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Introduction

RCTs

o Reinforcement learning/Dynamic resources allocation

state W;
/\ infer lU(Q)
action A |W; . .
agent, law g € G ———————— environment, law Q € Q under optimal action law

g*(Q):a'gmin/Lo(g)d(Q,g)
geg

reward Yi|Aq, Wy

> fields of application: on-line marketing, recommender systems, randomized clinical trials (RCTs)

o RCTs

> observed data structure: O = (W, A, Yy), t-th observation
- W, t-th subject’s baseline covariates (possibly high-dimensional)
- At € {0,1}, placebo/treatment (randomly) assigned to t-th subject
- Yt € [0, 1], t-th subject's outcome of disease

> chosen by the investigator:
- W(Q), effect of treatment on disease
- LQ, loss function

- G, class of randomization schemes
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Introduction

Example of an investigator’s choices

o Excess risk V

V(Q) = Eq{Eq(YIA=1,W) - Eq(Y|A=0,W)}, Qe€Q

> statistical interpretation:

> may be interpreted causally too

@ Loss function Q — Lg
> objective: minimizing the asymptotic variance of the estimator of V(Q)...
> ... drives the characterization of Q — Lg

@ Class of randomization schemes G

> covariate-adjusted treatment assignments. ..
> ... choose G = {gp : 0 € © C R} a parametric class
go(W) = conditional probability to get A =1 given W
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Introduction

Example of an investigator’s choices

o Excess risk V

V(Q) = Eq{Eq(YIA=1,W) - Eq(Y|A=0,W)}, Qe€Q

> statistical interpretation:

1. for each “context” W, compare the conditional means of Y given A = 1 versus A = 0

Eo(Y|A =1, W)—Eq(Y|A =0, W)
> may be interpreted causally too

@ Loss function Q — Lg
> objective: minimizing the asymptotic variance of the estimator of V(Q)...
> ... drives the characterization of Q — Lg

@ Class of randomization schemes G

> covariate-adjusted treatment assignments. ..
> ... choose G = {gps : 6 € © C RY} a parametric class
go(W) = conditional probability to get A =1 given W
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Introduction

Example of an investigator’s choices

o Excess risk V

V(Q) = Eq{Eq(YIA=1,W) - Eq(Y|A=0,W)}, Qe€Q

> statistical interpretation:

1. for each “context” W, compare the conditional means of Y given A = 1 versus A = 0

2. average out the context
Eo{Eq(Y|A =1, W)—Eq(Y|A=0,W)}
> may be interpreted causally too

@ Loss function Q — Lg
> objective: minimizing the asymptotic variance of the estimator of V(Q)...
> ... drives the characterization of Q — Lg

@ Class of randomization schemes G

> covariate-adjusted treatment assignments. ..
> ... choose G = {gps : 6 € © C RY} a parametric class
go(W) = conditional probability to get A =1 given W
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Introduction

Bibliography (non exhaustive!)

o Sequential designs
> Thompson (1933), Robbins (1952)
> specifically in the context of medical trials
- Anscombe (1963), Colton (1963)
- response-adaptive designs: Cornfield et al. (1969), Zelen (1969)

and many more since then

o Covariate-adjusted Response-Adaptive (CARA) designs
> Rosenberger et al. (2001), Bandyopadhyay and Biswas (2001), Zhang et al. (2007), Zhang and Hu
(2009), Shao et al (2010)... typically study
- convergence of design
- in correctly specified parametric model Q for Q
> (Chambaz and van der Laan, 2013) concerns
- convergence of design and asymptotic behavior of estimator of W(Q)
- without assuming correctly specified parametric model Q for Q
* using (mis-specified) parametric model Q for Q
* choosing G = {gp : 0 € ©} such that
g0 (W) = gp(V) where V. C W only takes finitely-many values
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Lasso targeted CARA RCT

The sampling scheme

@ Reminder

> objective is to estimate W(Q) under optimal allocation g*(Q) = arg min, ¢ [ Lo(g)d(Q, g)
Q(A, W) = Eo(Y|A, W)
> G={go:0€©CRY} chosen by the investigator

covariate-adjustment: gy (W) (not go(V), V. C W)
o Description of sampling scheme (recursion)

> starting from i.i.d. sampling from (Q, 50%)

> sample O1,...,0, ~ (Q, &)
&gr = (g1, ..,8n) € G" sequence of (known) allocation probabilities
» conditional on (O1, ..., O,)

1. estimate Q(A, W) = Eg(Y|A, W) with Q,(A, W) based on lasso-regression
through choice of Q,, model for Q, and dealing with dependency

2. define gyi1 = argmingcg [ Ly, (8)d(Qn, &)
Qp tilted empirical measure

3. sample Opy1 ~ (Q, gnt1)
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Lasso targeted CARA RCT

Targeted inference: why?

o Initial substitution estimator of V(Q)

¥ = % > Q@n(L, W) — @n(0, W)
i=1

> is biased if lasso-regression is mis-specified

> may fail to be \/n-consistent even if lasso-regression were correctly specified. . .
o Targeted minimum loss estimation (TMLE) of W(Q)

> see van der Laan and Rubin (2006), van der Laan and Rose (2012)...

