Minimisation du regret vs. Exploration pure:
 Deux critères de performance pour des algorithmes de
 bandit

Emilie Kaufmann (Telecom ParisTech) joint work with Olivier Cappé, Aurélien Garivier and Shivaram Kalyanakrishnan (Yahoo Labs)

ANR Spadro, 9 avril 2014

1 Two bandit problems

2 Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

1 Two bandit problems

2 Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

Bandit model

A multi-armed bandit model is a set of K arms where

- Arm a is an unknown probability distribution ν_{a} with mean μ_{a}
- Drawing arm a is observing a realization of ν_{a}
- Arms are assumed to be independent

In a bandit game, at round t, an agent

- chooses arm A_{t} to draw based on past observations, according to its sampling strategy (or bandit algorithm)
■ observes a sample $X_{t} \sim \nu_{A_{t}}$
The agent wants to learn which arm(s) have highest means

$$
a^{*}=\operatorname{argmax}_{a} \mu_{a}
$$

Bernoulli bandit model

A multi-armed bandit model is a set of K arms where

- Arm a is a Bernoulli distribution $\mathcal{B}\left(\mu_{a}\right)$ (with unknown mean μ_{a})
- Drawing arm a is observing a realization of $\mathcal{B}\left(\mu_{a}\right)$ (0 or 1)
- Arms are assumed to be independent

In a bandit game, at round t, an agent

- chooses arm A_{t} to draw based on past observations, according to its sampling strategy (or bandit algorithm)
- observes a sample $X_{t} \sim \mathcal{B}\left(\mu_{A_{t}}\right)$

The agent wants to learn which arm(s) have highest means

$$
a^{*}=\operatorname{argmax}_{a} \mu_{a}
$$

The (classical) bandit problem: regret minimization

Samples are seens as rewards (as in reinforcement learning)
The forecaster wants to maximize the reward accumulated during learning or equivalentely minimize its regret:

$$
R_{n}=n \mu_{a^{*}}-\mathbb{E}\left[\sum_{t=1}^{n} X_{t}\right]
$$

He has to find a sampling strategy (or bandit algorithm) that

- realizes a tradeoff between exploration and exploitation

Best arm identification (or pure exploration)

The forecaster has to find the best arm(s), and does not suffer a loss when drawing 'bad arms'.

He has to find a sampling strategy that
■ optimaly explores the environnement,
together with a stopping criterion, and then recommand a set \mathcal{S} of m arms such that
$\mathbb{P}(\mathcal{S}$ is the set of m best arms $) \geq 1-\delta$.

Zoom on an application: Medical trials

A doctor can choose between K different treatments for a given symptom.
■ treatment number a has unknown probability of sucess μ_{a}
■ Unknown best treatment $a^{*}=\operatorname{argmax}_{a} \mu_{a}$

- If treatment a is given to patient t, he is cured with probability p_{a}

The doctor:

- chooses treatment A_{t} to give to patient t

■ observes whether the patient is healed : $X_{t} \sim \mathcal{B}\left(\mu_{A_{t}}\right)$

Zoom on an application: Medical trials

A doctor can choose between K different treatments for a given symptom.
■ treatment number a has unknown probability of sucess μ_{a}
■ Unknown best treatment $a^{*}=\operatorname{argmax}_{a} \mu_{a}$

- If treatment a is given to patient t, he is cured with probability p_{a}

The doctor:

- chooses treatment A_{t} to give to patient t

■ observes whether the patient is healed : $X_{t} \sim \mathcal{B}\left(\mu_{A_{t}}\right)$
The doctor can ajust his strategy $\left(A_{t}\right)$ so as to

Regret minimization	Pure exploration
Maximize the number of patient healed during a study involving n patients	Identify the best treatment with probability at least $1-\delta$ (and always give this one later)

1 Two bandit problems

2 Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

Asymptotically optimal algorithms

$N_{a}(t)$ be the number of draws of arm a up to time t

$$
R_{T}=\sum_{a=1}^{K}\left(\mu^{*}-\mu_{a}\right) \mathbb{E}\left[N_{a}(T)\right]
$$

