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Two bandit problems

A multi-armed bandit model is a set of K arms where
m Arm a is an unknown probability distribution v, with mean g,
m Drawing arm a is observing a realization of v,

m Arms are assumed to be independent

In a bandit game, at round ¢, an agent

m chooses arm A; to draw based on past observations, according to its
sampling strategy (or bandit algorithm)

m observes a sample X; ~ vg4,
The agent wants to learn which arm(s) have highest means

a® = argmax, g
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Two bandit problems

A multi-armed bandit model is a set of K arms where
m Arm a is a Bernoulli distribution B(p,) (with unknown mean p,)
m Drawing arm a is observing a realization of B(u,) (0 or 1)

m Arms are assumed to be independent

In a bandit game, at round ¢, an agent

m chooses arm A; to draw based on past observations, according to its
sampling strategy (or bandit algorithm)

m observes a sample X; ~ B(ua,)
The agent wants to learn which arm(s) have highest means

a® = argmax, g
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Two bandit problems

Regret minimization
The (classical) bandit problem: regret minimization

Samples are seens as rewards (as in reinforcement learning)

The forecaster wants to maximize the reward accumulated during
learning or equivalentely minimize its regret:

R, =np, —E

>
t=1
He has to find a sampling strategy (or bandit algorithm) that

m realizes a tradeoff between exploration and exploitation

Emilie Kaufmann (Telecom ParisTech)
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Two bandit problems

Best arm identification
Best arm identification (or pure exploration)

The forecaster has to find the best arm(s), and does not suffer a loss
when drawing 'bad arms’.
He has to find a sampling strategy that

m optimaly explores the environnement,

arms such that

together with a stopping criterion, and then recommand a set S of m

P(S is the set of m best arms) > 1 — 4.
Emilie Kaufmann (Telecom ParisTech)
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Two bandit problems

Zoom on an application: Medical trials

Regret minimization versus best arm identification

A doctor can choose between K different treatments for a given symptom
The doctor:

m treatment number a has unknown probability of sucess u,
m Unknown best treatment a* = argmax,, (i
m If treatment « is given to patient ¢, he is cured with probability p,

m chooses treatment A; to give to patient ¢

m observes whether the patient is healed : X; ~ B(p4,)
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Two bandit problems

A doctor can choose between K different treatments for a given symptom.

m treatment number a has unknown probability of sucess u,
m Unknown best treatment a* = argmax, [l

m If treatment « is given to patient ¢, he is cured with probability p,

The doctor:
m chooses treatment A; to give to patient ¢
m observes whether the patient is healed : X; ~ B(p4,)

The doctor can ajust his strategy (A;) so as to

Regret minimization Pure exploration
Maximize the number of patient healed Identify the best treatment
during a study involving n patients with probability at least 1 — §
(and always give this one later)
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Regret minimization: a well solved problem
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Regret minimization: a well solved problem

Performance criterion

Asymptotically optimal algorithms

N, (t) be the number of draws of arm a up to time ¢

K
Ry =

Z(M* - ;U/a)E[Na(T)]

a=1
m [Lai and Robbins,1985]: every consistent policy satisfies

pa < p* = hm inf E[No(T)]

1
S logT — KL(B(ka), B(Ha-))
m A bandit algorithm is asymptotically optimal if
o ey ENa(T) 1
a im su
a a n—>oop 10gT

KL(B(pa), B(par))
Emilie Kaufmann (Telecom ParisTech)
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Regret minimization: a well solved problem

Bandit algorithms for regret minimization
Algorithms: a family of optimistic index policies

m For each arm a, compute a confidence interval on pg:

pa <UCB,(t) w.h.p
m Act as if the best possible model was the true model
(optimism-in-face-of-uncertainty):

Ay = argmax UCB,(t)
a

Emilie Kaufmann (Telecom ParisTech)
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Regret minimization: a well solved problem

Bandit algorithms for regret minimization

Algorithms: a family of optimistic index policies

m For each arm a, compute a confidence interval on pg:

fta < UCB,(t) w.hp

m Act as if the best possible model was the true model
(optimism-in-face-of-uncertainty):

Ay = argmax UCB,(t)
a
Example UCBL1 [Auer et al. 02] uses Hoeffding bounds:

UCB,(t) = Sa(t) alog(t)

Na(t) 2Na(t)
Sa(t): sum of the rewards collected from arm a up to time ¢.

