Inference in Targeted Covariate-Adjusted Response-Adaptive Randomized Clinical Trials

Antoine Chambaz

Université Paris-Ouest Nanterre

April 9th, 2014

Kick-off SPADRO

Joint work with W. Zheng and M. van der Laan (UC Berkeley)

RCTs

Reinforcement learning/Dynamic resources allocation

infer $\Psi(Q)$ under optimal action law $g^*(Q) = \underset{g \in G}{\arg\min} \int L_Q(g) d(Q,g)$

▶ fields of application: on-line marketing, recommender systems, randomized clinical trials (RCTs)

RCTs

- observed data structure: $O_t = (W_t, A_t, Y_t)$, t-th observation
 - Wt, t-th subject's baseline covariates (possibly high-dimensional)
 - $A_t \in \{0,1\}$, placebo/treatment (randomly) assigned to t-th subject
 - $Y_t \in [0, 1]$, t-th subject's outcome of disease
- chosen by the investigator:
 - $\Psi(Q)$, effect of treatment on disease
 - Lo, loss function
 - G, class of randomization schemes

Example of an investigator's choices

Excess risk Ψ

$$\Psi(Q) = E_Q \{ E_Q(Y|A=1, W) - E_Q(Y|A=0, W) \}, \quad Q \in \mathcal{Q}$$

statistical interpretation:

- may be interpreted causally too
- Loss function $Q \mapsto L_Q$
 - objective: minimizing the asymptotic variance of the estimator of $\Psi(Q)$...
 - ightharpoonup ... drives the characterization of $Q \mapsto L_Q$
- Class of randomization schemes G
 - covariate-adjusted treatment assignments...
 - ▶ ... choose $\mathcal{G} = \{g_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$ a parametric class $g_{\theta}(W) \equiv$ conditional probability to get A = 1 given W

Example of an investigator's choices

Excess risk Ψ

$$\Psi(Q) = E_Q \{ E_Q(Y|A=1, W) - E_Q(Y|A=0, W) \}, \quad Q \in \mathcal{Q}$$

- statistical interpretation:
 - 1. for each "context" W, compare the conditional means of Y given A = 1 versus A = 0

$$E_Q(Y|A=1,W)-E_Q(Y|A=0,W)$$

- may be interpreted causally too
- Loss function $Q \mapsto L_Q$
 - objective: minimizing the asymptotic variance of the estimator of $\Psi(Q)$...
 - ightharpoonup ... drives the characterization of $Q \mapsto L_Q$
- Class of randomization schemes G
 - covariate-adjusted treatment assignments...
 - ... choose $\mathcal{G} = \{g_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$ a parametric class $g_{\theta}(W) \equiv$ conditional probability to get A = 1 given W

Example of an investigator's choices

Excess risk Ψ

$$\Psi(Q) = E_Q \{ E_Q(Y|A=1, W) - E_Q(Y|A=0, W) \}, \quad Q \in \mathcal{Q}$$

- statistical interpretation:
 - 1. for each "context" W, compare the conditional means of Y given A = 1 versus A = 0
 - 2. average out the context

$$E_Q\{E_Q(Y|A=1,W)-E_Q(Y|A=0,W)\}$$

- may be interpreted causally too
- Loss function $Q \mapsto L_Q$
 - objective: minimizing the asymptotic variance of the estimator of $\Psi(Q)$...
 - ightharpoonup ... drives the characterization of $Q \mapsto L_Q$
- Class of randomization schemes G
 - covariate-adjusted treatment assignments...
 - ▶ ... choose $\mathcal{G} = \{g_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$ a parametric class $g_{\theta}(W) \equiv$ conditional probability to get A = 1 given W

Bibliography (non exhaustive!)

