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Field data

Field data provided by physical experiments:

yF = yF (x1), . . . , yF (xn) ,

n is small, x1, . . . xn ∈ X hard to set, sometimes uncontrollable, included
in a small domain...

Model:
yF (xi ) = ζ(xi ) + ε(xi ) ,

where
ζ(·) real physical process (unknown),
ε(xi ) often assumed i.i.d. N (0, σ2),
σ2 sometimes treated as known...
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Computer model / simulator

Computer experiments:

Computer model (simulator) (x∗,θ) 7→ f (x∗,θ) ∈ Rs where

physical parameters: x∗ ∈ X ⊂ Rm observable and often controllable
inputs

x∗ same meaning as in field data,
extrapolation if x∗ > max(xi ) or x∗ < min(xi ).

simulator parameters: θ ∈ Θ ⊂ Rd non-observable parameters,
required to run the simulator.
2 types:

“calibration parameters”: physical meaning but unknown, necessary to make
the code mimic the reality,
“tuning parameters”: no physical interpretation.

f designed to mimic the unknown physical process ζ(·) for a value of θ.
The simulator is often an expensive black-box function.
⇒ limited number Nrun of runs of the simulator.
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Relationship between the simulator and the data

for i = 1, . . . , n,
if the simulator sufficiently represents the physical system:

yF
i = f (xi ,θ

∗) + ε(xi ) ,

i.e. for the unknown value θ = θ∗ : f (x, θ∗) = ζ(x) for any x ∈ X,
if the field observations are inconsistent with the simulations (irreducible
model discrepancy):

yF
i = f (xi ,θ

∗) + δ(xi ) + ε(xi ) .

δ(·) models the difference between the simulator and the physical
system:

δ(x) = ζ(x)− f (x, θ∗) ,
but

What does θ∗ mean ?
A best fitting ?
identifiability issues ?
usually assumed to be smoother than the real physical process ζ(·)

Ref.: Kennedy and O’Hagan (2001), Hidgon et al. (2005)...
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A calibration example

Hypotheses:
The simulator represents sufficiently well the physical system:

yF (xi ) = f (xi ,θ
∗) + εi , i = 1, . . . , n .

But unknown θ∗.

εi ∼ N (0, σ2) i.i.d. with known σ2.

σ2 = 0.3

n = 6,

θ∗ = 0.6
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A calibration example

Prior:
prior distribution on unknown θ: π(·)
from expert judgment, past experiments...
Possible choice π(θ) = N (θ0, σ

2
0) = N (0.5, 0.04).
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A calibration example

Data:
Couples (x1, yF

1 ), . . . , (xn, yF
n ) from physical experiments.

Posterior distribution:

π(θ|yF ) ∝ l(θ|yF ) · π(θ)

∝ exp

(
− 1

2σ2

n∑
i=1

(yF (xi )− f (xi ,θ))2 − 1
2σ2

0
(θ − θ0)2

)

Analytical posterior if θ 7→ f (x,θ) is a linear map,

Otherwise MH sampling to simulate according to the posterior
distribution.
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A calibration example

Prior with data:
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More details on the MH algorithm

Initialisation:
θ0 chosen.

Update:
iterations t = 1, . . . ,

1 Proposal: θ̃t+1 = θt +N (0, τ 2).
2 Compute

α(θt , θ̃t+1) =
π(θ̃t+1|yF )

π(θt |yF )

3 Acceptation:

θt+1 =

{
θ̃t+1 with probability α(θt , θ̃t+1)
θt otherwise.

Note that the ratio α(θt , θ̃t+1) needs several computations of f (x,θ) at each
step since

π(θ|yF ) ∝ exp

(
− 1

2σ2

n∑
i=1

(yF (xi )− f (xi ,θ))2 − 1
2σ2

0
(θ − θ0)2

)
.
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Expensive black-box computer code

Run the simulator for a given (x∗,θ) is time-consuming / expensive.

The simulator is a black-box, no intrusive methods are possible.

⇒ Only few runs of the simulator are possible then we cannot apply
algorithms (as in Bayesian calibration) which make a massive use of
simulator runs.

Using an emulator / metamodel / coarse model / approximation of the
simulator which is fast to compute, but:

loss on precision of prediction,

new uncertainty source: accuracy of the model approximation,

taken into account.
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Choosing a design of experiments

Choose Nrun couples
(x∗j , θj )

space filling for x ,

with respect to the prior distribution on θ,

x∗j = xi ?

where the simulator is called.
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Emulator using Gaussian Process:

Very popular in computer experiments.

integrated in a Bayesian framework: appears in the likelihood function
and a prior on the parameters of the Gaussian process are chosen.

model uncertainty coming from approximation of f .

