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Two bandit problems The model

Bandit model

A multi-armed bandit model is a set of K arms where

Arm a is an unknown probability distribution νa with mean µa

Drawing arm a is observing a realization of νa

Arms are assumed to be independent

In a bandit game, at round t, an agent

chooses arm At to draw based on past observations, according to its
sampling strategy (or bandit algorithm)

observes a sample Xt ∼ νAt

The agent wants to learn which arm(s) have highest means

a∗ = argmaxa µa

Emilie Kaufmann (Telecom ParisTech) Two objectives for bandit algorithms SPADRO, 09/04/14 4 / 26



Two bandit problems The model

Bernoulli bandit model

A multi-armed bandit model is a set of K arms where

Arm a is a Bernoulli distribution B(µa) (with unknown mean µa)

Drawing arm a is observing a realization of B(µa) (0 or 1)

Arms are assumed to be independent

In a bandit game, at round t, an agent

chooses arm At to draw based on past observations, according to its
sampling strategy (or bandit algorithm)

observes a sample Xt ∼ B(µAt)

The agent wants to learn which arm(s) have highest means

a∗ = argmaxa µa

Emilie Kaufmann (Telecom ParisTech) Two objectives for bandit algorithms SPADRO, 09/04/14 5 / 26



Two bandit problems Regret minimization

The (classical) bandit problem: regret minimization

Samples are seens as rewards (as in reinforcement learning)

The forecaster wants to maximize the reward accumulated during
learning or equivalentely minimize its regret:

Rn = nµa∗ − E

[
n∑
t=1

Xt

]

He has to find a sampling strategy (or bandit algorithm) that

realizes a tradeoff between exploration and exploitation
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Two bandit problems Best arm identification

Best arm identification (or pure exploration)

The forecaster has to find the best arm(s), and does not suffer a loss
when drawing ’bad arms’.

He has to find a sampling strategy that

optimaly explores the environnement,

together with a stopping criterion, and then recommand a set S of m
arms such that

P(S is the set of m best arms) ≥ 1− δ.
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Two bandit problems Regret minimization versus best arm identification

Zoom on an application: Medical trials

A doctor can choose between K different treatments for a given symptom.

treatment number a has unknown probability of sucess µa
Unknown best treatment a∗ = argmaxa µa
If treatment a is given to patient t, he is cured with probability pa

The doctor:

chooses treatment At to give to patient t

observes whether the patient is healed : Xt ∼ B(µAt)

The doctor can ajust his strategy (At) so as to

Regret minimization Pure exploration

Maximize the number of patient healed Identify the best treatment
during a study involving n patients with probability at least 1− δ

(and always give this one later)
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Regret minimization: a well solved problem Performance criterion

Asymptotically optimal algorithms

Na(t) be the number of draws of arm a up to time t

RT =

K∑
a=1

(µ∗ − µa)E[Na(T )]

[Lai and Robbins,1985]: every consistent policy satisfies

µa < µ∗ ⇒ lim inf
T→∞

E[Na(T )]

log T
≥ 1

KL(B(µa),B(µa∗))

A bandit algorithm is asymptotically optimal if

µa < µ∗ ⇒ lim sup
n→∞

E[Na(T )]

log T
≤ 1

KL(B(µa),B(µa∗))
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Regret minimization: a well solved problem Bandit algorithms for regret minimization

Algorithms: a family of optimistic index policies

For each arm a, compute a confidence interval on µa:

µa ≤ UCBa(t) w.h.p

Act as if the best possible model was the true model
(optimism-in-face-of-uncertainty):

At = argmax
a

UCBa(t)

Example UCB1 [Auer et al. 02] uses Hoeffding bounds:

UCBa(t) =
Sa(t)

Na(t)
+

√
α log(t)

2Na(t)
.

Sa(t): sum of the rewards collected from arm a up to time t.

UCB1 is not asymptotically optimal, but one can show that

E[Na(T )] ≤
K1

2(µa − µ∗)2
lnT +K2, with K1 > 1.
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Regret minimization: a well solved problem Bandit algorithms for regret minimization

KL-UCB: and asymptotically optimal frequentist algorithm

KL-UCB [Cappé et al. 2013] uses the index:

ua(t) = argmax
x>

Sa(t)
Na(t)

{
d

(
Sa(t)

Na(t)
, x

)
≤ ln(t) + c ln ln(t)

Na(t)

}
with d(p, q) = KL (B(p),B(q)) = p log

(
p
q

)
+ (1− p) log

(
1−p
1−q

)
.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
a
(t)/N

a
(t)

β(t,δ)/N
a
(t)

E[Na(T )] ≤
1

d(µa, µ∗)
lnT + C

Emilie Kaufmann (Telecom ParisTech) Two objectives for bandit algorithms SPADRO, 09/04/14 12 / 26



Regret minimization: a well solved problem Bandit algorithms for regret minimization

Regret minimization: Summary

An (asymptotic) lower bound on the regret of any good algorithm

lim inf
T→∞

RT
log T

≥
∑

a:µa<µ∗

µ∗ − µa
KL(B(µa),B(µ∗))

An algorithm based on confidence intervals matching this lower
bound: KL-UCB

A Bayesian approach of the MAB problem can also lead to
asymptotically optimal algorithms
(Thompson Sampling, Bayes-UCB)
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Algorithms for pure-exploration m best arm identification

m best arms identification

Assume µ1 ≥ · · · ≥ µm > µm+1 ≥ . . . µK .

