγ

K
x̂i(t)

)2
]

≤ 1+
γ

K(1 − γ)

∑

i∈[K]−S0(t)

pi(t)x̂i(t) +
(e − 2)kγ2

K2(1 − γ)

∑

i∈[K]−S0(t)

pi(t)x̂i(t)
2 (2)

≤ 1 +
γ

K(1 − γ)

∑

i∈S(t)−S0(t)

xi(t) +
(e − 2)kγ2

K2(1 − γ)

∑

i∈[K]

x̂i(t). (3)

Inequality (1) uses ea ≤ 1 + a + a2 for a ≤ 1, inequality (2) holds because
W ′

t/Wt ≤ 1, and inequality (3) uses the fact that pi(t)x̂i(t) = xi(t) ≤ 1 for
i ∈ S(t) and pi(t)x̂i(t) = 0 for i 6∈ S(t). Since 1 + x ≤ ex, we have

ln
Wt+1

Wt
≤ γ

K(1 − γ)

∑

i∈S(t)−S0(t)

xi(t) +
(e − 2)kγ2

K2(1 − γ)

∑

i∈[K]

x̂i(t).

By summing over t, we obtain

ln
WT+1

W1
≤ γ

K(1 − γ)

T
∑

t=1

∑

i∈S(t)−S0(t)

xi(t) +
(e − 2)kγ2

K2(1 − γ)

T
∑

t=1

∑

i∈[K]

x̂i(t). (4)

On the other hand, for the set A∗ ⊂ [K] of k elements with the maximum total

reward
∑

j∈A

∑T
t=1 xj(t) among all subsets A containing k elements,

ln
WT+1

W1
≥ ln

∑

j∈A∗ wj(T + 1)

W1
≥
∑

j∈A∗ lnwj(T + 1)

k
+ ln

k

K
(5)

=
γ

K

∑

j∈A∗

∑

t:j 6∈S0(t)

x̂j(t) + ln
k

K
. (6)

The second inequality in (5) uses the fact that
∑

j∈A∗

wj(T + 1) ≥ k(
∏

j∈A∗

wj(T + 1))1/k

and equation (6) uses wj(T + 1) = exp((kγ/K)
∑

t:j 6∈S0(t)
x̂j(t)).

From (4) and (6), we get

∑

j∈A∗

∑

t:j 6∈S0(t)

x̂j(t)+
K

γ
ln

k

K
≤ 1

(1 − γ)

T
∑

t=1

∑

i∈S(t)−S0(t)

xi(t)+
(e − 2)kγ

K(1 − γ)

T
∑

t=1

∑

i∈[K]

x̂i(t).

Since
∑

j∈A∗

∑

t:j∈S0(t)
xj(t) ≤ 1

1−γ

∑T
t=1

∑

i∈S0(t)
xi(t) trivially holds, we have

∑

j∈A∗

∑

t:j 6∈S0(t)

x̂j(t) +
∑

j∈A∗

∑

t:j∈S0(t)

xj(t) +
K

γ
ln

k

K

≤ 1

(1 − γ)
GExp3.M +

(e − 2)kγ

K(1 − γ)

T
∑

t=1

∑

i∈[K]

x̂i(t).

Taking expectation of both sides of this inequality, we obtain

Gmax-k +
K

γ
ln

k

K
≤ 1

(1 − γ)
E[GExp3.M] +

(e − 2)kγ

K(1 − γ)

T
∑

t=1

∑

i∈[K]

xi(t)

because equation E[x̂i(t)|S(1), S(2), . . . , S(i − 1)] = xi(t) holds from the fact
that DepRound selects action i with probability pi(t).

From the fact that
T
∑

t=1

K
∑

i=1

xi(t) ≤
K

k
Gmax-k,

we obtain the inequality in the statement of the theorem. ⊓⊔

The following corollary can be obtained by an appropriate choice of param-
eter γ. The proof is the same as that of Corollary 3.2 in [4].

Corollary 1. Set γ = min
{

1,
√

K ln(K/k)/((e − 1)kT)
}

. Then

Gmax-k − E[GExp3.M] ≤ 2
√

(e − 1)

√

kTK ln
K

k
≤ 2.63

√

kTK ln
K

k

holds for any T > 0 and for any assignment of rewards.

6 Lower Bounds on the Regret

Auer et al. showed a lower bound Ω(
√

KT) on the regret of any player for
adversarial bandit problem with single play (k = 1). Their theorem can be
extended easily to the multiple play setting.

Theorem 3. For any number of actions K, for any time horizon T and for any

k ∈ [K], there exists a distribution over the assignment of rewards such that

E[Gmax-k − GA] ≥ min

{

1

5

(

K − k

K

)2 √
KT,

K − k

8K
kT

}

,

holds for any algorithm A.