After the calibration step, used in prediction for a new point x.
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Meta-modeling: prior distribution on f

Sacks et al. (1989).
f realization of a Gaussian process F :
∀(x∗,θ) ∈ E ,

F ((x∗,θ)) =
Q∑

k=1

βk hk ((x∗,θ)) + Z ((x∗,θ)) = H((x∗,θ))Tβ + Z ((x∗,θ)) ,

où
h1, . . . , hQ regression functions and β parameters vector,
Z centered Gaussians process with covariance function:

Cov(Z ((x∗1 ,θ1)),Z ((x∗2 ,θ2))) = σ2K ((x∗1 ,θ1), (x∗2 ,θ2)) ,

where K is correlation kernel.

Hypotheses

K ((x∗1 ,θ1), (x∗2 ,θ2)) = σ2
K exp(−ξx∗

∑
|x∗1 − x∗2 |α − ξθ

∑
|θ1 − θ2|α)

parameters φ = (β, σ2,K parameters) assumed fixed (in practice,
maximum likelihood estimators);
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Meta-modeling: posterior

v1 = f ((x∗,θ)1), . . . , vNrun = f ((x∗,θ)Nrun ) evaluations of f on a design
DNrun

Process F DNrun : Conditioning F to
F ((x∗1 ,θ1)) = v1, . . . ,F (x∗Nrun ,θNrun )) = vNrun .
Gaussian Process with mean m((x∗,θ)) and covariance
C((x∗,θ), (x∗,θ)′) ∀(x∗,θ), (x∗,θ)′.

For all (x∗,θ) ∈ E ,
m((x∗,θ)) approximates f ((x∗,θ)),
C((x∗,θ), (x∗,θ)) uncertainty on this approximation.

For all (x∗i ,θi ) ∈ DNrun ,
m(x∗i ,θi ) = f (x∗i ,θi ),

C((x∗i ,θi ), (x∗i ,θi )) = 0.
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Gaussian process emulator: illustration
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Figure : Posterior mean and pointwise credible interval
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Likelihood with a Gaussian process hypothesis on f

z = (yF
1 , . . . , y

F
n , f (x∗1 ,θ1), . . . , f (x∗Nrun ,θNrun ))

likelihood on z

l(θ, σ2|z) ∝ |Σz|−1/2 exp
(
−1

2
(z− µ)T Σ−1

z (z− µ)

)
where

µ is the mean of the Gaussian process,

Σz = Σf +

(
Σy 0
0 0

)
with Σy = σ2In and Σf is obtained as the covariance matrix corresponding
to the points: (x1,θ), . . . , (xn,θ), (x∗1 ,θ1), . . . , (x∗Nrun

,θNrun ).
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Dealing with GP parameters

prior distribution on µ and covariance parameters Hidgon et al. (2005)
⇒ MCMC inference

MLE estimators Kennedy and O’Hagan (2001)
treated as fixed,
only computer data f (x∗1 ,θ1), . . . , f (x∗Nrun

,θNrun ) are used (n < Nrun) for MLE
likelihood l(θ, σ2|z):

l(θ, σ2|z) ∝ |Σ̃yF |−1/2 exp
(
−

1
2

(yF −m(x,θ))T Σ̃−1
yF (yF −m(x,θ))

)
where

m(·) is the mean of the GP conditioned to simulator data,
Σ̃yF = ΣyF + Σ̃f = σ2In + Σ̃f where Σ̃f is constructed with the covariance
function C of the conditioned GP.
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Posterior consistency

Proposition

Under the following assumptions:

π(θ) has a bounded support T ,

the code output f (x,θ) is uniformly bounded on X × T ,

the correlation function (kernel) is a classical radial basis function

f lies in the associated Reproducing Kernel Hilbert Space,

the covering distances associated with the sequence of designs (DM )M

tends to 0 with M →∞,

then, we have:

lim
M→∞

KL
(
π(θ|yF )||πC(θ|yF , f (DM ))

)
= 0 . (1)
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Motivation for adaptive designs in calibration

Example:
θ = 12,
(x1, x2, x3) = (0.1, 0.3, 0.8),
f (x , θ) = (6 · x − 2)2 · sin(θ · x − 4) + ε,
εi ∼ N (0, 0.12) i.i.d.,
prior θ ∼ U [5, 15],
yi = f (xi , θ) + εi .
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Motivation for adaptive designs in calibration

Quality of calibration (Bayesian or ML) is affected by choice in the numerical
design.

• Calibration with unlimited runs of f
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LHS maximin design
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Motivation for adaptive designs in calibration

• Calibration with emulator built from a design with N = 30 calls to f
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Reducing the variance

At step k, by conditioning we obtain a posterior distribution on θ:
π(·|yF , f (Dk )).

Adding a computer experiments at location (xk+1, θk+1) such that the
uncertainty on θ is reduced.

New location could aim at choosing zk+1 = (xk+1, θk+1) which minimises

E(Var(θ|f (Dk+1))|Z s
k+1 = zk+1, f (Dk )) = Ek (Vark+1(θ)|Z s

k+1 = zs) .

