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Environment and strategy

K arms bandit problem, ν =
(
B(µ1), ..,B(µK )

)
with µi ∈ (0, 1).

Game, for each round t > 1 :
1. Player pulls arm At ∈ {1, ..,K}.
2. He gets a reward Yt ∼ B(µAt ).

Information available at time t :

It =
(

Y1, . . . , Yt
)
.
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Regret
Optimal arm and gap :

µ? = max
a=1,...,K

µa and ∆a = µ? − µa .

Number of time arm a is pulled :

Na(T ) =
T∑

t=1
I{At=a} .

Goal of the player, minimize the expected regret :

Rν,T = Tµ? − Eν

[ T∑
t=1

Yt

]
=

K∑
a=1

∆a Eν
[
Na(T )

]
.

(tower rule)
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Tow blocks inequality :

K∑
a=1

Eν
[
Na(T )

]
kl(µa, µ

′
a) = KL

(
PIT
ν , P

IT
ν′
)
> kl

(
Eν [Z ], Eν′ [Z ]

)
, (F)

where
• PIT

ν and PIT
ν′ respective distributions of IT under Pν and Pν′

• kl the Kullback-Leibler divergence for Bernoulli distributions :

∀p, q ∈ [0, 1]2, kl(p, q) = p ln p
q + (1− p) ln 1− p

1− q ,

• Z a σ(IT )–measurable random variable with values in [0, 1].

Typically Z = Na(T )/T .
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Proof.
Equality in F, an application of chain rule for Kullback-Leibler divergences

:
K∑

a=1
Eν
[
Na(T )

]
kl(µa, µ

′
a) = KL

(
PIT
ν , P

IT
ν′
)

Inequality in F, use contraction of entropy : Let V ∼ U [0, 1] independent
of IT , and the event E = {Z > V } then

KL(PIT
ν ,P

IT
ν′ ) = KL

(
PIT
ν ⊗ U , P

IT
ν′ ⊗ U

)
> KL

(
(PIT
ν ⊗ U)IE , (PIT

ν′ ⊗ U)IE
)

= kl
(
(PIT
ν ⊗ U)(E ), (PIT

ν′ ⊗ U)(E )
)
.

The proof is concluded by noting that for all α = ν or ν ′,

(PIT
α ⊗ U)(E ) = Eα[Z ] .
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Definition
A strategy is consistent if for all bandits problems ν, for all suboptimal arms
a, i.e. ∆a > 0, it satisfies Eν

[
Na(T )

]
= o(Tα) for all 0 < α 6 1.

Lower bound from Lai & Robbins :

Theorem (asymptotic distribution-dependent lower bounds)
For all consistent strategies, for all bandits problems ν, for all suboptimal
arms a,

lim inf
T→∞

Eν
[
Na(T )

]
lnT >

1
kl(µa, µ?)

.
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Figure : Bernoulli bandit problem with parameters :
(µa)16a66 = (0.05, 0.04, 0.02, 0.015, 0.01, 0.005)

• Linear regret for T small.
• Logarithmic regret for large T (asymptotic lower bound).
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Absolute lower bound for a suboptimal arm

In what follows ν =
(
B(µ1), ..,B(µK )

)
with an unique optimal arm i?.

Uniform strategy : pull an arm uniformly at random at each round.

Definition
A strategy is smarter than the uniform strategy if for all bandit problems ν,
for all T > 1,

Eν
[
Ni?(T )

]
>

T
K

Eν
[
Na(T )

]
6

T
K a supotimal.
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Theorem
For all strategies that are smarter than the uniform strategy, for the bandit
problems ν, for all arms a, for all T > 1,

Eν
[
Na(T )

]
>

T
K
(
1−

√
2Tkl(µa, µ?)

)
.

In particular,

∀T 6
1

8kl(µa, µ?)
, Eν

[
Na(T )

]
>

T
2K .

Linear regret
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a suboptimal arm.
Modified bandit problem ν ′ =

(
B(µ1), ..,B(µ′

a), ..,B(µK )
)
with µ′

a > µ?.
Tow blocks inequality,

Eν
[
Na(T )

]
kl(µa, µ

′
a) > kl

(
Eν
[
Na(T )

]
/T , Eν′

[
Na(T )

]
/T
)

smarter than the uniform : Eν
[
Na(T )

]
/T 6 1/K 6 E′

ν

[
Na(T )

]
/T and

q 7→ kl(p, q) is increasing on [p, 1],

> kl
(
Eν
[
Na(T )

]
/T , 1/K

)
Pinsker inequality,

>
K
2
(
Eν
[
Na(T )

]
/T − 1/K

)2
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Still with Eν
[
Na(T )

]
/T 6 1/K :

kl(µa, µ
′
a)T/K >

K
2
(
Eν
[
Na(T )

]
/T − 1/K

)2
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