UCB1 is not asymptotically optimal, but one can show that
K
E[Na(T)] < 57

g %)2
a
Emilie Kaufmann (Telecom ParisTech)

InT + Ky, with K7 > 1.
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Regret minimization: a well solved problem

Bandit algorithms for regret minimization

KL-UCB: and asymptotically optimal frequentist algorithm
m KL-UCB [Cappé et al. 2013] uses the index:

uq(t) = argmax

et (57)

In(t) 4+ clnln(t)
i N (t) Na(t) }
with d(p, q) = KL (B(p), B(q)) = plog (§

(1—p)log (}%Z) :

IN

~—
_|_
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Regret minimization: a well solved problem

Regret minimization: Summary

Bandit algorithms for regret minimization

lim inf

m An (asymptotic) lower bound on the regret of any good algorithm

_Ma
Toroo ogT— Z _KL(B

a); B(p

)
m An algorithm based on confidence intervals matching this lower
bound: KL-UCB
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Regret minimization: a well solved problem Bandit algorithms for regret minimization

Regret minimization: Summary

m An (asymptotic) lower bound on the regret of any good algorithm

M _,Uu
lim inf 7 ogT— Z CKL(B(1a), B(i))

m An algorithm based on confidence intervals matching this lower
bound: KL-UCB

m A Bayesian approach of the MAB problem can also lead to
asymptotically optimal algorithms
(Thompson Sampling, Bayes-UCB)

=} =) = = £ DA
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Algorithms for pure-exploration

m best arms identification

m best arm identification

Assume i1 > -0 = i > flmt1 2 - BK
Parameters and notations

m m the number of arms to find

m 6 €]0,1] a risk parameter

m S, ={Ll,...,m} the set of m optimal arms

Emilie Kaufmann (Telecom ParisTech)
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Algorithms for pure-exploration

m best arms identification

m best arm identification

Assume i1 > -0 = i > flmt1 2 - BK
Parameters and notations

m m the number of arms to find

m 6 €]0,1] a risk parameter
m S, ={1,...,m} the set of m optimal arms
The forecaster
m chooses at time ¢ one (or several) arms to draw
m decides to stop after a (possibly random) total number of samples
from the arms 7
m recommends a set S of m arms
Emilie Kaufmann (Telecom ParisTech)
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Algorithms for pure-exploration

m best arms identification

m best arm identification

Assume pi1 > -+ > ln > flmtl = - UK
Parameters and notations

m m the number of arms to find

m 6 €]0,1] a risk parameter

m S ={1,...,m} the set of m optimal arms
The forecaster

m chooses at time ¢ one (or several) arms to draw
m decides to stop after a (possibly random) total number of samples
from the arms 7

m recommends a set S of m arms
His goal

m P(§=S})>1-4, and E[7] is small (fixed-confidence setting)
Emilie Kaufmann (Telecom ParisTech)
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Algorithms for pure-exploration

Generic algorithms using confidence intervals
Generic algorithms based on confidence intervals

Generic notations:
m confidence interval on the mean of arm a at round ¢:

Ia(t) = [La(t)v Ua(t)]

m J(t) the set of estimated m best arms at round ¢
(m empirical best)

up = argmax Uy (t)

m oy € J(t)° and I € J(t) two 'critical’ arms (likely to be misclassified)
agJ(t)

and [; = argmin L,(t).
acJ(t)