Sequential designs

- ► Thompson (1933), Robbins (1952)
- specifically in the context of medical trials
 - Anscombe (1963), Colton (1963)
 - response-adaptive designs: Cornfield et al. (1969), Zelen (1969)

and many more since then

Covariate-adjusted Response-Adaptive (CARA) designs

- Rosenberger et al. (2001), Bandyopadhyay and Biswas (2001), Zhang et al. (2007), Zhang and Hu (2009), Shao et al (2010)... typically study
 - convergence of design
 - in correctly specified parametric model Q for Q
- ► (Chambaz and van der Laan, 2013) concerns
 - convergence of design and asymptotic behavior of estimator of $\Psi(Q)$
 - without assuming correctly specified parametric model Q for Q
 - ★ using (mis-specified) parametric model Q for Q
 - * choosing $\mathcal{G}=\{g_{\theta}:\theta\in\Theta\}$ such that $g_{\theta}(W)\equiv g_{\theta}(V)$ where $V\subset W$ only takes finitely-many values

The sampling scheme

Reminder

- objective is to estimate $\Psi(Q)$ under optimal allocation $g^*(Q) = \arg\min_{g \in \mathcal{G}} \int L_{\bar{Q}}(g) d(Q,g)$ $\bar{Q}(A,W) = E_O(Y|A,W)$
- ▶ $\mathcal{G} = \{g_{\theta} : \theta \in \Theta \subset \mathbb{R}^d\}$ chosen by the investigator covariate-adjustment: $g_{\theta}(W)$ (not $g_{\theta}(V), V \subset W$)

• Description of sampling scheme (recursion)

- ► starting from i.i.d. sampling from (Q, 50%)
- ▶ sample $O_1, \ldots, O_n \sim (Q, \vec{g}_n)$
 - $\vec{g}_n = (g_1, \dots, g_n) \in \mathcal{G}^n$ sequence of (known) allocation probabilities
- ightharpoonup conditional on (O_1, \ldots, O_n)
 - 1. estimate $\bar{Q}(A, W) = E_Q(Y|A, W)$ with $\bar{Q}_n(A, W)$ based on lasso-regression through choice of Q_n , model for Q_n , and dealing with dependency
 - 2. define $g_{n+1} = \arg\min_{g \in \mathcal{G}} \int L_{\bar{\mathbb{Q}}_n}(g) d(\mathbb{Q}_n, g)$ \mathbb{Q}_n tilted empirical measure
 - 3. sample $O_{n+1} \sim (Q, g_{n+1})$

Targeted inference: why?

• Initial substitution estimator of $\Psi(Q)$

$$\psi_n^0 = \frac{1}{n} \sum_{i=1}^n \bar{Q}_n(1, W_i) - \bar{Q}_n(0, W_i)$$

- ▶ is biased if lasso-regression is mis-specified
- \blacktriangleright may fail to be \sqrt{n} -consistent even if lasso-regression were correctly specified...
- Targeted minimum loss estimation (TMLE) of $\Psi(Q)$
 - ▶ see van der Laan and Rubin (2006), van der Laan and Rose (2012)...
 - based on semiparametrics theory, strong links with estimating function methodology
 see Bickel et al (1998), van der Vaart (1998, chapter 25), van der Laan and Robins (2003)

Targeted inference: modus operandi

- Logistic loss function: $\ell(\bar{Q})(O) = -Y \log(\bar{Q}(A, W)) (1 Y) \log(1 \bar{Q}(A, W))$
- Fluctuating the initial \overline{Q}_n
 - characterize

$$\begin{split} \bar{Q}_n(\varepsilon)(A,W) &= \text{expit } \left\{ \text{logit } \left(\bar{Q}(A,W) \right) + \varepsilon \left(\frac{A}{g_n(W)} - \frac{1-A}{1-g_n(W)} \right) \right\}, \qquad \varepsilon \in \mathbb{F} \\ \text{such that } \bar{Q}_n(0) &= \bar{Q}_n \text{ and } \frac{\partial}{\partial z} \ell(\bar{Q}_n(\varepsilon)) \big|_{\varepsilon=0} = \text{proper direction in } L^2(Q,50\%) \end{split}$$

define optimal fluctuation parameter

$$arepsilon_n = rg \min_{arepsilon \in \mathbb{R}} \int \ell(ar{Q}_n(arepsilon)) d\mathbb{Q}_n$$