Proof. This theorem can be proved by modifying the proof of Theorem 5.1 [4]
a little. The reward assignment by the distribution whose existence is insisted
by the theorem is made as follows. First, select a set of k actions I according to
uniform distribution over C ([K], k). For each (i, t) ∈ [K] × [T], independently
assign 1 to reward xi(t) with probability 1

2 + ε when i ∈ I and with probability
1
2 otherwise, where ε is a small constant value belonging to (0, 1

2). Value 0 is
assigned to xi(t) with the rest of the probability. Note that this distribution
over reward assignment coincides with the one used to prove Theorem 5.1 in [4]
when k = 1. Let E∗[·] denote expectation of some random variable with respect
to this distribution. Then, we can prove

E∗[Gmax-k − GA] ≥ kε

(

T − kT

K
− 2

√

ln
4

3
kT

√

T

K
ε

)

, (7)

when 0 ≤ ε ≤ 1/4. By choosing ε = (1/4)min{(K − k)/(k
√

ln(4/3)
√

KT), 1},
the lower bound of this theorem can be obtained.

The proof of Inequality (7) can be done by evaluating a random variable Ni

which denotes the number of times action i ∈ i (∈ C ([K], k)) is chosen, namely,

Ni =
∑T

t=1 |S(t)∩ i|. Let Ei[·] denote conditional expectation E∗[·|I = i]. Then,

E∗[GA] =
kT

2
+

ε

C (K, k)

∑

i∈C([K],k)

Ei[Ni] (8)

holds. We use the following lemma, which is a straightforward extension of
Lemma A.1 in [4].

Lemma 1. Let f : {0, 1}kT → [0,M] be any function defined on reward se-

quences r.Then for any set of actions i ∈ C ([K], k),

Ei[f(r)] ≤ Eunif[f(r)] +
M

2

√

−Eunif[Ni] ln(1 − 4ε2),

where Eunif[·] is the uniform distribution over assignment of rewards.

By Lemma 1, we obtain

Ei [Ni] ≤ Eunif [Ni] +
kT

2

√

−Eunif [Ni] ln(1 − 4ε2). (9)

Combining (8) and (9), and using Jensen’s Inequality and the fact that
∑

i∈C([K],k) Eunif [Ni] = C (K − 1, k − 1) kT , we can prove

E∗[GA] ≤ kT

2
+ kε

(

kT

K
+

kT

2

√

− T

K
ln(1 − 4ε2)

)

.

Inequality (7) can be derived from this inequality using the fact that E∗[Gmax-k]
≥ kT (1/2 + ε) and the inequality − ln(1− x) ≤ (4 ln(4/3))x for x ∈ [0, 1/4]. ⊓⊔

Remark 1. When k = K, there exists only one strategy, which means 0-regret
for all algorithms. In this case, our upper bound shown in Corollary 1 and our
lower bound shown in Theorem 3 become 0.

7 Efficient k-Combination Selection

In this section, we describe how to select efficiently a set of k distinct actions
from [K] so as to satisfy that each action i is selected with probability pi for
any given distribution (p1, p2, . . . , pK) with 0 ≤ pi ≤ 1 for i = 1, 2, . . . ,K and
∑K

i=1 pi = k. How to realize this selection plays an important role for efficient
implementations of both algorithms BOLOM and Exp3.M. One solution is to
select a set S according to a distribution qS for S ∈ C ([K], k) after solving the
following problem.

Problem 1. For a given (p1, p2, . . . , pK) ∈ [0, 1]K with
∑K

i=1 pi = k, find qS for
S ∈ C ([K], k) satisfying

∑

i∈S

qS = pi(t) for all i = 1, 2, . . . ,K,

0 ≤ qS ≤ 1 for all S ∈ C ([K], k)

Note that Problem 1 always has a solution by Proposition 1. However, solving
Problem 1 is not a good idea because it takes at least C (K, k) = Ω(Kk) time
for fixed k using a general solver. Note that

∑

i∈S qS = pi for i = 1, 2, . . . ,K
can be expressed as Aq = p using K ×C (K, k) matrix A, C (K, k)-dimensional

vector q = (· · · , qS , · · ·)⊤ and K-dimensional vector p = (p1, · · · , pK)
⊤

and for
any mutually independent K column vectors aS1

,aS2
, . . . ,aSK

of A, there is a
solution of Aq = p whose variables are zero except qS1

, qS2
, . . . , qSK

, but it is
not guaranteed that 0 ≤ qSi

≤ 1 holds for all i = 1, 2, . . . ,K.
Fortunately, there is a nice technique called dependent rounding [6], which

can efficiently select a set of k distinct actions from [K] while satisfying the
condition that each action i is selected with probability pi. Dependent rounding
developed by Gandhi et al. [6] is a kind of technique that randomly selects a set of
edges from a bipartite graph under some cardinality constraints. Our selection
problem is a special case of the problems they considered, the case that the
bipartite graph is a star. In such case, the algorithm can be described as shown
in Fig. 5, which we call DepRound here. In the algorithm, (p1, p2, ..., pK) is

DepRound % Dependent Rounding
Inputs: Natural number k(< K), (p1, p2, ..., pK) with

PK

i=1 pi = k
Output: Subset of [K] with k elements

while there is an i with 0 < pi < 1 do

Choose distinct i and j with 0 < pi < 1 and 0 < pj < 1
Set α = min{1 − pi, pj} and β = min{pi, 1 − pj}
Update pi and pj as

(pi, pj) =

(

(pi + α, pj − α) with probability β

α+β

(pi − β, pj + β) with probability α
α+β

end while

return {i : pi = 1, 1 ≤ i ≤ K}

Fig. 5. Pseudocode of algorithm DepRound [6]

Table 1. Performance Comparison of the algorithms for multiple play setting

Algorithm Base Algorithm regret time comp. space comp.

