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Generic PAC optimization

K Bernoulli distributions that can be sampled from

a question Q about their means µ1, . . . , µK (answer A∗)
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Goal: design a sequential decision strategy

sampling rule (At) / stopping rule τ / answering rule Â

such that P
(

Â = A∗
)
≥ 1− δ, (δ − PAC algorithm) and

E[τ ] as small as possible.
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Example: Best Arm Identification in bandit models

Q : Which arm has highest mean? i.e. find a∗ = argmaxa µa
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The sequential decision strategy:

sampling rule: arm At chosen at time t (⇒ Xt ∼ B(µAt ))
stopping rule τ
recommendation rule â (based on τ samples)

such that

P (â = a∗) ≥ 1− δ, and E[τ ] as small as possible
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LUCB: an algorithm for Best Arm Identification

An algorithm based on confidence intervals

Ia(t) = [LCBa(t),UCBa(t)].
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At round t, draw

Lt = arg max
a

µ̂a(t)

Ct = arg max
a 6=Lt

UCBa(t)

Stop at round t if

LCBLt (t) > UCBCt (t)

Theorem [Kalyanakrishan et al.]

For well chosen confidence intervals, LUCB is δ-PAC and

E[τ ] = O

([
1

(µ1 − µ2)2
+

K∑
a=2

1

(µ1 − µa)2

]
log(1/δ)

)
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Optimal best arm identification

Let d(x , y) = KL (B(x),B(y)).

Theorem

For any δ-PAC algorithm,

Eµ[τ ] ≥ T ∗(µ) log

(
1

2.4δ

)
,

where

T ∗(µ)−1 = sup
w∈ΣK

inf
λ∈Alt(µ)

(
K∑

a=1

wad(µa, λa)

)
.

Moreover, we propose a δ-PAC algorithm such that

lim sup
δ→0

Eµ[τδ]

log(1/δ)
= T ∗(µ)

A. Garivier, E. Kaufmann, Optimal Best Arm Identification with
Fixed Confidence, COLT 2016
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Towards another discrete PAC optimization problem

Imagine a two-player game in which

when A chooses action i ∈ {1, . . . ,K}
and then player B choose action j ∈ {1, . . . ,Ki},

the probability that A wins is µi ,j .

Best action for A given that B is strategic:

i∗ ∈ argmax
i∈{1,...,K}

min
j∈{1,...,Ki}

µi ,j .

(maximin action)

Goal: Learn i∗ by sequentially choosing pairs of actions (i , j) and
observing samples from B(µi ,j) (“rollouts”)

⇒ Depth 2 MCTS
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Maximin action identification

Q : What is the maximin action? i.e. find i∗ = arg max
i

min
j

µi ,j

Build a strategy (Pt , τ, ı̂) such that

∀µ, Pµ

(
min

j∈{1...Ki∗}
µi∗,j − min

j∈{1...Kı̂}
µı̂,j ≤ ε

)
≥ 1− δ,

and Eµ[τ ] is as small as possible.

A. Garivier, E. Kaufmann, W. Koolen, Maximin Action
Identification: a new bandit framework for games, COLT 2016
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The Maximin-LUCB algorithm

Pick one representative per action Pi = (i , ji ),

ji = arg max
j

LCB(i ,j)(t)

Letting î(t) = arg maxi minj µ̂(i ,j)(t), draw

Lt = (̂i(t), ĵi(t)) and Ct = arg max
P∈{(i ,ji )}i 6=î(t)

UCBP(t)

Stop if LCBLt (t) > UCBCt (t)− ε
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Sample complexity analysis

LCBP(t) = µ̂P(t)−

√
β(t, δ)

2NP(t)
, UCBP(t) = µ̂P(t) +

√
β(t, δ)

2NP(t)

Theorem (two actions per player)

Let α > 0. There exists C > 0 such that for the choice

β(t, δ) = log(Ct1+α/δ),

M-LUCB is δ-PAC and

lim sup
δ→0

Eµ[τδ]

log(1/δ)
≤ 8(1 + α)H∗(µ)

H∗(µ) =
2

(µ1,1 − µ2,1)2
+

1

(µ1,2 − µ2,1)2

+
1

max [(µ1,1 − µ2,1)2, (µ2,2 − µ2,1)2]
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Perspective on M-LUCB

Pick one representative per action Pi = (i , ji ),

ji = arg max
j

LCB(i ,j)(t)

Perform a LUCB step on (P1, . . . ,PK )

⇒ Use a better BAI algorithm ?
⇒ Can we keep this “representative” idea beyond depth 2?
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