• TMLE of $\Psi(Q)$

$$\psi_n^1 = \frac{1}{n} \sum_{i=1}^n \bar{Q}_n(\varepsilon_n)(1, W_i) - \bar{Q}_n(\varepsilon_n)(0, W_i)$$

Targeted inference: main results

Convergence of design

There exist Q_{∞} and g_{∞} such that $Q_n \to Q_{\infty}$ in $L^2(Q, 50\%)$ and $g_n \to g_{\infty}$ in $L^2(Q_W)$.

- ▶ Q_{∞} is a "lasso"-projection of true Q
- $ightharpoonup g_{\infty}$ may differ from projection of Neyman allocation on ${\cal G}$

Asymptotics of ψ_n^1

The TMLE ψ_n^1 consistently estimates the truth $\Psi(Q)$.

Moreover, $\sqrt{n}(\psi_n^1 - \Psi(Q)) \rightsquigarrow N(0, \sigma^2)$, and we know a conservative estimator σ_n^2 of σ^2 .

Keys

- \blacktriangleright Ψ is pathwise differentiable (smooth) with derivative $\nabla\Psi$
- "robustness property of $\nabla \Psi$ ":

- if
$$\int \nabla \Psi(Q',g) d(Q,g) = 0$$
 then $\Psi(Q') = \Psi(Q)$ even if $Q' \neq Q$

$$- \int \nabla \Psi(\bar{Q}_n(\varepsilon_n), g_n) d(\mathbb{Q}_n, g_n) = 0!$$

concentration result for martingales (van Handel, 2010)

8 different models *G*:

working model	parametric form	dimension	optimal variance
\mathcal{G}_{11}	θ_0	1	18.50
\mathcal{G}_{12}	$\sum_{\nu=1}^{3} \theta_{\nu} 1\{V = \nu\}$	3	18.18
\mathcal{G}_{13}	$\theta_0 + \theta_1 U$	2	18.37
\mathcal{G}_{14}	$\sum_{\nu=1}^{3} \theta_{\nu} 1 \{ V = \nu \} + \theta_{4} U$	4	18.05
\mathcal{G}_{15}	$\theta_0 + \sum_{v=1}^3 \theta_v 1\{V = v\} U$	4	18.12
\mathcal{G}_{16}	$\sum_{v=1}^{3} \theta_{v} 1\{V = v\} + \theta_{4} U + \sum_{v=2}^{3} \theta_{3+v} 1\{V = v\} U$	6	18.01
\mathcal{G}_{17}	$\theta_0 + \sum_{v=1}^3 \theta_v 1\{V = v\} U + \sum_{v=1}^3 \theta_{4+v} 1\{V = v\} U^2$	7	18.36
\mathcal{G}_{18}	$\sum_{\nu=1}^{3} \theta_{\nu} 1 \{ V = \nu \} + \theta_{4} U + \theta_{5} U^{2} + \sum_{\nu=2}^{3} \theta_{4+\nu} 1 \{ V = \nu \} U$		
	$+ \sum_{\nu=2}^{3} \theta_{6+\nu} 1 \{ V = \nu \} U^2$	9	18.03

4 different parametric models and 4 different "lasso" procedures Q:

