Discrete PAC Optimization: Application to MCTS

Aurélien Garivier, Emilie Kaufmann and Wouter Koolen

SPADRO Meeting
May 17th, 2016

Generic PAC optimization

- K Bernoulli distributions that can be sampled from
- a question \mathcal{Q} about their means $\mu_{1}, \ldots, \mu_{K}\left(\right.$ answer $\left.A^{*}\right)$

Goal: design a sequential decision strategy
sampling rule $\left(A_{t}\right)$ / stopping rule τ / answering rule \hat{A}
such that $\mathbb{P}\left(\hat{A}=A^{*}\right) \geq 1-\delta, \quad(\delta-\mathrm{PAC}$ algorithm $)$ and $\mathbb{E}[\tau]$ as small as possible.

Example: Best Arm Identification in bandit models

$\mathcal{Q}:$ Which arm has highest mean? i.e. find $a^{*}=\operatorname{argmax}_{a} \mu_{a}$

The sequential decision strategy:

- sampling rule: arm A_{t} chosen at time $t\left(\Rightarrow X_{t} \sim \mathcal{B}\left(\mu_{A_{t}}\right)\right)$
- stopping rule τ
- recommendation rule \hat{a} (based on τ samples)
such that

$$
\mathbb{P}\left(\hat{a}=a^{*}\right) \geq 1-\delta, \quad \text { and } \quad \mathbb{E}[\tau] \quad \text { as small as possible }
$$

LUCB: an algorithm for Best Arm Identification

An algorithm based on confidence intervals

$$
\mathcal{I}_{a}(t)=\left[\mathrm{LCB}_{a}(t), \mathrm{UCB}_{a}(t)\right] .
$$

- At round t, draw
$L_{t}=\underset{a}{\arg \max } \hat{\mu}_{a}(t)$
$C_{t}=\arg \max \mathrm{UCB}_{a}(t)$ $a \neq L_{t}$
- Stop at round t if
$\mathrm{LCB}_{L_{t}}(t)>\mathrm{UCB}_{C_{t}}(t)$

Theorem [Kalyanakrishan et al.]

For well chosen confidence intervals, LUCB is δ-PAC and

$$
\mathbb{E}[\tau]=O\left(\left[\frac{1}{\left(\mu_{1}-\mu_{2}\right)^{2}}+\sum_{a=2}^{K} \frac{1}{\left(\mu_{1}-\mu_{\mathrm{a}}\right)^{2}}\right] \log (1 / \delta)\right)
$$

Optimal best arm identification

Let $d(x, y)=\operatorname{KL}(\mathcal{B}(x), \mathcal{B}(y))$.

Theorem

For any δ-PAC algorithm,

$$
\mathbb{E}_{\mu}[\tau] \geq T^{*}(\mu) \log \left(\frac{1}{2.4 \delta}\right)
$$

where

$$
T^{*}(\boldsymbol{\mu})^{-1}=\sup _{w \in \Sigma_{K}} \inf _{\lambda \in \operatorname{Alt}(\boldsymbol{\mu})}\left(\sum_{a=1}^{K} w_{a} d\left(\mu_{a}, \lambda_{a}\right)\right)
$$

Moreover, we propose a δ-PAC algorithm such that

$$
\limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}\left[\tau_{\delta}\right]}{\log (1 / \delta)}=T^{*}(\boldsymbol{\mu})
$$

A. Garivier, E. Kaufmann, Optimal Best Arm Identification with Fixed Confidence, COLT 2016

Towards another discrete PAC optimization problem

Imagine a two-player game in which

- when A chooses action $i \in\{1, \ldots, K\}$
- and then player B choose action $j \in\left\{1, \ldots, K_{i}\right\}$, the probability that A wins is $\mu_{i, j}$.

Best action for A given that B is strategic:

$$
\begin{gathered}
i^{*} \in \underset{i \in\{1, \ldots, K\}}{\operatorname{argmax}} \min _{j \in\left\{1, \ldots, K_{i}\right\}} \mu_{i, j} . \\
(\text { maximin action })
\end{gathered}
$$

Goal: Learn i^{*} by sequentially choosing pairs of actions (i, j) and observing samples from $\mathcal{B}\left(\mu_{i, j}\right)$ ("rollouts")

Towards another discrete PAC optimization problem

Imagine a two-player game in which

- when A chooses action $i \in\{1, \ldots, K\}$
- and then player B choose action $j \in\left\{1, \ldots, K_{i}\right\}$, the probability that A wins is $\mu_{i, j}$.