> based on semiparametrics theory, strong links with estimating function methodology

see Bickel et al (1998), van der Vaart (1998, chapter 25), van der Laan and Robins (2003)
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Lasso targeted CARA RCT

Targeted inference: modus operandi

o Logistic loss function: £(@)(0) = —Y log(Q(A, W)) — (1 — Y)log(1 — Q(A, W))
@ Fluctuating the initial C_\),,

> characterize

Qn(e)(A, W) = expit {Iogit (RIA,W)) +¢ (ﬁ — %) } , eeR

such that Q,(0) = Q, and %Z(Qn(e))‘azo = proper direction in L*(Q, 50%)

> define optimal fluctuation parameter

€, = argmin / £(Qn(2))dQn

c€R

o TMLE of ¥(Q)
Uh =23 Qulen)(1, W) — Qulen) 0, W)
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Lasso targeted CARA RCT

Targeted inference: main results

Convergence of design

There exist Qoo and goo such that @, — Qs in L?(Q,50%) and gn — goo in L2(Qw)

» Qoo is a “lasso”-projection of true Q

> go may differ from projection of Neyman allocation on G

Asymptotics of 9}

The TMLE v} consistently estimates the truth W(Q).

Moreover, \/n(1} — W(Q)) ~ N(0,5?), and we know a conservative estimator o2 of o

o Keys

> W is pathwise differentiable (smooth) with derivative VW

> “robustness property of VV¥":
- if [ VW(Q', g)d(Q, g) = 0 then W(Q') = W(Q) even if Q" # Q
- [ V¥(@n(en), gn)d(Qn; gn) = 0!

> concentration result for martingales (van Handel, 2010)
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Simulation study

8 different models G:

working model parametric form dimension optimal variance
G11 6o 1 18.50
G 30,1V = v} 3 18.18
Gi13 0o + 61U 2 18.37
Ga 33 1 001{V = v} +0,U 4 18.05
Gis 0o+ 33 ,60,1{V =v}U 4 18.12
Gie 3 10, 1{V=yv}+0,U+33 ,03,1{V=V}U 6 18.01
G17 00+ 31 O L{V = v}U+ 31 04y 1{V = v}U? 7 18.36

Gis S3_1001{V = v} 404U+ 05U% + 33, 044, 1{V = v}U

+ 33, 064, 1{V = v}U? 9 18.03
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Simulation study

4 different parametric models and 4 different “lasso” procedures Q:

working model parametric form dimension
on S3_0,1{V = v} + 04U + 05A 5
y o 60+A(01U+2§:2 0,1{V = v})
g +(1 = A) (04U + 3035 034, 1{V = v}) 7
g Q13 A(Z30,1{V = v} + 0,V)
11— A) (23:1 044 1{V = v} + egu) 8
Qus A(S30,1{V = v} + 04U + 050?)
+(1 = A) (31 0540 1{V = v} + 00U + 010U?) 10
Qs A( vl{V:v}+94U+95U2)
11— A) (23:1 054, 1{V = v} + 0 U + 910u2) 10
9 Q16 A( 1{V—V}+Z? 193+/U’)
& 11— A) ( 30 H{V =v}+ D 1911+,u) 16
Q7 A( 1{V7V}+Z/01 93+IU)
11— A) ( 03 {V = v+ 510 1916+,u) 26
Q1 A( 0, 1{V = v} + 7 93+/U)
= A) (S31 0031 1{V = v} + X2, 0061, 46
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Simulation study

@ 1000 independent replications for each of the 64 combinations

o Updating and targeting at intermediate sample sizes 250, 500, . ..,1750,2000
e Summary:

> Consistency guaranteed
> 95%-confidence intervals guarantee at least 94%-coverage for all sample sizes

» Variances of TMLEs nearly coincide with the targeted values
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Conclusion

On-going

@ Replacing parametric G = {gp : 0 € ©} with nonparametric G

e.g., using lasso-regression to better target the Neyman allocation
@ Deriving finite sample results
@ Assessing the sensitivity to protocol violations in real-life RCTs

o Assessing the sensitivity to non-stationarity in real-life RCTs
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lasso-regression

o ‘lasso-regression” for “/l-restricted least-squares regression”

o Consider
> {¢; :j > 0} a basis of a given class of functions, ||¢j||oc =1 (all j > 0)
> p(W) =305, B0(W) (all B € £1(N))
> {dn}n>0 and {b,},>0, both non-decreasing and unbounded, d, = o(n")
> By ={f€l(N):j2dy = B =0, and ||Bllr < by A M}

o Define Q, = {O — Adg(W) + (1 — A)dg (W) : 3,8" € Bn}
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