	working model	parametric form	dimension
	\mathcal{Q}_{11}	$\sum_{v=1}^{3} \theta_{v} 1 \{ V = v \} + \theta_{4} U + \theta_{5} A$	5
	\mathcal{Q}_{12}	$\theta_0 + A\left(\theta_1 U + \sum_{\nu=2}^3 \theta_{\nu} 1\{V = \nu\}\right)$	
		$+(1-A)\left(\theta_4 U + \sum_{v=2}^{3} \theta_{3+v} 1\{V=v\}\right)$	7
B	\mathcal{Q}_{13}	$A\left(\sum_{v=1}^{3}\theta_{v}1\{V=v\}+\theta_{4}U\right)$	
		$+(1-A)\left(\sum_{v=1}^{3}\theta_{4+v}1\{V=v\}+\theta_{8}U\right)$	8
	\mathcal{Q}_{14}	$A\left(\sum_{v=1}^{3}\theta_{v}1\{V=v\}+\theta_{4}U+\theta_{5}U^{2}\right)$	
		$+(1-A)\left(\sum_{v=1}^{3}\theta_{5+v}1\{V=v\}+\theta_{9}U+\theta_{10}U^{2}\right)$	10
	\mathcal{Q}_{15}	$A\left(\sum_{\nu=1}^{3}\theta_{\nu}1\{V=\nu\}+\theta_{4}U+\theta_{5}U^{2}\right)$	
		$+(1-A)\left(\sum_{v=1}^{3}\theta_{5+v}1\{V=v\}+\theta_{9}U+\theta_{10}U^{2}\right)$	10
2	\mathcal{Q}_{16}	$A\left(\sum_{v=1}^{3} \theta_{v} 1\{V = v\} + \sum_{l=1}^{5} \theta_{3+l} U^{l}\right)$	
8		$+(1-A)\left(\sum_{v=1}^{3}\theta_{8+v}1\{V=v\}+\sum_{l=1}^{5}\theta_{11+l}U^{l}\right)$	16
	\mathcal{Q}_{17}	$A\left(\sum_{v=1}^{3} \theta_{v} 1\{V = v\} + \sum_{l=1}^{10} \theta_{3+l} U^{l}\right)$	
		$+(1-A)\left(\sum_{v=1}^{3}\theta_{13+v}1\{V=v\}+\sum_{l=1}^{10}\theta_{16+l}U^{l}\right)$	26
	\mathcal{Q}_{18}	$A\left(\sum_{v=1}^{3} \theta_{v} 1\{V = v\} + \sum_{l=1}^{20} \theta_{3+l} U^{l}\right)$	
		$+(1-A)\left(\sum_{v=1}^{3}\theta_{23+v}1\{V=v\}+\sum_{l=1}^{20}\theta_{26+l}U^{l}\right)$	46

- 1000 independent replications for each of the 64 combinations
- Updating and targeting at intermediate sample sizes 250, 500, ..., 1750, 2000
- Summary:
 - ► Consistency guaranteed
 - ▶ 95%-confidence intervals guarantee at least 94%-coverage for all sample sizes
 - ▶ Variances of TMLEs nearly coincide with the targeted values

On-going

- Replacing parametric $\mathcal{G} = \{g_{\theta} : \theta \in \Theta\}$ with nonparametric \mathcal{G} e.g., using lasso-regression to better target the Neyman allocation
- Deriving finite sample results
- Assessing the sensitivity to protocol violations in real-life RCTs
- Assessing the sensitivity to non-stationarity in real-life RCTs

lasso-regression

- "lasso-regression" for "\$\ell^1\$-restricted least-squares regression"
- Consider
 - $\{\phi_j: j \geq 0\}$ a basis of a given class of functions, $\|\phi_j\|_{\infty} = 1$ (all $j \geq 0$)
 - $\blacktriangleright \ \Phi_{\beta}(W) = \sum_{i>0} \beta_i \phi_i(W) \ (\text{all } \beta \in \ell^1(\mathbb{N}))$
 - $\{d_n\}_{n\geq 0}$ and $\{b_n\}_{n\geq 0}$, both non-decreasing and unbounded, $d_n=o(n^r)$
 - \triangleright $B_n = \{\beta \in \ell^1(\mathbb{N}) : j > d_n \implies \beta_i = 0, \text{ and } \|\beta\|_1 < b_n \land M\}$
- Define $Q_n = \{O \mapsto A\Phi_\beta(W) + (1-A)\Phi_{\beta'}(W) : \beta, \beta' \in B_n\}$