Best action for A given that B is strategic:

$$
\begin{gathered}
i^{*} \in \underset{i \in\{1, \ldots, K\}}{\operatorname{argmax}} \min _{j \in\left\{1, \ldots, K_{i}\right\}} \mu_{i, j} . \\
(\text { maximin action })
\end{gathered}
$$

Goal: Learn i^{*} by sequentially choosing pairs of actions (i, j) and observing samples from $\mathcal{B}\left(\mu_{i, j}\right)$ ("rollouts") \Rightarrow Depth 2 MCTS

Maximin action identification

$\mathcal{Q}:$ What is the maximin action? i.e. find $i^{*}=\arg \max _{i} \min _{j} \mu_{i, j}$

Build a strategy $\left(P_{t}, \tau, \hat{\imath}\right)$ such that

$$
\forall \boldsymbol{\mu}, \mathbb{P}_{\boldsymbol{\mu}}\left(\min _{j \in\left\{1 \ldots K_{i^{*}}\right\}} \mu_{i^{*}, j}-\min _{j \in\left\{1 \ldots K_{i}\right\}} \mu_{\hat{\imath}, j} \leq \epsilon\right) \geq 1-\delta,
$$

and $\mathbb{E}_{\boldsymbol{\mu}}[\tau]$ is as small as possible.
A. Garivier, E. Kaufmann, W. Koolen, Maximin Action Identification: a new bandit framework for games, COLT 2016

- Pick one representative per action $P_{i}=\left(i, j_{i}\right)$,

$$
j_{i}=\underset{j}{\arg \max } \operatorname{LCB}_{(i, j)}(t)
$$

- Letting $\hat{i}(t)=\arg \max _{i} \min _{j} \hat{\mu}_{(i, j)}(t)$, draw

$$
L_{t}=\left(\hat{i}(t), \dot{j}_{\hat{i}(t)}\right) \quad \text { and } \quad C_{t}=\underset{P \in\left\{\left(i, j_{i}\right)\right\}_{i \neq i}(t)}{\arg \max } \mathrm{UCB}_{P}(t)
$$

- Stop if $\mathrm{LCB}_{L_{t}}(t)>\mathrm{UCB}_{C_{t}}(t)-\epsilon$

Sample complexity analysis

$\operatorname{LCB}_{P}(t)=\hat{\mu}_{P}(t)-\sqrt{\frac{\beta(t, \delta)}{2 N_{P}(t)}}, \quad \operatorname{UCB}_{P}(t)=\hat{\mu}_{P}(t)+\sqrt{\frac{\beta(t, \delta)}{2 N_{P}(t)}}$

Theorem (two actions per player)

Let $\alpha>0$. There exists $C>0$ such that for the choice

$$
\beta(t, \delta)=\log \left(C t^{1+\alpha} / \delta\right)
$$

M-LUCB is $\delta-$ PAC and

$$
\limsup _{\delta \rightarrow 0} \frac{\mathbb{E}_{\boldsymbol{\mu}}\left[\tau_{\delta}\right]}{\log (1 / \delta)} \leq 8(1+\alpha) H^{*}(\boldsymbol{\mu})
$$

$$
\begin{aligned}
H^{*}(\boldsymbol{\mu})= & \frac{2}{\left(\mu_{1,1}-\mu_{2,1}\right)^{2}}+\frac{1}{\left(\mu_{1,2}-\mu_{2,1}\right)^{2}} \\
& +\frac{1}{\max \left[\left(\mu_{1,1}-\mu_{2,1}\right)^{2},\left(\mu_{2,2}-\mu_{2,1}\right)^{2}\right]}
\end{aligned}
$$

Perspective on M-LUCB

- Pick one representative per action $P_{i}=\left(i, j_{i}\right)$,

$$
j_{i}=\arg \max \mathrm{LCB}_{(i, j)}(t)
$$

- Perform a LUCB step on $\left(P_{1}, \ldots, P_{K}\right)$
\Rightarrow Use a better BAI algorithm ?
\Rightarrow Can we keep this "representative" idea beyond depth 2?