■ [Lai and Robbins,1985]: every consistent policy satisfies

$$
\mu_{a}<\mu^{*} \Rightarrow \liminf _{T \rightarrow \infty} \frac{\mathbb{E}\left[N_{a}(T)\right]}{\log T} \geq \frac{1}{\mathrm{KL}\left(\mathcal{B}\left(\mu_{a}\right), \mathcal{B}\left(\mu_{a^{*}}\right)\right)}
$$

■ A bandit algorithm is asymptotically optimal if

$$
\mu_{a}<\mu^{*} \Rightarrow \limsup _{n \rightarrow \infty} \frac{\mathbb{E}\left[N_{a}(T)\right]}{\log T} \leq \frac{1}{\operatorname{KL}\left(\mathcal{B}\left(\mu_{a}\right), \mathcal{B}\left(\mu_{a^{*}}\right)\right)}
$$

Algorithms: a family of optimistic index policies

■ For each arm a, compute a confidence interval on μ_{a} :

$$
\mu_{a} \leq U C B_{a}(t) \quad \text { w.h.p }
$$

- Act as if the best possible model was the true model (optimism-in-face-of-uncertainty):

$$
A_{t}=\underset{a}{\arg \max } U C B_{a}(t)
$$

Algorithms: a family of optimistic index policies

■ For each arm a, compute a confidence interval on μ_{a} :

$$
\mu_{a} \leq U C B_{a}(t) \quad \text { w.h.p }
$$

■ Act as if the best possible model was the true model (optimism-in-face-of-uncertainty):

$$
A_{t}=\underset{a}{\arg \max } U C B_{a}(t)
$$

Example UCB1 [Auer et al. 02] uses Hoeffding bounds:

$$
U C B_{a}(t)=\frac{S_{a}(t)}{N_{a}(t)}+\sqrt{\frac{\alpha \log (t)}{2 N_{a}(t)}}
$$

$S_{a}(t)$: sum of the rewards collected from arm a up to time t.
UCB1 is not asymptotically optimal, but one can show that

$$
\mathbb{E}\left[N_{a}(T)\right] \leq \frac{K_{1}}{2\left(\mu_{a}-\mu^{*}\right)^{2}} \ln T+K_{2}, \quad \text { with } K_{1}>1
$$

KL-UCB: and asymptotically optimal frequentist algorithm

■ KL-UCB [Cappé et al. 2013] uses the index:

$$
u_{a}(t)=\underset{x>\frac{S_{a}(t)}{N_{a}(t)}}{\operatorname{argmax}}\left\{d\left(\frac{S_{a}(t)}{N_{a}(t)}, x\right) \leq \frac{\ln (t)+c \ln \ln (t)}{N_{a}(t)}\right\}
$$

with $d(p, q)=\mathrm{KL}(\mathcal{B}(p), \mathcal{B}(q))=p \log \left(\frac{p}{q}\right)+(1-p) \log \left(\frac{1-p}{1-q}\right)$.

$$
\mathbb{E}\left[N_{a}(T)\right] \leq \frac{1}{d\left(\mu_{a}, \mu^{*}\right)} \ln T+C
$$

Regret minimization: Summary

- An (asymptotic) lower bound on the regret of any good algorithm

$$
\liminf _{T \rightarrow \infty} \frac{R_{T}}{\log T} \geq \sum_{a: \mu_{a}<\mu^{*}} \frac{\mu^{*}-\mu_{a}}{\operatorname{KL}\left(\mathcal{B}\left(\mu_{a}\right), \mathcal{B}\left(\mu^{*}\right)\right)}
$$

- An algorithm based on confidence intervals matching this lower bound: KL-UCB

Regret minimization: Summary

- An (asymptotic) lower bound on the regret of any good algorithm

$$
\liminf _{T \rightarrow \infty} \frac{R_{T}}{\log T} \geq \sum_{a: \mu_{a}<\mu^{*}} \frac{\mu^{*}-\mu_{a}}{\operatorname{KL}\left(\mathcal{B}\left(\mu_{a}\right), \mathcal{B}\left(\mu^{*}\right)\right)}
$$