By omitting the conditioning Z s
k+1 = zs,

Ek (Vark+1(θ)) = Ek

(
Ek+1((θ − Ek+1(θ))2)

)
= Ek (Ek+1(θ2)− Ek (Ek+1(θ)2)

= Ek (θ2)− Ek (Ek+1(θ)2)

Hence, since Ek (θ2) does not depend on zs
k+1, the minimisation problem is

equivalent to maximise Ek (Ek+1(θ)2).
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Efficient Global Optimization

Goal: Find the global extremum (here minimum e.g.) of f ,

Expected improvement criterion proposed by Jones et al. (1998):

EIn(x) = E((minn − F (x))+|F (Dn)) ,

where minn is the current minimum value:

minn = min
1,...,n

f (xi )

Closed-form computation:

EIn(x) = (minn−mDn (x))Φ

(
minn −mDn (x)√

CDn (x, x)

)
+
√

CDn (x, x)φ

(
minn −mDn (x)√

CDn (x, x)

)
.

where Φ and φ are respectively the cdf and the pdf of N (0, 1).
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EI for calibration

Optimization goal : maximize the likelihood⇒ Expected Improvement for
calibration.

Maximize the likelihood l(θ|z) over θ ⇔ Minimize SS(θ) = ‖yF − F (x,θ)‖2

over θ.

For given:

field experiments yF = yF (x1), . . . , yF (xn),

Dk numerical design on X×Θ with M points,

mk current minimal value of SS(θ).

EI criterion:

EIDk (θ) = EDk

(
(mk − SS(θ))+) ,

to be minimised.

EI criterion is applied to a function of f .
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EI computation

EIDk (θ) =

∫
B(0,
√

mk )

(mk − SS(θ)) dFDM

= mk · PDM (SS(θ) ≤ mk )− EDM

(
SS(θ)ISS(θ)≤mk

)

no close form computation,

PDM (SS(θ) ≤ mk ) is an upper bound and easier to compute,

importance sampling may be used for the second term.
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Algorithm

1 Build a first space-filling design D0 on X×Θ,

2 Find the maximum: θ̃0 of l(θ|z),

3 Evaluate f (x1, θ̃0), . . . , f (xn, θ̃0).

4 Set m0 = SS(θ̃0),

5 for k=1..., repeat

1 Compute EIDk on a grid on Θ,
2 θ̃k = arg maxΘ EIDk (θ),
3 Evaluate f (x1, θ̃k ), . . . , f (xn, θ̃k )

P. Barbillon Adaptive numerical designs for the calibration of computer codes



Bayesian calibration
Sequential design for calibration

Conclusion

Stepwise uncertainty reduction
Expected Improvement

Adapted design
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Bayesian calibration based on the adapted design
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Figure : Bayesian calibration with unlimited runs vs Bayesian calibration with N = 30
chosen by EGO
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Algorithm one at a time

Algorithm (step k −→ step k + 1) :

θk+1 = argmax
θ

EIk (θ),

Dk+1 = Dk ∪ (x?,θk+1) where x? ∈ Xf =
[
xf

1, · · · , xf
n
]T ,

f (Dk+1) = f (Dk ) ∪ {f (x?,θk+1)},
F Dk+1 = F |f (Dk+1),

mk+1 := min {E[SSk+1(θ1)], · · · ,E[SSk+1(θk )],E[SSk+1(θk+1)]}.

Only 1 simulation to compute mk+1!
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Algorithm one at a time

Two criteria to choose x?k+1 :

1. x? = argmax
xf

i

Var(F Dk (xf
i ,θk+1)),

2. x? = argmax
xf

i

(
Var
(

FDk (xf
i ,θk+1)

)
max

i=1,··· ,n
Var
(

FDk (xf
i ,θk+1)

) × Var(µk
β,Ψ(xf

i ,θ))

max
i=1,··· ,n

Var(µk
β,Ψ(xf

i ,θ))

)

where Var(µk
β,Ψ(xf

i ,θ)) is computed with respect to π(θ).

criterion 2 = trade-off between uncertainty on FDk for (xf
i ,θk+1)

and sensibility of FDk (xf
i ,θ) to θ
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Stepwise uncertainty reduction
Expected Improvement

Comparison full EI / EI one at a time

Xf = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9), Θ = [5, 15]

Figure : full EI EI OAT
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Outline

1 Bayesian calibration
Two kinds of data
Bayesian Calibration
Meta-modeling / emulator of the computer code
Calibration with emulator

2 Sequential design for calibration
Stepwise uncertainty reduction
Expected Improvement

3 Conclusion
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Conclusion

Designs of numerical experiments adapted to calibration purpose,

Robustness in calibration.

Higher dimension questions, number of field experiments, dimension of
θ...

New field experiments ?

discrepancy issues ?
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