Emilie Kaufmann (Telecom ParisTech)
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Algorithms for pure-exploration Uniform sampling and eliminations

(KL)-Racing: uniform sampling and eliminations

The algorithm maintains a set of remaining arms R and at round t:
m draw all the arms in R (uniform sampling)
m possibly accept the empirical best or discard the empirical worst

08
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In this situation, arm 1 is selected .. - - - ...
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Algorithms for pure-exploration

At round t, the algorithm:

(KL)-LUCB algorithm: adaptive sampling

m draw only two well-chosen arms: w; and I; (adaptive sampling)
m stops when Cl for arms in J(t) and J(t)¢ are separated

118 346

330

72

Set J(t), arm I; in bold Set J(¢)¢, arm u; in bold
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Algorithms for pure-exploration

Two 6-PAC algorithms

Theoretical guarantees

min {q € [0, f1a(t)] : Na(t)d(j1a(t),q) < B(t,9)},
Ua(t) = max{q € [f1a(t),1] : Na(t)d(f1a(t),q) <
for 5(t,0) some exploration rate
Theorem

The KL-Racing algorithm and KL-LUCB algorithm using

B(t,5) = log (’“K r°

5)’

with a > 1 and ky > 1+ =15 satisfy P(S = S};,) > 10

Emilie Kaufmann (Telecom ParisTech)
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Confidence intervals based on KL are always better

Fraction of runs (in bins of width 1000)
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Adaptive Sampling seems to do better than Uniform Sampling

Expected sample complexity / 10000
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Algorithms for pure-exploration Sample complexity

Sample complexity analysis

m A new informational quantity: Chernoff information
d*(z,y) = d(z%,z) = d(z",y),
where z* is defined by the equality
d(z", z) = d(z", y).

]
02 025 03 035 04 045 05 055 06 065 07

o & = E A
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Algorithms for pure-exploration

Sample Complexity analysis

Sample complexity

KL-LUCB with $(t, 5)

= log <k1{;{ta>

is 0-PAC and satisfies, for o > 2,

E[r] < 4aH* [log (le((SH* a) + log log (@)] + Ca,
with
= cE[u?nli?,um Z d*(Has
P Prres P Py
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The complexity of m best arms identification

The complexity of m best arms identification
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The complexity of m best arms identification Lower bound

Lower bound on the number of sample used complexity

For KL-LUCB, E[r] = O (H*log }).

Theorem

Any algorithm that is 6-PAC on every bandit model such that p, > pma1
satisfies, for 6 < 0.15,

E[r] > <;—d(ua,1 + > pTY ! )1og%

Mm—H) t—mt1 (Na; Nm)

o =il = E DA
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The complexity of m best arms identification

The complexity term

The informational complexity of m best arm identification

For a bandit model v, one can introduce the complexity term

E,
4 gnlfj A lim sup ] [7;]
algorithm 00 085
Our results rewrite
m K K
1 . 1

Z + —— <ke(v) <4 min
— d Maa ,U«m-l—l) Pa—] d(,uaa Nm) CE[m+1;14m)

1 d*(/"LaJ c)
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The complexity of m best arms identification

The complexity term

Regret minimization versus Best arms Identification

m KL-based confidence intervals are useful in both settings, altough
KL-UCB and KL-LUCB draw the arms in a different fashion
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The complexity of m best arms identification The complexity term

Regret minimization versus Best arms Identification

m KL-based confidence intervals are useful in both settings, altough
KL-UCB and KL-LUCB draw the arms in a different fashion

!Tl{ll }¥§I;I
e . .. . L

m Do the complexity of these two problems feature the same
information-theoretic quantities?

R S m—p
inf li T _ 1 a
con.gilstent I;Hjolip logT Z

algorithms a=2

i E[r] - 1 N 1
m msup ————< = E < <
§-PAC 5 5o log(1/9) d
algorithms a=1
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