■ An algorithm based on confidence intervals matching this lower bound: KL-UCB

- A Bayesian approach of the MAB problem can also lead to asymptotically optimal algorithms
(Thompson Sampling, Bayes-UCB)

1 Two bandit problems

2 Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

m best arms identification

Assume $\mu_{1} \geq \cdots \geq \mu_{m}>\mu_{m+1} \geq \ldots \mu_{K}$.
Parameters and notations

- m the number of arms to find
- $\delta \in] 0,1[$ a risk parameter
$■ \mathcal{S}_{m}^{*}=\{1, \ldots, m\}$ the set of m optimal arms

m best arms identification

Assume $\mu_{1} \geq \cdots \geq \mu_{m}>\mu_{m+1} \geq \ldots \mu_{K}$.
Parameters and notations

- m the number of arms to find

■ $\delta \in] 0,1[$ a risk parameter
■ $\mathcal{S}_{m}^{*}=\{1, \ldots, m\}$ the set of m optimal arms

The forecaster

- chooses at time t one (or several) arms to draw
- decides to stop after a (possibly random) total number of samples from the arms τ
- recommends a set \mathcal{S} of m arms

m best arms identification

Assume $\mu_{1} \geq \cdots \geq \mu_{m}>\mu_{m+1} \geq \ldots \mu_{K}$.
Parameters and notations

- m the number of arms to find

■ $\delta \in] 0,1[$ a risk parameter
■ $\mathcal{S}_{m}^{*}=\{1, \ldots, m\}$ the set of m optimal arms

The forecaster

- chooses at time t one (or several) arms to draw

■ decides to stop after a (possibly random) total number of samples from the arms τ

- recommends a set \mathcal{S} of m arms

His goal

$\square \mathbb{P}\left(\mathcal{S}=\mathcal{S}_{m}^{*}\right) \geq 1-\delta$, and $\mathbb{E}[\tau]$ is small (fixed-confidence setting)

Generic algorithms based on confidence intervals

Generic notations:

- confidence interval on the mean of arm a at round t :

$$
\mathcal{I}_{a}(t)=\left[L_{a}(t), U_{a}(t)\right]
$$

- $J(t)$ the set of estimated m best arms at round t (m empirical best)
- $u_{t} \in J(t)^{c}$ and $l_{t} \in J(t)$ two 'critical' arms (likely to be misclassified)

$$
u_{t}=\underset{a \notin J(t)}{\operatorname{argmax}} U_{a}(t) \quad \text { and } \quad l_{t}=\underset{a \in J(t)}{\operatorname{argmin}} L_{a}(t) .
$$

(KL)-Racing: uniform sampling and eliminations

The algorithm maintains a set of remaining arms \mathcal{R} and at round t :

- draw all the arms in \mathcal{R} (uniform sampling)
- possibly accept the empirical best or discard the empirical worst

(KL)-LUCB algorithm: adaptive sampling

At round t, the algorithm:

- draw only two well-chosen arms: u_{t} and l_{t} (adaptive sampling)

■ stops when Cl for arms in $J(t)$ and $J(t)^{c}$ are separated

Set $J(t)$, arm l_{t} in bold Set $J(t)^{c}$, arm u_{t} in bold

Two δ-PAC algorithms

$$
\begin{aligned}
& L_{a}(t)=\min \left\{q \in\left[0, \hat{\mu}_{a}(t)\right]: N_{a}(t) d\left(\hat{\mu}_{a}(t), q\right) \leq \beta(t, \delta)\right\}, \\
& U_{a}(t)=\max \left\{q \in\left[\hat{\mu}_{a}(t), 1\right]: N_{a}(t) d\left(\hat{\mu}_{a}(t), q\right) \leq \beta(t, \delta)\right\} .
\end{aligned}
$$

for $\beta(t, \delta)$ some exploration rate.

Theorem

The KL-Racing algorithm and KL-LUCB algorithm using

$$
\begin{equation*}
\beta(t, \delta)=\log \left(\frac{k_{1} K t^{\alpha}}{\delta}\right) \tag{1}
\end{equation*}
$$

with $\alpha>1$ and $k_{1}>1+\frac{1}{\alpha-1}$ satisfy $\mathbb{P}\left(\mathcal{S}=\mathcal{S}_{m}^{*}\right) \geq 1-\delta$.