Parameters and notations

m the number of arms to find

δ ∈]0, 1[ a risk parameter

S∗m = {1, . . . ,m} the set of m optimal arms

The forecaster

chooses at time t one (or several) arms to draw

decides to stop after a (possibly random) total number of samples
from the arms τ

recommends a set S of m arms

His goal

P(S = S∗m) ≥ 1− δ, and E[τ ] is small (fixed-confidence setting)
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Algorithms for pure-exploration Generic algorithms using confidence intervals

Generic algorithms based on confidence intervals

Generic notations:

confidence interval on the mean of arm a at round t:

Ia(t) = [La(t), Ua(t)]

J(t) the set of estimated m best arms at round t
(m empirical best)

ut ∈ J(t)c and lt ∈ J(t) two ’critical’ arms (likely to be misclassified)

ut = argmax
a/∈J(t)

Ua(t) and lt = argmin
a∈J(t)

La(t).
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Algorithms for pure-exploration Uniform sampling and eliminations

(KL)-Racing: uniform sampling and eliminations

The algorithm maintains a set of remaining arms R and at round t:

draw all the arms in R (uniform sampling)
possibly accept the empirical best or discard the empirical worst
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Algorithms for pure-exploration Adaptive sampling

(KL)-LUCB algorithm: adaptive sampling

At round t, the algorithm:

draw only two well-chosen arms: ut and lt (adaptive sampling)

stops when CI for arms in J(t) and J(t)c are separated

0
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Set J(t), arm lt in bold Set J(t)c, arm ut in bold
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Algorithms for pure-exploration Theoretical guarantees

Two δ-PAC algorithms

La(t) = min {q ∈ [0, µ̂a(t)] : Na(t)d(µ̂a(t), q) ≤ β(t, δ)} ,
Ua(t) = max {q ∈ [µ̂a(t), 1] : Na(t)d(µ̂a(t), q) ≤ β(t, δ)} .

for β(t, δ) some exploration rate.

Theorem
The KL-Racing algorithm and KL-LUCB algorithm using

β(t, δ) = log

(
k1Kt

α

δ

)
, (1)

with α > 1 and k1 > 1 + 1
α−1 satisfy P(S = S∗m) ≥ 1− δ.
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Algorithms for pure-exploration Empirical performance

Confidence intervals based on KL are always better
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Algorithms for pure-exploration Sample complexity

Sample complexity analysis

A new informational quantity: Chernoff information

d∗(x, y) := d(z∗, x) = d(z∗, y),

where z∗ is defined by the equality

d(z∗, x) = d(z∗, y).
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Algorithms for pure-exploration Sample complexity

Sample Complexity analysis

KL-LUCB with β(t, δ) = log
(
k1Ktα

δ

)
is δ-PAC and satisfies, for α > 2,

E[τ ] ≤ 4αH∗
[
log

(
k1K(H∗)α

δ

)
+ log log

(
k1K(H∗)α

δ

)]
+ Cα,

with

H∗ = min
c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
.
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The complexity of m best arms identification Lower bound

Lower bound on the number of sample used complexity

For KL-LUCB, E[τ ] = O
(
H∗ log 1

δ

)
.

Theorem
Any algorithm that is δ-PAC on every bandit model such that µm > µm+1

satisfies, for δ ≤ 0.15,

E[τ ] ≥

(
m∑
t=1

1

d(µa, µm+1)
+

K∑
t=m+1

1

d(µa, µm)

)
log

1

2δ
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The complexity of m best arms identification The complexity term

The informational complexity of m best arm identification

For a bandit model ν, one can introduce the complexity term

κC(ν) = inf
A δ−PAC
algorithm

lim sup
δ→0

Eν [τ ]
log 1

δ

.

Our results rewrite

m∑
t=1

1

d(µa, µm+1)
+

K∑
t=m+1

1

d(µa, µm)
≤ κC(ν) ≤ 4 min

c∈[µm+1;µm]

K∑
a=1

1

d∗(µa, c)
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The complexity of m best arms identification The complexity term

Regret minimization versus Best arms Identification

KL-based confidence intervals are useful in both settings, altough
KL-UCB and KL-LUCB draw the arms in a different fashion
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Do the complexity of these two problems feature the same
information-theoretic quantities?

inf
constistent
algorithms

lim sup
T→∞

RT
log T

=

K∑
a=2

µ1 − µa
d(µa, µ1)

inf
δ−PAC
algorithms

lim sup
δ→∞

E[τ ]
log(1/δ)

≥
K∑
a=1

1

d(µa, µm+1)
+

K∑
a=m+1

1

d(µa, µm)
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