Exp3 [4] - O(k
3

2 T
1

2 K
k
2

√
log K) Ω(Kk) Ω(Kk)

ComBand [5] - O(k
3

2

√
TK ln K) O(kK3) O(K3)

BOLOM Algorithm 1 [1] O(kK
3

2

√
T log T) O(K3) O(K2)

Exp3.M Exp3 [4] O(
p

kTK log(K/k)) O(K(log k + 1)) O(K)

probabilistically updated until all the components are 0 or 1 while keeping the
condition that

∑K
i=1 pi = k. The inside of the while-loop is executed at most

K times because at least one of pi and pj becomes 0 or 1 in each time of the
execution. The nice property of the update is to keep the expectation values of
pi, namely, E[pt+1

i] = E[pt
i] for every i ∈ [K], where pt

i denotes pi after the tth
execution of the inside of the while-loop. This is trivial when i is not chosen at
the tth execution, and holds even when i is chosen since

(pi +α)× β

α + β
+(pi −β)× α

α + β
= (pi −α)× β

α + β
+(pi +β)× α

α + β
= pi.

Each execution of the inside of the while-loop needs a constant time, so De-

pRound runs in O(K) time and O(K) space.

8 Concluding Remarks

We have extended adversarial bandit problems studied by Auer et al. [4] to those
with multiple plays, and analyzed algorithms for the problem.

From the result shown in Table 1, we can know that Exp3.M is the best
algorithm for this problem among the four algorithms analyzed here. We are

now interested in applying our algorithms to real problems and demonstrating
their practical usefulness.

Acknowledgements

We would like to thank anonymous referees for a lot of their helpful comments.
This work was partially supported by JSPS KAKENHI 21500128.

References

1. Abernethy, J., Hazan, E., Rakhlin, A.: Competing in the dark: An efficient algo-
rithm for bandit linear optimization. In: Proceedings of the 21st Annual Conference
on Learning Theory (COLT08) (2008)

2. Agrawal, R., Hegde, M.V., Teneketzis, D.: Multi-armed bandits with multiple plays
and switching cost. Stochastic and Stochastic Reports 29, 437–459 (1990)

3. Anantharam, V., Varaiya, P., Walrand, J.: Asymptotically efficient allocation rules
for the multiarmed bandit problem with multiple plays –part i: I.i.d. rewards. IEEE
Transactions on Automatic Control 32, 968–976 (1986)

4. Auer, P., Cesa-bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multi-
armed bandit problem. SIAM Journal on Computing 32, 48–77 (2002)

5. Cesa-bianchi, N., Lugosi, G.: Combinatorial bandits. In: Proceedings of the 22nd
Annual Conference on Learning Theory (COLT09) (2009)

6. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding
and its applications to approximation algorithms. Journal of the ACM 53(3) pp.
320–360 (2006)

7. György, A., Linder, T., Lugosi, G., Ottucsák, G.: The on-line shortest path problem
under partial monitoring. Journal of Machine Learning Research 8, 2369–2403
(2007)

8. Kleinberg, R.: Notes from week 8: Multi-armed bandit problems. CS 683–Learning,
Games, and Electronic Markets, http://www.cs.cornell.edu/courses/cs68
3/2007sp/lecnotes/week8.pdf (2007)

9. Krein, M., Milman, D.: On extreme points of regular convex sets. Studia Mathe-
matica pp. 133–138 (1940)

10. Mahajan, A., Teneketzis, D.: Multi-armed bandit problems. In: Foundations and
Applications of Sensor Management, pp. 121–151. Springer (2007)

11. Nakamura, A., Abe, N.: Improvements to the linear programming based scheduling
of web advertisements. Electronic Commerce Research 5, 75–98 (2005)

12. Niculescu-Mizil, A.: Multi-armed bandits with betting. In: COLT09 Workshop. pp.
133–138 (2009)

13. Pandelis, D.G., Tenekezis, D.: On the optimality of the gittins index rule in multi-
armed bandits with multiple plays. Mathematical Methods of Operations Research
50, 449–461 (1999)

14. Song, N.O., Teneketzis, D.: Discrete search with multiple sensors. Mathematical
Methods of Operations Research 60, 1–14 (2004)

15. Uchiya, T., Nakamura, A., Kudo, M.: Adversarial bandit problems with multiple
plays. In: The IEICE Technical Report (2009)

16. Warmuth, M.K., Takimoto, E.: Path kernels and multiplicative updates. Journal
of Machine Learning Research pp. 773–818 (2003)