Confidence intervals based on KL are always better

Adaptive Sampling seems to do better than Uniform Sampling

Expected sample complexity / 10000

Sample complexity analysis

- A new informational quantity: Chernoff information

$$
d^{*}(x, y):=d\left(z^{*}, x\right)=d\left(z^{*}, y\right)
$$

where z^{*} is defined by the equality

$$
d\left(z^{*}, x\right)=d\left(z^{*}, y\right)
$$

Sample Complexity analysis

KL-LUCB with $\beta(t, \delta)=\log \left(\frac{k_{1} K t^{\alpha}}{\delta}\right)$ is δ-PAC and satisfies, for $\alpha>2$,

$$
\mathbb{E}[\tau] \leq 4 \alpha H^{*}\left[\log \left(\frac{k_{1} K\left(H^{*}\right)^{\alpha}}{\delta}\right)+\log \log \left(\frac{k_{1} K\left(H^{*}\right)^{\alpha}}{\delta}\right)\right]+C_{\alpha}
$$

with

$$
H^{*}=\min _{c \in\left[\mu_{m+1} ; \mu_{m}\right]} \sum_{a=1}^{K} \frac{1}{d^{*}\left(\mu_{a}, c\right)} .
$$

1 Two bandit problems

2 Regret minimization: a well solved problem

3 Algorithms for pure-exploration

4 The complexity of m best arms identification

Lower bound on the number of sample used complexity

For KL-LUCB, $\mathbb{E}[\tau]=O\left(H^{*} \log \frac{1}{\delta}\right)$.
Theorem
Any algorithm that is δ-PAC on every bandit model such that $\mu_{m}>\mu_{m+1}$ satisfies, for $\delta \leq 0.15$,

$$
\mathbb{E}[\tau] \geq\left(\sum_{t=1}^{m} \frac{1}{d\left(\mu_{a}, \mu_{m+1}\right)}+\sum_{t=m+1}^{K} \frac{1}{d\left(\mu_{a}, \mu_{m}\right)}\right) \log \frac{1}{2 \delta}
$$

The informational complexity of m best arm identification

For a bandit model ν, one can introduce the complexity term

$$
\kappa_{C}(\nu)=\inf _{\substack{\mathcal{A} \delta-\mathrm{PAC} \\ \text { algorithm }}} \limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\nu}[\tau]}{\log \frac{1}{\delta}}
$$

Our results rewrite

$$
\sum_{t=1}^{m} \frac{1}{d\left(\mu_{a}, \mu_{m+1}\right)}+\sum_{t=m+1}^{K} \frac{1}{d\left(\mu_{a}, \mu_{m}\right)} \leq \kappa_{C}(\nu) \leq 4 \min _{c \in\left[\mu_{m+1} ; \mu_{m}\right]} \sum_{a=1}^{K} \frac{1}{d^{*}\left(\mu_{a}, c\right)}
$$

Regret minimization versus Best arms Identification

■ KL-based confidence intervals are useful in both settings, altough KL-UCB and KL-LUCB draw the arms in a different fashion

Regret minimization versus Best arms Identification

- KL-based confidence intervals are useful in both settings, altough KL-UCB and KL-LUCB draw the arms in a different fashion

■ Do the complexity of these two problems feature the same information-theoretic quantities?

$$
\inf _{\substack{\text { constistent } \\ \text { algorithms }}} \limsup _{T \rightarrow \infty} \frac{R_{T}}{\log T}=\sum_{a=2}^{K} \frac{\mu_{1}-\mu_{a}}{d\left(\mu_{a}, \mu_{1}\right)}
$$

$$
\inf _{\substack{\delta-P A C \\ \text { algorithms }}} \limsup _{\delta \rightarrow \infty} \frac{\mathbb{E}[\tau]}{\log (1 / \delta)} \geq \sum_{a=1}^{K} \frac{1}{d\left(\mu_{a}, \mu_{m+1}\right)}+\sum_{a=m+1}^{K} \frac{1}{d\left(\mu_{a}, \mu_{m}\right)_{a}}
$$

