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Generic PAC optimization

@ K Bernoulli distributions that can be sampled from
@ a question O about their means (1. ..., ;1x (answer A*)

Goal: design a sequential decision strategy
sampling rule (A;) / stopping rule 7 / answering rule A
such that P (2\ - A*) >1-48, (§ PAC algorithm) and

E[r] as small as possible.
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Example: Best Arm Identification in bandit models

Q : Which arm has highest mean? i.e. find a" = argmax, p,

The sequential decision strategy:
e sampling rule: arm A; chosen at time t (= X¢ ~ B(u4,))
@ stopping rule 7
e recommendation rule 3 (based on 7 samples)

such that

P(a=a")>1-6, and E[r] assmall as possible
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LUCB: an algorithm for Best Arm ldentification

An algorithm based on confidence intervals

T.(t) = [LCB,(t), UCB,(t)].

| o At round t, draw
Ly = argmax [i,(t)
I a
3 % } l l C: = argmax UCB,(t)
aF#lL:
. e Stop at round t if
® - -
. 459 200 45 s s LCBLt(t) > UCBCt(t)

For well chosen confidence intervals, LUCB is 6-PAC and
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Optimal best arm identification

Let d(x,y) = KL (B(x), B(y)).

Theorem
For any §-PAC algorithm,

£t T ion (1),

T’"(u)_1 = sup inf (Z wad(a, a))

wEX K A€ALt(p)

where

Moreover, we propose a §-PAC algorithm such that

- Eulrs] .
5P ogti/e) < T

A. Garivier, E. Kaufmann, Optimal Best Arm ldentification with
Fixed Confidence, COLT 2016
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Towards another discrete PAC optimization problem

Imagine a two-player game in which

@ when A chooses action i € {1,...,K}

@ and then player B choose action j € {1,..., K;},
the probability that A wins is f; ;.

Best action for A given that B is strategic:

i* € argmax  min  p;.
ie{1,...Kk} Je{L,...Ki}

(maximin action)

Goal: Learn i* by sequentially choosing pairs of actions (/, ) and
observing samples from B(u; ;) (“rollouts™)
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Towards another discrete PAC optimization problem

Imagine a two-player game in which

@ when A chooses action i € {1,...,K}

@ and then player B choose action j € {1,..., K;},
the probability that A wins is f; ;.

Best action for A given that B is strategic:

i* € argmax  min  p;.
ie{1,...Kk} Je{L,...Ki}

(maximin action)

Goal: Learn i* by sequentially choosing pairs of actions (/, ) and
observing samples from B(p; ;) (“rollouts”) = Depth 2 MCTS
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Maximin action identification

Q : What is the maximin action? i.e. find /* = argmaxmin u;;
g n fj
i J
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Build a strategy (P:,7,7) such that

Ut (je{Ti.'k-*} Hivg = efiiney Ha S 6) =1=4,

and E,[7] is as small as possible.

A. Garivier, E. Kaufmann, W. Koolen, Maximin Action
Identification: a new bandit framework for games, COLT 2016

Emilie Kaufmann Bandit models



The Maximin-LUCB algorithm

e Pick one representative per action P; = (i, ;)

ji = arg maxLCB(;J)(t)

~ J
o Letting /(t) = arg max; min; fi(; j)(t), draw
L= ( (), I t)) and C; = argmax UCBp(t)

Pe{(i:ji)}iqé?(t)
e Stop if LCBy,(t) > UCBg,(t) — €
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Sample complexity analysis

. B(t,d) N B(t, )
LCB = — UCBp(t) = t
CBp(t) = fir(t) N ()’ p(t) = fip(t) + NP (1)
Theorem (two actions per player)
Let o > 0. There exists C > 0 such that for the choice
B(t, 8) = log(Ct™+ /),
M-LUCB is 4-PAC and
: E,[7s]
lim sup —& <8(l+ a)H*(pn
5P log(1/0) = 2 T ) ‘
2 1
H* = +
W) = s a? (e —ra )
1

max [(p1,1 — /’2,1)2- (22 — /12,1)2]
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Perspective on M-LUCB

e Pick one representative per action P; = (i, ),
Ji = argmaxLCBy; j(t)
J
e Perform a LUCE step on (Py, ..., Pk)

= Use a better BAI algorithm ?
=- Can we keep this “representative” idea beyond depth 27
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